

SPDT PART NUMBER SELECTION GUIDE*

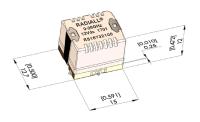
Quartz	RAMSES		PI ATINUM	S. res	
TUUS	TUGO		TUGO		igita sitio
JUNG	חשכ		JUNE JUNE	Comiguration	
R516	R570	R570	R595		R 1-3:
3	1			DC - 8 GHz	
4	1	1	-	DC - 18 GHz	
7	1	-	-	DC - 26.5 GHz	
1	1	3	1	SMA 3 GHz	
1	1		8	SMA 6 GHz	
1	1	4		SMA 18 GHz	
1		1	4	SMA 20 GHz	
1	1	ш	ш	SMA 26.5 GHz	4
1	1	8	8	SMA 2.9 40 GHz	: RF
1	1	_	-	2.4mm 50 GHz	соі
		Ш	1	QMA 6 GHz	nne
1	ı	6	1	DIN 1.6/5.6, 2.5 GHz	ctoı
-	1	エ		1	rs
		A	1	Pc board mount 3 GHz	
1	0		ı	N 3 GHz	
1	_	1	1	N 12.4 GHz	
1	2		1	BNC 3 GHz	
1	2	1	1	TNC 3 GHz	
1	9		1	TNC 12.4 GHz	
1	О	1	1	TNC 18 GHz	
1/9	1/2	1/2	1	Failsafe	Ty
က	3/4/5/6	3/4/5/6	3/4/5/6	Latching	i: pe
_	1	1	ı	۸ ۹	
2	2	2	ı	12 V	6: V
1			7	15 V	olta
3	-	-	3	24 V	age
1	3	3	ı	28 V	!
1	0	0	ı	Without	
1	_	_	ı	With	TTL
1	1	1	_	SPDT non-terminated	. op del
_	1	1	1		t./
1	0	0	_	Without option	
1	_	_	_	Positive common	8:
	3	co	1	Supression diodes	Opi
1	4	7	1	Suppression diodes and positive common	tion
1	1	1	2	Compatible with TTL driver	S
0	1	1	ı		
0	1			Not soldered	9:
⊢	1	1	1	Soldered on a connectorized test fixture	Terr
1	0	0	0	Solder pins	nina
1	2	ı	2	D-Sub connector	ıls
	1			Certificate of conformity	
	1		O	Calibration certificate	10: cume atior
1		1	~	Calibration certificate + RF curves	ent-

Example of P/N: R570F12010 is a SPDT SMA 26.5 GHz, failsafe, 12 Vdc, without TTL, with positive common, solder pins.

^{*}For part number creation and available options, see detailed part number selection for each series.

SURFACE MOUNT TECHNOLOGY

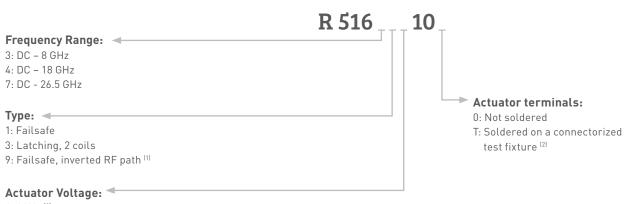
Actual Size



Typical Outline Drawing

All dimensions are in millimeters [inches].

An innovative and original "micro-mechanical" design of the R516 SMT micro-relay offers, excellent RF performance, reliability, and repeatability. The miniature size, and low installation cost make these coaxial switches an ideal solution.


Very low return loss and insertion loss allow this relay to be used in power applications, as well as in typical SMT relay applications such as RF attenuators, RF matrices, spectrum analysers, and telecommunications.

Failsafe models are offered in two RF configurations (direct and inverted). The association of these two products on the same PC board enables the product to perform the bypass function. (For bypass mounting, further information is available on page 2-7).

Example of P/N:

R516713100 is a SPDT SMT 26.5 GHz, 24 Vdc, failsafe, not soldered.

PART NUMBER SELECTION

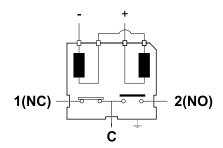
1: 6 Vdc [3]

2: 12 Vdc

3: 24 Vdc

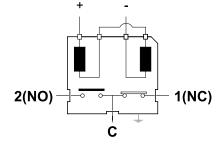
NOTE:

- (1): Can be combined with a failsafe model, so as to achieve the "BYPASS" function (see application details on page 2-6)
- (2): See details about test fixture dimensions on page 2-4
- (3): Only available with type 3

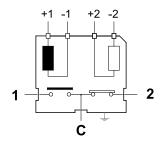


QUARTZ GENERAL SPECIFICATIONS

Operating mode		Failsafe (ty	pes 1 and 9)		Latching (type 3)	
Nominal operating voltage (across temperature range)	Vdc	12 (10.5 to 13)	24 (21.5 to 30)	6 (5.1 to 6.6)	12 (10.2 to 13)	24 (20.5 to 30)
Coil resistance at 23°C (+/-10%)	Ω	195	740	55	205	865
Operating current at 23°C	mA	61	32	108	58	32
RF and command ports			d access, infrare Compatible with			
Switching time at - Making contacts nominal voltage - Breaking contacts		Ма	x 5 ms (typical 2	ms), including o	contact bounce t	me
- Cold switching (max 120 cycles/min) Life - Hot switching (max 20 cycles/min)		2 millio	n cycles	(5 million	3 million cycles cycles typical at	
The switching (max 20 egeles min)				500.000 cycles		
		Dielectric t	est voltage		300 Vrms	
Insulation			esistance at Vdc		> 100 M0hms	
Environmental protection		Lead fi	ree construction	- Waterproof (a	acc. To IEC 60529	/ IP64)
Mass	8 g					
Operating temperature range (with no icing nor condensation) $^{\circ \mathbb{C}}$		-25 to	+70 [1]	-40 to +85		
Storage temperature range °C		- 55 to +85				
Sine vibration (MIL STD 202, Method 204D)		Condition D: 10	0-2000 Hz, 20 g		Operating	
Sine vibration (MIL 31D 202, Method 204D)		Condition G: 10	0-2000 Hz, 30 g		Non-operating	
Shocks (According to MIL STD 202, Method 213B, 0	Cond. C)	100g / 6 m	s, 1/2 sine		Operating	


(1): Failsafe models may be used down to -40° C, for this application please follow requirements of AN-R516-51. Contact Radiall for a copy of this application note.

