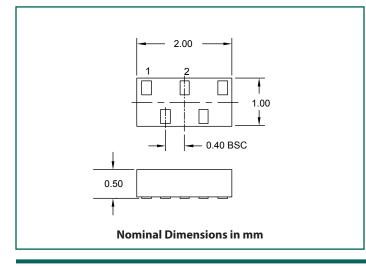


Femto Farad RailClamp® 4-Line, 170fF ESD Protection

PROTECTION PRODUCTS


Description

RClamp®0564P is an ultra low capacitance ESD protection device specifically designed to protect highspeed differential lines. It offers desirable characteristics for board level protection including fast response time, low operating and clamping voltage, and no device degradation.

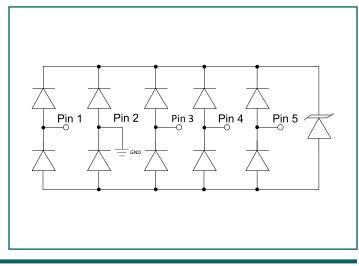
RClamp0564P features extremely good ESD protection characteristics highlighted by low peak ESD clamping voltage, and high ESD withstand voltage (+/-10kV contact per IEC 61000-4-2). RClamp0564P is designed to minimize both the ESD peak clamping and the TLP clamping. Package inductance is reduced at each pin resulting in lower peak ESD clamping voltage. RClamp0564P has a typical capacitance of 0.17pF allowing it to be used in high bandwidth applications such as HDMI 2.0 4K/2K, Thunderbolt, and USB 3.1. Each device will protect four high-speed data lines operating up to 5 volts.

RClamp0564P is in a 5-pin SGP2010N5 package measuring 2.0 x 1.0mm with a nominal height of 0.50mm. The leads have a nominal pin-to-pin pitch of 0.40mm. Flow- through package design simplifies PCB layout and maintains signal integrity on high-speed lines.

Nominal Dimensions

Features

- High ESD Withstand Voltage
 - IEC 61000-4-2 (ESD) 10kV (contact)
- Ultra-Low Capacitance: 0.17pF Typical
- Very Small PCB Area
- Protects Four High-Speed Data Lines
- Working Voltage: 5V
- Low Dynamic Resistance: 0.65 Ohms
- Large Operating Bandwidth: 12GHz
- Solid-State Silicon-Avalanche Technology


Mechanical Characteristics

- SGP2010N5 Package
- Pb-Free, Halogen Free, RoHS/WEEE Compliant
- Nominal Dimensions: 2.0 x 1.0 x 0.50 mm
- Lead Pitch: 0.40mm
- Lead Finish: NiPdAu
- Marking : Marking Code
- Packaging : Tape and Reel

Applications

- HDMI 1.4, HDMI1.4b and HDMI 2.0
- DisplayPort
- USB 3.0 and USB 3.1
- USB Type-C
- Thunderbolt
- MIPI / MDDI

Schematic

RClamp0564P Final Datasheet Mar 14, 2017

Absolute Maximum Ratings

Rating	Symbol	Value	Units
Peak Pulse Current (tp = 8/20µs)	I _{PP}	3	А
ESD per IEC 61000-4-2 (Contact) ⁽¹⁾ ESD per IEC 61000-4-2 (Air) ⁽²⁾	V _{ESD}	±10 ±15	kV
Operating Temperature	T,	-40 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C

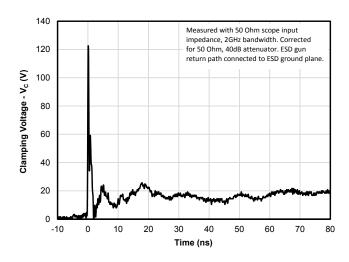
Electrical Characteristics (T=25°C unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units
Reverse Stand-Off Voltage	V _{RWM}	-40°C to 85°C				5	V
Reverse Breakdown Voltage	V _{BR}	I _t =10mA	-40°C to 85°C	6.5	9.5	10.5	V
Holding Current	I _H				100		mA
		V _{RWM} = 5V	T = 25°C		1	50	nA
	I _R		T = 85°C		10	150	nA
Clamping Voltage ³	V _c	$I_{pp} = 3A, tp = 8/20 \mu s$			4		V
ESD Clamping Voltage ⁴	V _c	I _{pp} = 4A, tp = 0.2/100ns (TLP)			5.5		V
ESD Clamping Voltage ⁴	V _c	I _{pp} = 16A, tp = 0.2/100ns (TLP)			13.5		V
Dynamic Resistance ^{4, 5}	R _{DYN}	tp = 0.2/100ns (TLP)			0.65		Ohms
Junction Capacitance	C,	$V_{R} = 0V, f = 1MHz$	T = 25°C		0.17	0.20	pF
Cutoff Frequency	F _c	-3dB			12		GHz

