
Technical Data Sheet

ADAPTOR 2.4 MM MALE - MCC#12 MALE

This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.

Technical Data Sheet

ADAPTOR 2.4 MM MALE - MCC#12 MALE

MECHANICAL CHARACTERISTICS SPECIFICATION Center contact retention 7 N mini Axial force – Mating End 7 N mini Axial force – Opposite end 7 N mini Torque NA N.cm mini Recommended torque 95 N.cm Mating 95 N.cm Panel nut N.cm N.cm	Standard Unit Other UNITAIRE - Contact us ELECTRICAL CHARACTERISTICS mpedance 50 Ω "requency 0-40 GHz /SWR 1.05 + 0,0040 x F(GHz) Maxi nsertion loss 0.25 VF(GHz) dB Maxi Yoltage rating 335 Veff Maxi Delectric withstanding voltage 500 Veff Maxi Delectric withstanding voltage 5000 Ms2 mini MECHANICAL CHARACTERISTICS Operating -65/+175 °C Mermetic seal Panel leakage -4m.cm3/s Panel leakage 7 N mini N mini Axial force - Mating End 7 N mini N cm Axial force - Opposite end 7 N mini N cm Torque NA N.cm Other CHARACTERISTICS Recommended torque Ma N.cm Other CHARACTERISTICS Mating 95 N.cm Other CHARACTERISTICS Panel nut N.cm 0 N.cm	PAGE 2/2	ISSUE 1339	SERIES ADAPT- MES			PART NU	JMBER	R1915540	00
UNITAIRE - Contact us ELECTRICAL CHARACTERISTICS Impedance 50 Ω Frequency 0.40 GHz VSWR 1.05 + 0.25 VF(GHz) dB Maxi NA - Insertion loss 0.25 √F(GHz) dB Maxi Insertion loss 0.25 √F(GHz) dB Maxi Dielectric withstanding voltage 500 Veff Maxi Dielectric withstanding voltage 500 Veff Mini Operating -65/+175 °C Atm.cm3/i Hermetic seal - Panel leakage 7 N mini Axial force – Mating End 7 N mini Axial force – Opposite end 7 N mini Torque NA N.cm OTHER CHARACTERISTICS Recommended torque 95 N.cm OTHER CHARACTERISTICS Mating life 500 Cycles mini OTHER CHARACTERISTICS	UNITAIRE - Contact us ELECTRICAL CHARACTERISTICS mpedance 50 Ω "requency 0-40 GHz /SWR 1.05 + 0,040 Notage rating 0.25 \F(GHz) dB Maxi nsertion loss 0.25 \F(GHz) dB Maxi Notage rating 0.25 \F(GHz) dB Maxi Dielectric withstanding voltage 500 Veff Maxi Dielectric withstanding voltage 5000 MΩ mini Maxia force – Opposite end 7 N mini Axial force – Opposite end 7 N mini Torque NA N.cm OTHER CHARACTERISTICS Mating 95 N.cm OTHER CHARACTERISTICS Panel nut N.cm N.cm OTHER CHARACTERISTICS				PACKA	GING				
$ \begin{array}{c} \hline \textbf{ELECTRICAL CHARACTERISTICS} \\ \hline \textbf{Impedance} & 50 & \Omega \\ \hline \textbf{Frequency} & 0-40 & \text{GHz} \\ VSWR & 1.05 + 0,0040 & \text{x}F(GHz) & \text{dB Maxi} \\ \text{Insertion loss} & 0.25 & VF(GHz) & \text{dB Maxi} \\ \textbf{Nestrion loss} & 0.25 & VF(GHz) & \text{dB Maxi} \\ \text{Voltage rating} & 333 & Veff Maxi \\ \text{Dielectric withstanding voltage} & 500 & Veff mini \\ \text{Dielectric withstanding voltage} & 5000 & W\Omega mini \\ \hline \textbf{Mechanical characteristics} \\ \hline \textbf{Mechanical characteristics} \\ \hline \textbf{Center contact retention} \\ Axial force - Mating End & 7 & N mini \\ Axial force - Mating End & 7 & N mini \\ Axial force - Mating End & 7 & N mini \\ Axial force - Mating Maxi \\ \hline \textbf{Mating} & 95 & \text{N.cm} \\ \hline \textbf{Mating} & 16 & 500 & \text{Cycles mini} \\ \hline \end{array}$	ELECTRICAL CHARACTERISTICS mpedance 50 Ω Frequency 0-40 GHz /SWR 1.05 + 0,0040 × F(GHz) dB Maxi /Oltage rating 335 Velf Maxi ENVIRONMENTAL /Olectric withstanding voltage 335 Velf Maxi Operating -65/+175 °C /Hermetic seal - - Atm.cm3/s Panel leakage Atm.cm3/s /Delectric withstanding voltage 5000 MΩ mini Operating -65/+175 °C /Mating force - Mating End 7 N mini NA N.com mini OTHER CHARACTERISTICS Center contact retention 7 N mini N N.com mini OTHER CHARACTERISTICS Recommended torque 95 N.com 0 N.com OTHER CHARACTERISTICS Mating life 500 Cycles mini N.com N.com		[