PIN IDENTIFICATION (TOP VIEW)



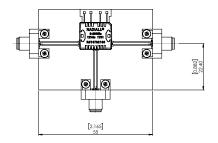
Voltage	RF continuity
De-energized	C <> 1(NC)
Energized	C <> 2(NO)

Inverted failsafe model for Bypass application (Type 9)

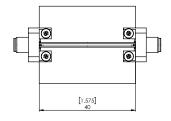
Voltage	RF continuity
De-energized	C <> 1(NC)
Energized	C <> 2(NO)

Latching model (Type 3)

Voltage	RF continuity
-1 +1	C <> 1
-2 +2	C <> 2



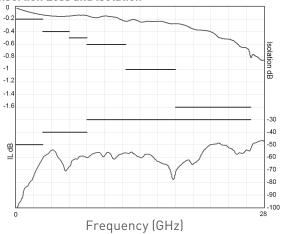
QUARTZ PERFORMANCE (S PARAMETERS AVAILABLE ON REQUEST)


F		V.S.W.R. Insertion loss (max)		Isolation (min) dB	Third order	Impedance
Frequency	range GHz	(max)	dB	switch alone	Inter modulation	Ω
	DC - 3	1.20	0.20	50		
DC - 8	3 – 6	1.35	0.40	40	110 (10 - 1	
DC 10	6 – 8	1.40	0.50	40	-110 dBc typical at	EO
DC - 18	8 - 12.4	1.50	0.60	40	1730 MHz (2 carriers 20 W)	50
DC - 26.5	12.4 – 18	1.70	1.00	40	(Z Carriers ZU W)	
	18 – 26.5	2.00	1.60	40		

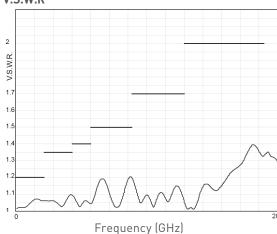
MEASUREMENT METHOD

Relay soldered on test fixture [7]

Calibration board


All dimensions are in millimeters [inches].

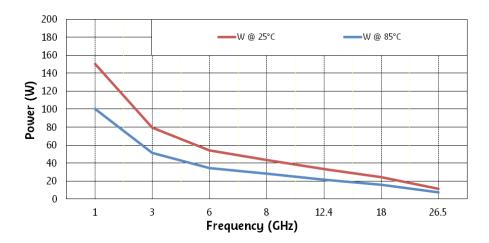
Inputs/Outputs of the calibration board and test fixture are equipped with coaxial type receptacle connectors. The length of the RF tracks is the same on the calibration board and the test fixture circuits. The insertion loss of the relay itself is calculated by subtracting the insertion loss of the "calibration board" to the insertion loss of the "relay soldered on the test fixture."


(7): Relay soldered on Test Fixture is available. To order, please use the suffix "T" (part number R516 - - - - T), as explained in page 2-2.

TYPICAL RF PERFORMANCE

Insertion Loss and Isolation

V.S.W.R

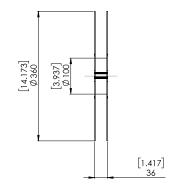


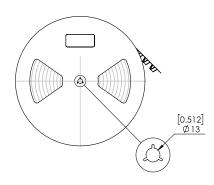
RF POWER RATING FOR COLD SWITCHING USE

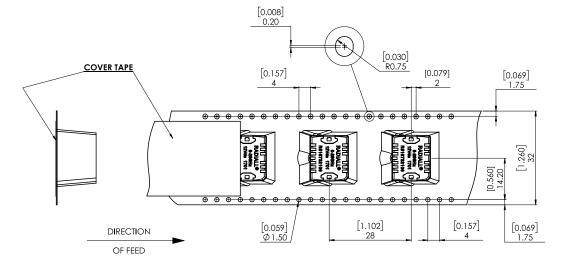
(Impedance 50 Ohms, V.S.W.R. < 1.25)

Power level depends on environmental conditions:

- R516 series have been designed to be used without a cooling fan even for high power applications. However, the power capability may be still improved by using the appropriate cooling fan.
- For failsafe models used with coil permanently supplied (N/O position), the same power level as latching models may be applied.

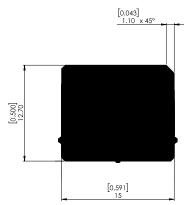


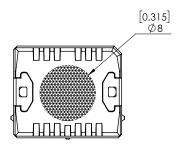

RELAY PACKAGING


According to IEC 286-3 standard

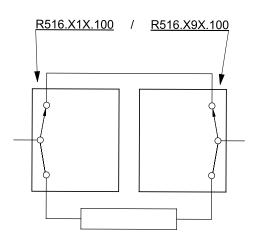
Materials:

Reel: polyester Carrier tape: PVC Cover tape: polyester





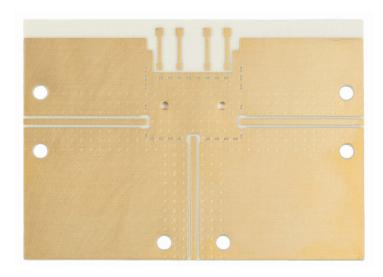
Video shadow of the relay


Aspiration area

All dimensions are in millimeters [inches].

BYPASS APPLICATION

Failsafe Micro-relay typical implantation


SPDT relays (Single Pole Double Throw) can be used to achieve a bypass switch function. For SMT applications, R516 series, relays are available in two failsafe versions, standard and inverted, to provide symmetric RF ports implantation possibility. The "side by side" implementation of these two versions on a PCB effectively produces the bypass function. The package size is reduced and interconnecting tracks are shortened. Required in order to protect the receiver for transmit/receive applications. RF performance of bypass switch assemblies depend on the distance between the two RF SMT relays.

PC BOARD MOUNTING

Board layout

DXF or Gerber format file available upon request.

Substrate types

Recommended substrates are ROGERS RO4003., Thickness 0.508 mm Cu double side 17.5 μm .

Recommended total thickness of RF tracks (copper over thickness + plating): 40 $\mu m.$ Other substrates may be used.

Please contact your local sales representative for additional information.

