Features

- Complete isolated solution for CAN bus
- Contains galvanically-isolated CAN transceiver ISO1042
- Contains R1SX-3.305/H 3.3V to 5V 1W DC-DC converter with 3kVDC isolation

Up to 5Mbit data rate in CAN FD mode

Reference Design

- Input and output test points
- Meets IS011898-2 (2016) standard

RECOM Reference Design

R-REF03-CAN1

Description

The R-REF03-CAN1 Reference Board demonstrates the ISO1042 isolated CAN transceiver supplied by the R1SX-3.305/H isolated DC/DC converter. To supply the reference board only one 3.3V external supply is required. The green LED indicates the presence of the VCC2 supply on the secondary (CAN bus) side. The reference board allows designers to quickly develop and analyze isolated systems.

The reference board is pre-configured with a "split" termination network (R2 and R4) with a common-mode capacitance and additional caps (C7, C8 and C9) on the CAN bus for protection. It also includes an option to populate a 120- Ω resistor R3 which can be used with the EVM as a terminated line end (CAN is defined for 120 Ω impedance twisted pair cable). Protection components like TVS diodes (D1) and common code (CM) choke (L1) are also provided with bypass paths if necessary. Using these options, the customer is allowed installation of the desired components.

The output of the R1SX-3.305/H (U2) is used to supply the secondary (CAN bus) side of the digital isolator U1 and the green LED (LED1) which indicates the presence of the voltage on VCC2. VCC2 is loaded with a 120Ω resistor R7, too, to keep the VCC2 safely below 5.3V. Since the reference board internally consumes about 80mA from the output of the U2, a user can use about 120mA to supply circuits outside of this reference board through connector pin J2-1 or test point TP10.

R-REF03-CAN1 Top view

Caution:

ESD sensitive. Always follow ESD preventative procedures when handling the product!

R-REF03-CAN1

Specifications (measured @ Ta= 25°C, full load after warm up unless otherwise stated)

Parameter		Condition		Min.	Тур.	Max.
Input Voltage Range					±10.0%	
Internal Operating Frequency				20kHz	60kHz	100kHz
Output Ripple and Noise (1)		20MHz BW				100mVp-p
Output Accuracy						±5.0%
Isolation Voltage	I/P to O/P	with suffix "/H"	tested for 1 second rated for 1 minute			3kVD0 1.5kVA0
Isolation Resistance		•		10GΩ		
Isolation Capacitance						70pF
Leakage Current						ЗμА
Operating Temperature Range						-40°C to +100°C
Operating Altitude						5000m
Footprint Details of R1SX (mm)	8 1	 5 Top View	Pin Pin 1 2 4 5	Connection 1 # Single -Vin +Vin -Vout +Vout		
		<u> </u>	8NC=	no connection		

Basic Specification of the IS01042

The ISO1042 device is a galvanically-isolated controller area network (CAN) transceiver that meets the specifications of the ISO11898-2 (2016) standard. The device supports up to 5-Mbps data rate in CAN FD mode allowing much faster transfer of payload compared to classic CAN. This device uses a silicon dioxide (SiO2) insulation barrier with a withstand voltage of 5000 VRMS. Used in conjunction with isolated power supplies like R1SX from RECOM, the device prevents noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry.

ISO1042 accepts 1.8V, 2.5V, 3.3V or 5.5V supply voltage on the primary side (VCC1) and 5V on the secondary (VCC2).

For more details about the ISO1042 please visit www.ti.com/product/iso1042

Notes:

Note2: The reference board may contain pre-production version of the ISO1042. This pre-production version part number is XISO1042 and this part number is printed on the IC. If your board is populated with the XISO1042, the prototype device waiver from Texas Instruments (included at the end of this document) is applicable.

R-REF03-CAN1

Specifications (measured @ Ta= 25°C, full load after warm up unless otherwise stated)

Quick Start Guide

- Apply 3.3V to VCC1/GND1 and observe 5V on the VCC2/GND2. The green LED on the board should light up
- Inject test signal up to 5-Mbit into the TXD input pin (TXD/GND1) using a signal generator or other source
- Check the CANH and CANL signals with a scope on the secondary side (CANH/GND2 and CANL/GND2)
- Check the RXD signal with a scope on the primary side (RXD/GND1)
- Turn off the signal generator
- Turn off the 3.3V supply. The LED should turn off

Basic Test Setup

Connector Description

Con1

00111				
Pin	Name	Description	Test Point	
1	VCC1	Primary Supply 3.3V	TP1	
2	GND1	Primary Ground	TDO	
3	GND1	Primary Ground	IP2	
4	TXD	CAN transmit data input	TP3	
5	RXD	CAN receive data output	TP4	
6	GND1	Primary Ground	TP5	

Con2

Pin	Name	Description	Test Point	
1	VCC2	Secondary Supply 5V	TP10	
2	GND2	Secondary Ground		
3	GND2	Secondary Ground	129	
4	CANH	High-level CAN bus line	TP8	
5	CANL	Low-level CAN bus line	TP7	
6	GND2	Secondary Ground	TP6	

R-REF03-CAN1

Specifications (measured @ Ta= 25°C, full load after warm up unless otherwise stated)

Schematic

R-REF03-CAN1

Specifications (measured @ Ta= 25°C, full load after warm up unless otherwise stated)

DIMENSION AND PHYSICAL CHARACTERISTICS				
Parameter	Туре	Value		
Dimension (LxWxH)		81.28 x 44.96 x 18.0mm		
Weight		18.0g typ.		

OM					
Comp.	Description	Manufacturer Part Number	Manufacturer	Qty.	
U1	Isolated CAN transceiver	ISO1042DWR or XISO1042DWR	TI	1	
U2	Isolated DC/DC converter 3.3V to 5V 3kVDC	R1SX-3.305 /H	RECOM	1	
L1	Coupled inductor, 51 µH, 0.2 A, 0.7 ohm, SMD	ACT1210-510-2P-TL00	TDK	1	
R6	RES, 120, 1%, 0.1 W, 0603		Yageo	1	
R1, R5	RES, 0, 5%, 0.25 W, 1206		Yageo	not mounted	
R3	RES, 120, 1%, 1 W, 2512		Yageo	not mounted	
R2, R4	RES, 59.0, 1%, 0.25 W, 1206		Yageo	2	
R7	RES, 120, 1%, 0.25 W, 1206		Yageo	1	
C7	CAP, CERM, 4700 pF, 50 V, +/- 10%, X7R, 0603		Murata	1	

continued on next page