Impedance 50 Ω Frequency 0-40 GHz VSWR 1.05 + 0,0040 × F(GHz) Maxi Insertion loss 0.25 √F(GHz) dB Maxi Nether Releakage -(NA - F(GHz)) dB Maxi Voltage rating 335 Veff Maxi Dielectric withstanding voltage 5000 Veff mini Insulation resistance 5000 MΩ mini MECHANICAL CHARACTERISTICS Center contact retention Axial force – Mating End 7 N mini Axial force – Opposite end 7 N mini Torque NA N.cm mini Recommended torque 95 N.cm Mating 95 N.cm 0 N.cm Panel nut Mating life 500 Cycles mini	mpedance 50 Ω Frequency 0-40 GHz VSWR 1.05 + 0,0040 x F(GHz) dB Maxi Nsertion loss 0.25 √F(GHz) dB Maxi Environmental Voltage rating 0 X.25 √F(GHz) dB Maxi Dielectric withstanding voltage 500 Veff mini Operating -65/+175 °C Dielectric withstanding voltage 5000 MΩ mini Operating -65/+175 °C MECHANICAL CHARACTERISTICS Maxi force – Mating End 7 N mini N mini Axial force – Opposite end 7 N mini Axial force – Opposite end 7 N mini N.cm OTHER CHARACTERISTICS Recommended torque 95 N.cm 0 N.cm Mating 95 N.cm 0 N.cm Panel nut N.cm N.cm 0 N.cm			UNITAIRE	-		Contact	tus		
Frequency 0-40 GHz /SWR 1.05 + 0,0040 x F(GHz) Maxi nsertion loss 0.25 √F(GHz) dB Maxi ENVIRONMENTAL AF leakage - (NA - F(GHz) dB Maxi /oltage rating 335 Veff Maxi Operating -65/+175 °C /bit detectric withstanding voltage 500 Veff mini Operating -65/+175 °C nsulation resistance 5000 MΩ mini Operating -65/+175 °C MECHANICAL CHARACTERISTICS Maxi attrice seal panel leakage -65/+175 °C Axial force – Mating End 7 N mini Torque NA N.cm mini Recommended torque NA N.cm OTHER CHARACTERISTICS Recommended torque 95 N.cm O OTHER CHARACTERISTICS Mating 95 N.cm O N.cm Mating life 500 Cycles mini OTHER CHARACTERISTICS	Frequency 0-40 GHz /SWR 1.05 + 0,0040 x F(GHz) Maxi nsertion loss 0.25 vF(GHz) Maxi ENVIRONMENTAL SR leakage -(NA -F(GHz)) dB Maxi /oltage rating 335 Veff Maxi Dielectric withstanding voltage 500 Veff mini nsulation resistance 5000 MΩ mini MECHANICAL CHARACTERISTICS Operating -65/+175 °C Atm.cm3/s Atm.cm3/s Panel leakage 7 N mini Axial force – Mating End 7 N mini Axial force – Opposite end 7 N mini Torque NA N.cm OTHER CHARACTERISTICS Recommended torque 95 N.cm OTHER CHARACTERISTICS Mating 95 N.cm OTHER CHARACTERISTICS	I		ACTERISTICS						
Insulation resistance 5000 MΩ mini Operating Hermetic seal Panel leakage -65/+175 °C Atm.cm3/s MECHANICAL CHARACTERISTICS MECHANICAL CHARACTERISTICS SPECIFICATION Center contact retention Axial force – Mating End Torque 7 N mini N M N mini N cm Recommended torque Mating 95 N.cm 0 N.cm Panel nut N.cm Mating life 500 Cycles mini	nsulation resistance 5000 MΩ mini Operating Hermetic seal Panel leakage -65/+175 °C Atm.cm3/s MECHANICAL CHARACTERISTICS MECHANICAL CHARACTERISTICS SPECIFICATION Center contact retention Axial force – Opposite end Torque 7 N mini NA N.cm Recommended torque Mating 95 N.cm OTHER CHARACTERISTICS Mating life 500 Cycles mini	Frequency VSWR Insertion loss RF leakage	- (0-40 GHz 0,0040 x F(GHz) M 0.25 √F(GHz) dE NA - F(GHz)) d 335 Veff Maxi	3 Maxi			ENVIR	ONMENTAL	
Center contact retention Axial force – Mating End 7 N mini Axial force – Opposite end 7 N mini Axial force – Opposite end 7 Torque NA N.cm mini OTHER CHARACTERISTICS Recommended torque 95 N.cm OTHER CHARACTERISTICS Mating 95 N.cm 0 N.cm Panel nut N.cm N.cm N.cm	Center contact retention Axial force – Mating End Axial force – Opposite end Torque Recommended torque Mating Panel nut Mating 500 Cycles mini	Dielectric withstai Insulation resistai	nding voltage nce			Herme	tic seal		-65/+175	
Axial force – Mating End Axial force – Opposite end Torque Recommended torque Mating Panel nut Mating Ife 500 Cycles mini	Axial force – Mating End 7 N mini Axial force – Opposite end 7 N mini Torque NA N.cm mini Recommended torque 95 N.cm Mating 95 N.cm Panel nut N.cm Mating life 500 Cycles mini	Ν	IECHANICAL CHAR	ACTERISTICS						
Torque NA N.cm mini Recommended torque Mating 95 N.cm 0 N.cm Panel nut Nating 16 500 Cycles mini	Torque NA N.cm mini Recommended torque Mating 95 N.cm 0 N.cm Panel nut N.cm Mating 1ife 500 Cycles mini	Center contact re Axial force – M Axial force – O	tention ating End	7 Nn 7 Nn	nini			<u>SPEC</u>	IFICATION	
Mating 95 N.cm 0 N.cm Panel nut N.cm Mating life 500 Cycles mini	Mating 95 N.cm 0 N.cm Panel nut N.cm Mating life 500 Cycles mini			NA N.c	m mini		<u>0</u>	THER CH	ARACTERIST	ICS
Mating life 500 Cycles mini Weight 3 9700 g	Mating life500Cycles miniWeight3,9700g	Mating	orque	0 N 0 N	l.cm l.cm					
wolgin Goroo g		Mating life	3	500 Cycles mini						

This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.