SMT Power Micro SPDT with 26.5 GHz Capabilities RECOMMENDED SOLDERING PROCEDURE

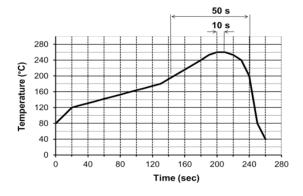
A - Soldering procedure using automatic pick and place equipment

1 - Solder paste:

R516 series are "Lead Free", and Lead Free Sn-Ag3.5-Cu0.7 solder cream may be used as well as standard Sn63-Pb35-Ag2. RADIALL recommends using a "no clean - low residue" solder cream (5% solid residue of flux quantity) that will permit the elimination of the cleaning operation step after soldering.

Note: Due to the gold plating of the switch PCB interface, it is important to use a paste made with silver. This will help in avoiding formation of intermetallics as part of the solder joint.

2 - Solder paste deposition:


Solder cream may be applied on the board with screen printing or dispenser technologies. For either method, the solder paste must be coated to appropriate thickness and shapes to achieve good solder wetting. Please optically verify that the edges of the zone are clean and without contaminates, and that the PCB zoned areas have not oxydated. The design of the mounting pads and the stenciling area are available upon request, for a thickness of the silk-screen printing of 0.15 mm (0.006 ").

3 - Placement of the component:

For small lightweight components such as chip components, a self-alignment effect can be expected if small placement errors exist. However, this effect is not as expected for relays components and they require a accurate positioning on their soldering pads, typically +/- 0.1 mm (+/-0.004"). Place the relay onto the PCB with automatic pick and place equipment. Various types of suction can be used. Radiall does not recommend using adhesive agents on the component or on the PCB.

4 - Soldering: infra-red process:

Please follow the Radiall recommended max temperature profile for infra-red reflow or forced air convection:

Higher temperature (>260°C) and longer process duration would permanently damage the switches.

5 - Cleaning procedure:

On miniature relays, high frequency cleaning may cause the contacts to stick. If cleaning is needed, please avoid ultrasonic cleaning and use alcohol based cleaning solutions.

In-line cleaning process, spraying, immersion, especially under temperature, may cause a risk of degradation of internal contacts. For such cleaning process please contact us.

6 - Quality check:

Verify by visual inspection that the component is centred on the mounting pads. Solder joints: verify by visual inspection that the formation of meniscus on the pads are proper.

B – Soldering procedure by manual operation

Manual soldering is not recommended for high frequencies, as it generates resonance and lower RF characteristics due to gaps between PC board and relay grounds,.

1 - Solder paste and flux deposition:

Refer to procedure A-1. Deposit a thin layer of flux on solder pad area. Allow the flux to evaporate a few seconds before applying the solder paste, it will prevent dilution of the paste.

2 - Solder paste deposition:

Radiall recommends depositing a small amount of solder paste on solder pad area by syringe, according to the manual soldering pattern (available upon request). Be careful, not to apply solder paste outside of the zone area.

3 - Placement of the component:

During manipulation, avoid contaminating gold surfaces by contact with fingers. Place the component on the mounting zone by pressing on the top of the relay lid.

4 - Hand soldering:

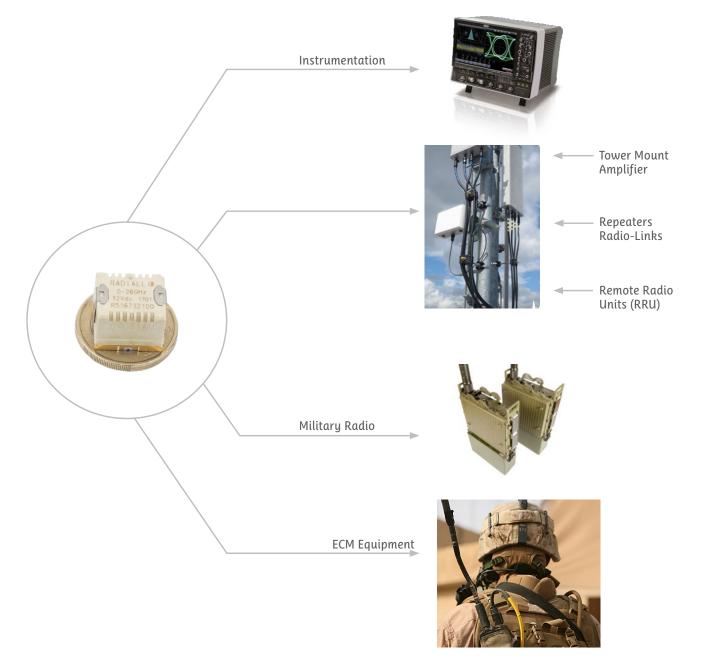
Iron wattage 30 to 60 W. To keep better RF characteristics, apply pressure on the relay lid during all the soldering stage, so as to reduce the air gap between the PC board and the relay. If possible, fix the ground plane of the relay on the board with two M1.2 screws before the soldering stage. On each side of the central RF access, the RF body edge must be soldered to the ground of the PC board. To improve RF characteristics and avoid soldering the RF body to the ground, a conductive gasket may be used (please contact us for detailed application note).

5 - Cleaning procedure:

Refer to procedure A – 5.

6 - Quality check:

Verify by visual inspection that component is centred on the mounting pads. Solder joints: verify by visual inspection that there is no solder excess on the RF pads.


Applications

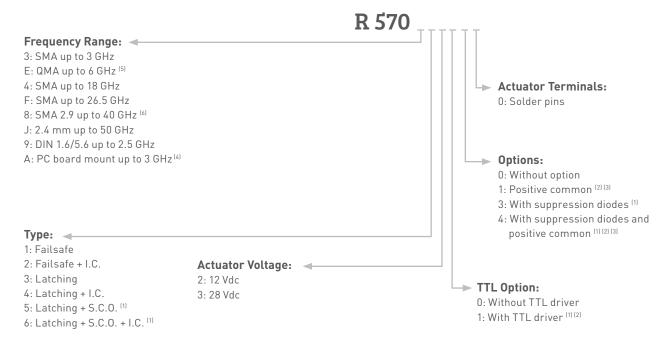
PC BOARD MOUNTING

The SMT Series offers a large range of products which can be used in many applications such as:

- Tower mount amplifiers
- Instrumentation
- Military radios
- ECM equipment
- Remote Radio Unit (RRU)
- · Radio-Links
- Repeaters

These products offer the same RF Board and soldering process as all RF components but with a reduced weight and size. They are designed to meet all market specifications.

PC Board - SMA - SMA 2.9 - 2.4 mm - QMA - DIN 1.6/5.6


Radiall's RAMSES SPDT switches offer excellent reliability, high performance and operating frequencies from DC to 50 GHz. Radiall's RAMSES concept (which provides for a life span of 10 million cycles) offers a variety of options to meet customer needs.

These switches are dedicated to all market applications including: military, instrumentation and telecommunications.

Example of P/N:

R570413100 is a SPDT SMA 18 GHz, failsafe, 28 Vdc, with TTL driver, without option, solder pins.

PART NUMBER SELECTION

NOTE:

- I.C.: Indicator contact S.C.O.: Self Cut-Off
- (1): Suppression diodes are already included in Self Cut-OFF & TTL option
- (2): Polarity is not relevant to application for switches with TTL driver
- (3): Positive common shall be specified only with type 3, 4, 5 and 6 because failsafe switches can be used with both polarities
- (4): Available only upon request

(5): The QLF tradermark (Quick Lock Formula®) standard applies to QMA and QN series and guaranties the full intermateability between suppliers using this tradermark. Using QLF certified connectors also guarantees the specified level of RF performance.

(6): Connector SMA 2.9 is equivalent to "K connector®", registered trademark of Anritsu.

PC Board - SMA - SMA 2.9 - 2.4 mm - QMA - DIN 1.6/5.6

GENERAL SPECIFICATIONS

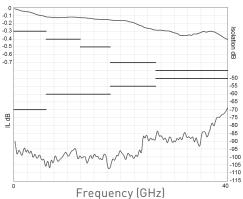
Ope	rating mode		Fail	lsafe	Late	ching
Nominal operating voltage (across temperature range)		Vdc	12 (10.2 to 13)	28 (24 to 30)	12 (10.2 to 13)	28 (24 to 30)
Coil resistance at 23°C (+/-10%)		Ω	47.5	275	58	350
Operating current at 23°C		mA	250	102	210	80
Average power				See Power Rating	Chart page 1-13	
TTL Input		High level	2.2 to 5	5.5 Volts	800 µA ma	ax 5.5 Volts
		Low level	0 to 0.	8 Volts	20 μA ma	x 0.8 Volts
Indicator rating				1 W / 30 V	/ / 100 mA	
Switching time		ms		1	0	
	SMA - SMA 2.9 - QMA			10 millio	on cycles	
Life	DIN 1.6/5.6 - Pc Board			5 millio	n cycles	
2.4 mm			2 millio	n cycles		
Connectors			SMA - S	MA 2.9 - QMA - DIN	1.6/5.6 - Pc Board -	2.4 mm
DIN 1.6/5.6 - 2.4 mm				-25°C t	o +70°C	
Operating temperature range SMA - SMA 2.9 - QMA - Pc Board		-40°C to +85°C				
DIN 1.6/5.6 - 2.4 mm		-40°C to +85°C				
Storage temperature range	SMA - SMA 2.9 - QMA - Pc Board		-55°C to +85°C			
Vibration (MIL STD 202, Method	204D, cond.D)		10-2000	Hz, 20 g	Oper	ating
Shock (MIL STD 202, Method 213	BB, cond.C)		100 g / 6 r	ns, ½ sine	Oper	ating

RF PERFORMANCE

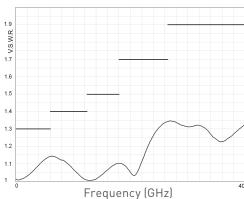
Connectors	Frequency	range GHz	V.S.W.R. (max)	Insertion loss (max) dB	Isolation(min) dB	Impedance Ω
DIN 1.6/5.6	DC - 2.5	DC - 1	1.20	0.20	80	75
DIN 1.0/3.0	DC - 2.5	1 - 2.5	1.30	0.30	70	/5
QMA	DC - 6	DC - 3	1.20	0.20	80	
QMA	DC - 6	3 - 6	1.30	0.30	70	
		DC - 3	1.10	0.15	80	
	DC - 3	3 - 8	1.20	0.20	75	
SMA	DC - 18	8 - 12.4	1.20	0.25	65	
	DC - 26.5 SMA 2.9 DC - 40 PC Board DC - 3	12.4 - 18	1.40	0.35	60	
		18 - 26.5	1.50	0.50	55	
		DC - 6	1.30	0.30	70	
		6 - 12.4	1.40	0.40	60	
SMA 2.9		12.4 - 18	1.50	0.50	60	50
		18 - 26.5	1.70	0.70	55	
		26.5 - 40	1.90	0.80	50	
PC Board		DC - 3	1.20	0.20	80	
		DC - 6	1.30	0.30	70	
		6 - 12.4	1.40	0.40	60	
2 /	DC 50	12.4 - 18	1.50	0.50	60	
2.4 mm	DC - 50	18 - 26.5	1.70	0.70	55	
		26.5 - 40	1.90	0.80	50	
		40 - 50	1.90	1.10	50	

NOTE:

See page 2-12 and 2-13 for typical RF performance.

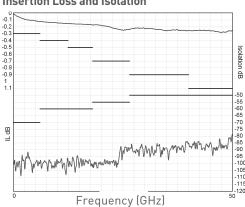


PC Board - SMA - SMA 2.9 - 2.4 mm - QMA - DIN 1.6/5.6

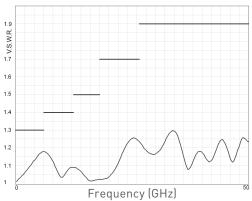

R570 TYPICAL RF PERFORMANCE

Example: SPDT SMA 2.9 up to 40 GHz

Insertion Loss and Isolation

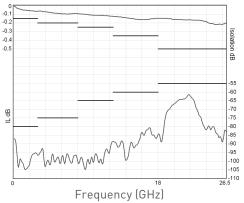


V.S.W.R.

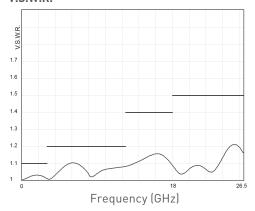


Example: SPDT 2.4 mm up to 50 GHz

Insertion Loss and Isolation



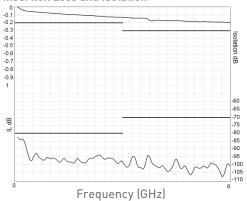
V.S.W.R.



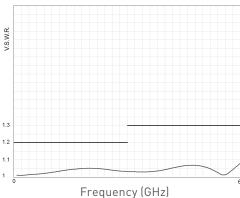
Example: SPDT SMA up to 26.5 GHz

Insertion Loss and Isolation

V.S.W.R.

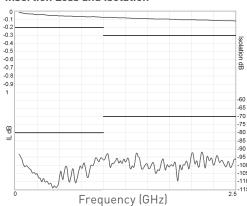


PC Board - SMA - SMA 2.9 - 2.4 mm - QMA - DIN 1.6/5.6

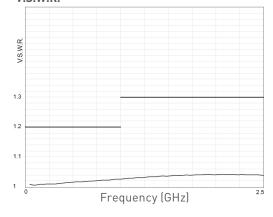

R570 TYPICAL RF PERFORMANCE

Example: SPDT QMA up to 6 GHz

Insertion Loss and Isolation



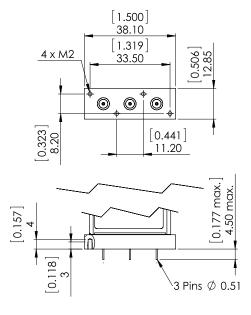
V.S.W.R.



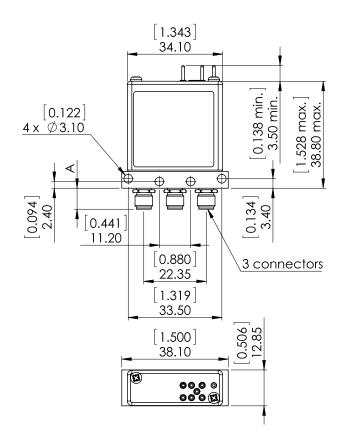
Example: SPDT DIN 1.6/5.6 up to 2.5 GHz

Insertion Loss and Isolation

V.S.W.R.



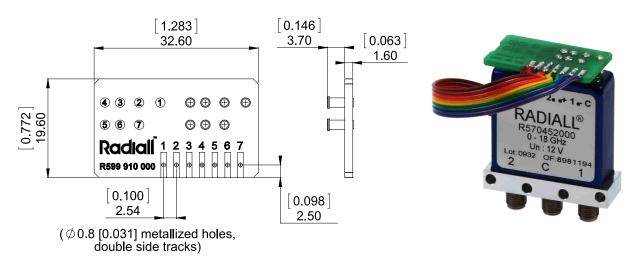
PC Board - SMA - SMA 2.9 - 2.4 mm - QMA - DIN 1.6/5.6


TYPICAL OUTLINE DRAWING

Connectors	A max (mm [inches])
SMA	7.7 [0.303]
SMA 2.9 and 2.4 mm	6.7 [0.264]
QMA	10.8 [0.394]
DIN 1.6/5.6	11.5 [0.433]
PC Board	4.5 [0.157]

See page 2-23 for pin identification.

All dimensions are in millimeters [inches].



PC Board - SMA - SMA 2.9 - 2.4 mm - QMA - DIN 1.6/5.6

ACCESSORIES

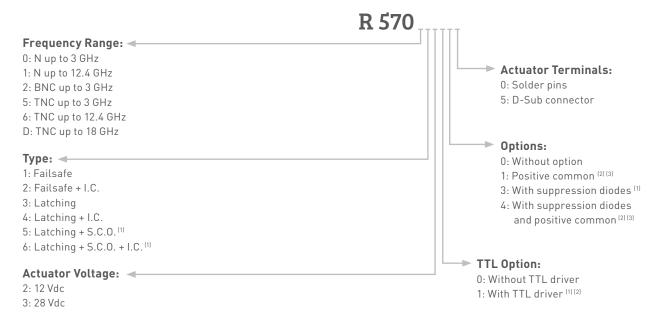
A printed circuit board interface connector (ordered separately) has been designed for easy mounting on terminals. For SPDT model R570 series = Radiall part number: **R599 910 000**

All dimensions are in millimeters [inches].

The PCB accessory pin number assignment is independant from the pin identification table of the switch.

N - TNC - BNC

Radiall's RAMSES SPDT N, BNC and TNC switches are designed for high performance in RF & Microwave systems up to 18 GHz.


Radiall's RAMSES concept (modular concept) offers a full range of configurations. They are commonly used for applications where high power handling capability is required.

These switches are dedicated to all market applications including: defense, instrumentation and telecommunications.

Example of P/N:

R570113035 is a SPDT N 12.4 GHz, failsafe, 28 Vdc, with supression diodes, without option, D-Sub connector.

PART NUMBER SELECTION

NOTE:

- I.C.: Indicator contact S.C.O.: Self Cut-Off
- (1): Suppression diodes are already included in Self Cut-OFF and TTL option
- (2): Polarity is not relevant to application for switches with TTL driver
- (3): Positive common shall be specified only with type 3, 4, 5 and 6 because failsafe switches can be used with both polarities

N - TNC - BNC

GENERAL SPECIFICATION

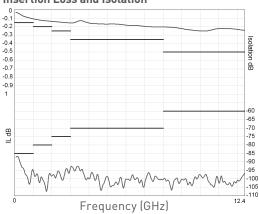
	Operating mode		Fail	lsafe	Late	ching
Nominal operating	voltage	Vdc	12	28	12	28
(across temperatur	e range)	vac	(10.2 to 13)	(24 to 30)	(10.2 to 13)	(24 to 30)
Coil resistance at 2	3°C (+/-10%)	Ω	38	200	38	225
Operating current of	at 23°C	mA	320	140	320	125
Average power				See Power Rating	g Chart page 1-13	
High level			2.2	2 to 5.5 Volts	800 μA max 5.5 Vo	lts
Low level		0	to 0.8 Volts	20 μA max 0.8 Volt	S	
Indicator rating ms				1 W / 30 V	/ / 100 mA	
Switching time ms				1	0	
Life				2.5 milli	on cycles	
Connectors				N - TN	C - BNC	
Actuator terminals			Solders pins or 9 pin D-Sub connector			
Operating temperature range			-40°C to +85°C			
Storage temperature range			-55°C to +85°C			
Vibration (MIL STD	202, Method 204D, cond.D)		10-2000	Hz, 20 g	Oper	ating
Shock (MIL STD 202	, Method 213B, cond.C)		100 g, 6 n	ns, ½ sine	Non op	erating

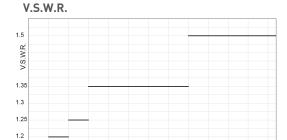
RF PERFORMANCE

Connectors	Frequency	Range GHz	V.S.W.R. (max)	Insertion Loss (max) dB	Isolation (min) dB	Impedance Ω
	DC - 3 DC - 12.4	DC - 1	1.15	0.15	85	
		1-2	1.20	0.20	80	
N / TNC		2 - 3	1.25	0.25	75	
		3 - 8	1.35	0.35	70	
		8 - 12.4	1.50	0.50	60	
		DC - 6	1.30	0.30	70	50
TNC 18	DC - 18	6 - 12.4	1.50	0.50	60	
		12.4 - 18	1.60	0.70	60	
		DC - 1	1.15	0.15	85	
BNC	DC - 3	1 - 2	1.20	0.20	80	
		2-3	1.25	0.25	75	

NOTE

See page 2-18 for typical RF performance.

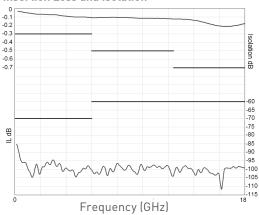



N - TNC - BNC

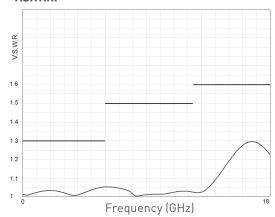
R570 TYPICAL RF PERFORMANCE

Example: SPDT N and TNC up to 12.4 GHz

Insertion Loss and Isolation

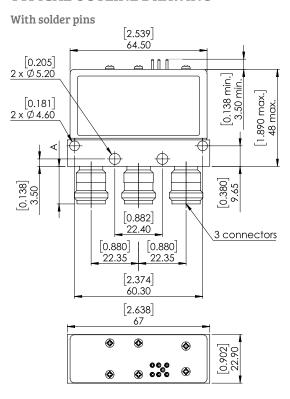


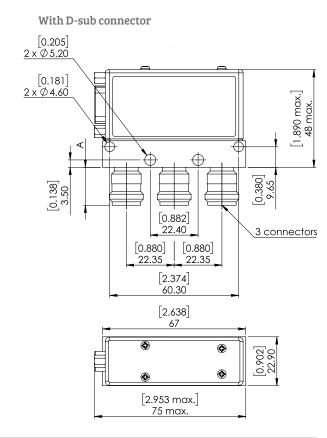
Frequency (GHz)


Example: SPDT TNC up to 18 GHz

Insertion Loss and Isolation

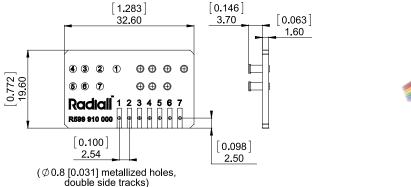
V.S.W.R.


1.15



N - TNC - BNC

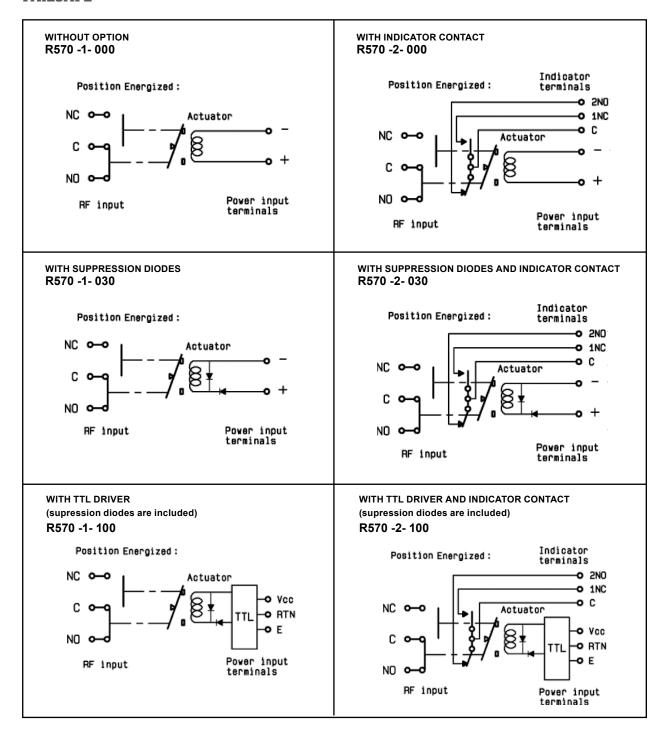
TYPICAL OUTLINE DRAWING



Connectors	N	TNC	BNC
A max (mm [inches])	18.5 [0.709]	11.5 [0.433]	11.5 [0.433]

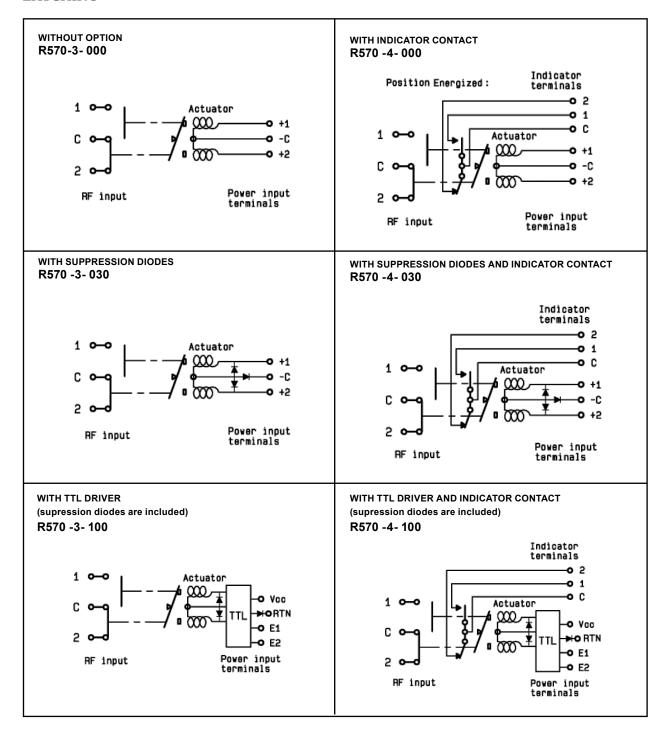
ACCESSORIES

A printed circuit board interface connector (ordered separately) has been designed for easy mounting on terminals. For SPDT model R570 series = Radiall part number: **R599 910 000**

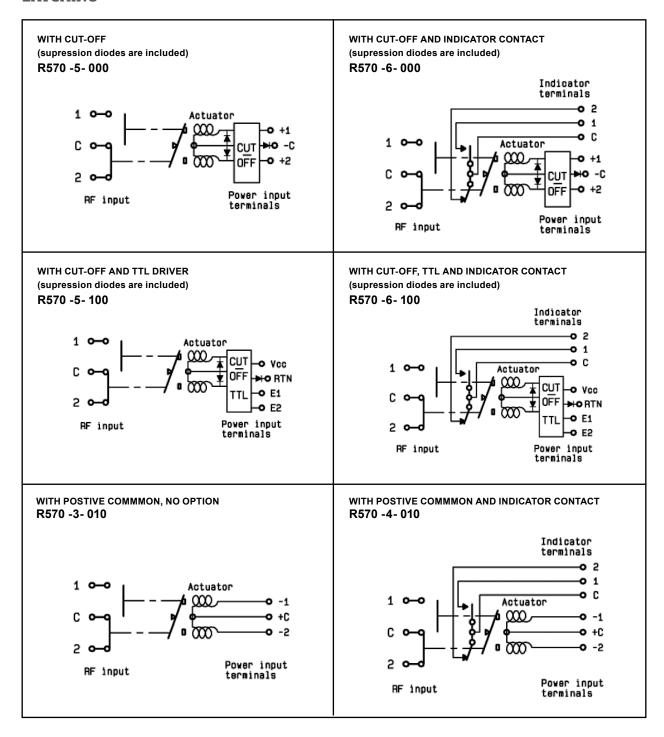

All dimensions are in millimeters [inches].

The PCB accessory pin number assignment is independant from the pin identification table of the switch.

Coaxial SPDT - Electrical Schematics R570 Series

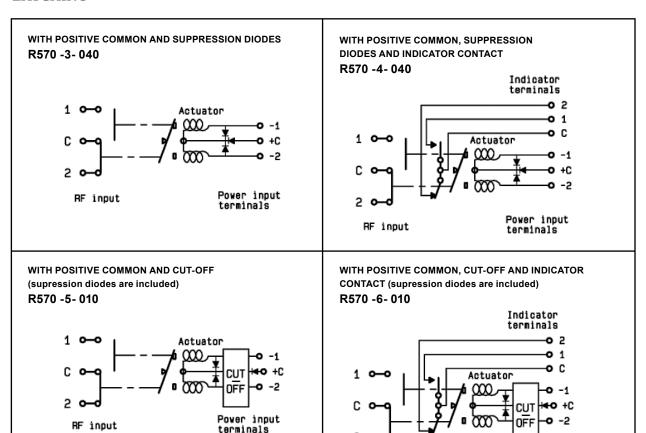

FAILSAFE

Coaxial SPDT - Electrical Schematics R570 Series


LATCHING

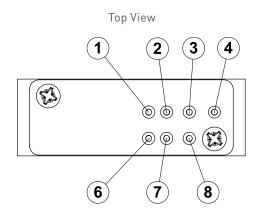
Coaxial SPDT - Electrical Schematics R570 Series

LATCHING



Coaxial SPDT - Electrical Schematics

R570 Series


LATCHING

RF input

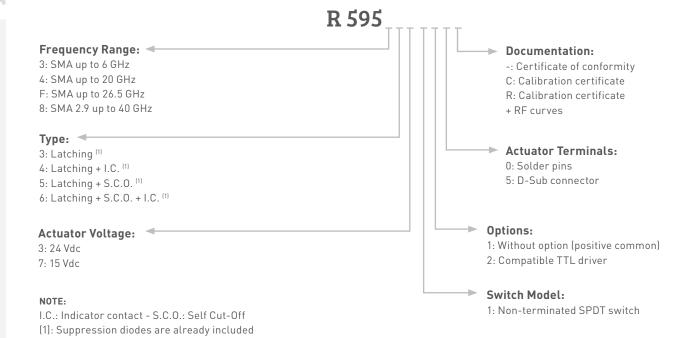
PIN IDENTIFICATION

Tuno	PIN							
Type	1	2	3	4	6	7	8	
Failsafe	+	-	-	-	-	-	-	
Failsafe + I.C.	+	-	-	-	2N0	1NC	С	
Failsafe + TTL	Е	-	RTN	VCC	-	-	-	
Failsafe + I.C. + TTL	Е	-	RTN	VCC	2N0	1NC	С	
Latching Latching + Cut-off	-2	-1	+C					
	or	or	or	-	-	-	-	
	+2	+1	-C					
Latabina . LC	-2	-1	+C					
Latching + I.C. Latching + I.C. + Cut-off	or	or	or	-	2	1	С	
Latering + 1.0. + Cut-on	+2	+1	-C					
Latching + TTL Latching + TTL + Cut-off	E2	E1	RTN	VCC	_	-	-	
Latching + TTL + I.C. Latching + TTL + I.C.+ Cut-off	E2	E1	RTN	VCC	2	1	С	

Power input

terminals

SMA - SMA 2.9



Radiall's PLATINUM series switches are optimised to perform at a high level over an extended life cycle, with outstanding RF performance, and a guaranteed insertion loss repeatability of 0.03 dB over a life span of 10 million switching cycles. PLATINUM series switches are perfect for automated test and measurement equipment, as well as signal monitoring devices.

Example of P/N:

R595443125 is a SPDT SMA 20 GHz, latching, 24 Vdc, with TTL driver, Indicators, D-Sub connector.

PART NUMBER SELECTION

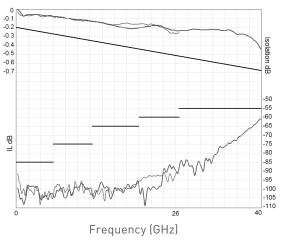
SMA - SMA 2.9

GENERAL SPECIFICATIONS

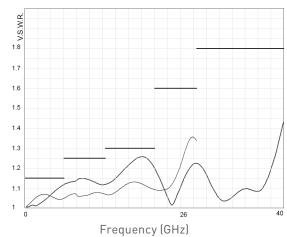
Operating mode		Latching				
Nominal operating voltage (across temperature range)	Vdc	24 (24 to 30)	15 (12 to 20)			
Coil resistance at 23°C (+/-10%)	Ω	350	120			
Operating current at 23°C	mA	68	125			
TTI innua	High level	3 to 7 Volts: 800 μA max 7 Volts				
TTL input	Low level	0 to 0.8 Volts: 20 μA max 0.8 Volts				
Switching time	ms	15				
1:5- (88:)	SMA	10 million cycles				
Life (Min)	SMA 2.9	5 million cycles				
Actuator terminals		D-Sub 9 pin female				
		Solder pins				
Weight	Weight g		60			

ENVIRONMENTAL SPECIFICATIONS

Operating temperature range	-25°C to + 75°C				
Storage temperature range	-55°C to +85°C				
Temperature cycling (MIL STD 202F, Method 107D, Cond.A)	-55°C to +85°C (10 cycles)				
Sine vibration operating (MIL STD 202, Method 204D, Cond.D)	10 - 2000 Hz, 20 g				
Random vibration operating	16.91 g (rms) 50-2000 Hz 3min/axis				
Shock operating (MIL STD 202, Method 213B, Cond.G)	50 g / 11 ms, sawtooth				
Humidity operating	15 to 95% relative humidity				
Humidity storage (MIL STD 202, Method 106E, Cond.E)	65°C, 95% RH, 10 days				
Altitude operating	15.000 feet (4.600 meters)				
Altitude storage (MIL STD 202, Method 105C, Cond.B)	50.000 feet (15.240 meters)				


SMA - SMA 2.9

RF PERFORMANCE


Part Number		R59531	R59541		R595F1		R59581	
Frequency range	GHz	DC to 6	DC to 20		DC to 26.5		DC to 40	
Impedance	Ω	50						
Insertion Loss (Max)	dB	0.20 + (0.45 / 26.5) x frequency (GHz)						
Isolation (Min)	dB	85	DC to 6 GHz 6 to 12.4 GHz 12.4 to 20 GHz	85 75 65	DC to 6 GHz 6 to 12.4 GHz 12.4 to 20 GHz 20 to 26.5 GHz	85 75 65 60	DC to 6 GHz 6 to 12.4 GHz 12.4 to 20 GHz 20 to 26.5 GHz 26.5 to 40 GHz	85 75 65 60 55
V.S.W.R (Max)		1.15	DC to 6 GHz 6 to 12.4 GHz 12.4 to 20 GHz	1.15 1.25 1.30	DC to 6 GHz 6 to 12.4 GHz 12.4 to 20 GHz 20 to 26.5 GHz	1.15 1.25 1.30 1.60	DC to 6 GHz 6 to 12.4 GHz 12.4 to 20 GHz 20 to 26.5 GHz 26.5 to 40 GHz	1.15 1.25 1.30 1.60 1.80
Repeatability (up to 10 million cycles at 25°C)	dB	0.03 dB maximun 0.05 dB maximun				nun		

TYPICAL RF PERFORMANCE

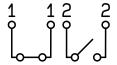
Insertion Loss and Isolation

V.S.W.R.

SMA — SMA 2.9 —

SMA - SMA 2.9

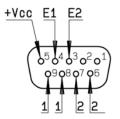
SWITCH MODEL: NON-TERMINATED SPDT SWITCH

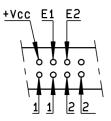

The non-terminated SPDT switch is a single pole double throw switch. This switch is considered "break-before-make."

RF SCHEMATIC DIAGRAM

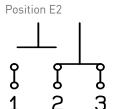
Position E1

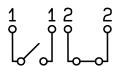
POSITION INDICATOR


State 11

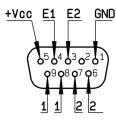

Standard drive option "1"

(Positive common):

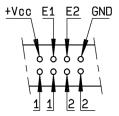

- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open)
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 1-2 and close RF path 2-3)


D-Sub connector

Solder pins



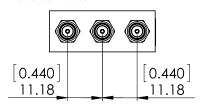
State 22

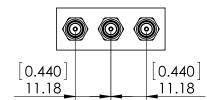


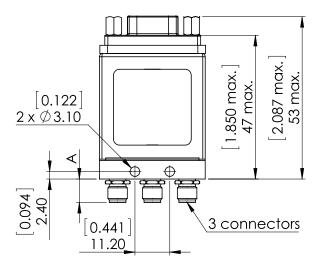
TTL drive option "2"

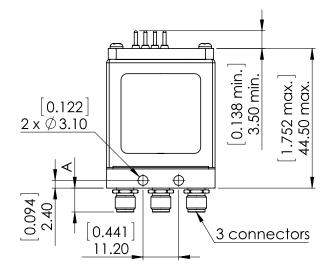
- · Connect pin GND to ground
- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open)
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path (Ex: apply TTL "High" to pin E2)

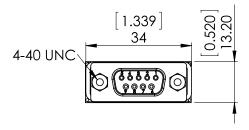
D-Sub connector

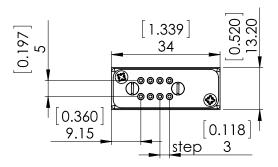

Solder pins


SMA - SMA 2.9


TYPICAL OUTLINE DRAWING

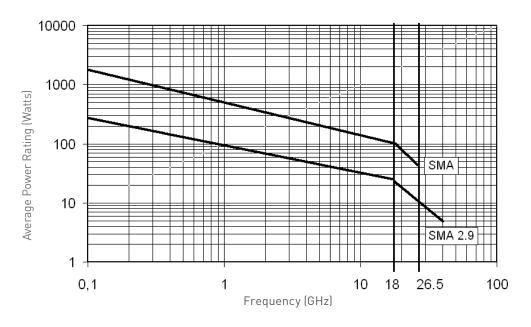

With D-Sub connector





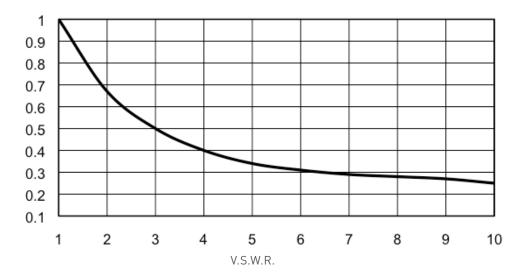
All dimensions are in millimeters [inches].

Connectors	A max mm [inches])			
SMA	7.7 [0.303]			
SMA 2.9	6.7 [0.264]			



SMA - SMA 2.9

RF POWER RATING CHART


This graph is based on the following conditions:

- Ambient temperature: + 25°C
- Sea level
- V.S.W.R.: 1 and cold switching

DERATING FACTOR VERSUS VSWR

The average power input must be reduced for load V.S.W.R. above 1:1