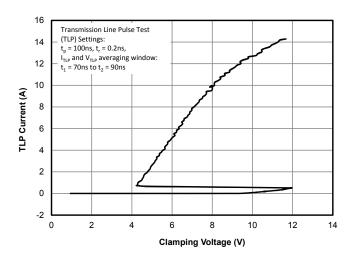
Notes:

(1) Measured with a 40dB attenuator, 50 Ohm scope input impedance, 2GHz bandwidth. ESD gun return path connected to Ground Reference Plane (GRP)

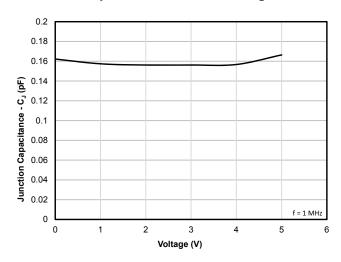
(2) In-System ESD withstand voltage

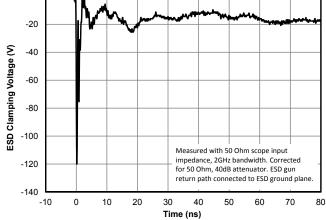

(3) Measured using a 1.2/50us voltage, 8/20us current combination waveform. Clamping is defined as the peak voltage across the device after the device snaps back to a conducting state.

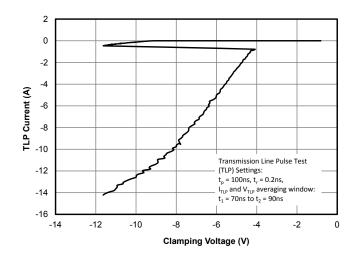
(4) Transmission Line Pulse Test (TLP) Settings: tp = 100ns, tr = 0.2ns, $I_{\pi P}$ and $V_{\pi P}$ averaging window: t_1 = 70ns to t_2 = 90ns.

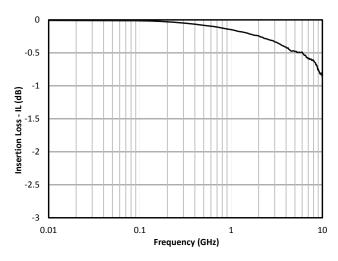

(5) Dynamic resistance calculated from $I_{TLP} = 4A$ to $I_{TLP} = 16A$

Typical Characteristics


ESD Clamping (+8kV Contact per IEC 61000-4-2)


TLP IV Curve - Positive Pulse


Capacitance vs. Reverse Voltage


ESD Clamping (-8kV Contact per IEC 61000-4-2)

TLP IV Curve - Negative Pulse

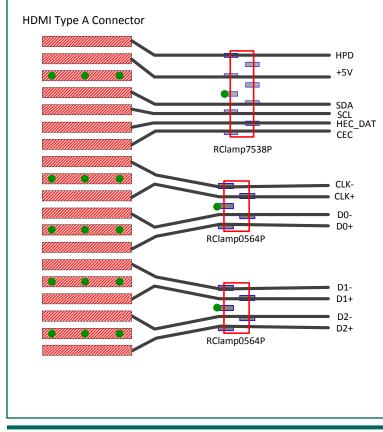
RClamp0564P Final Datasheet Mar 14, 2017

Application Information

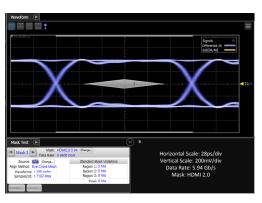
HDMI 2.0 Interface Protection

HDMI 2.0 chips are constantly exposed to external ESD and cable discharge threats. Adding external ESD protection is critical but can be challenging. Both electrical and mechanical requirements must be considered. HDMI 2.0 provides the necessary bandwidth to support the higher resolution and frame rates of Ultra HD. This is accomplished by increasing the data rate on each data lane from 3.4 Gbps to 6 Gbps, which means the protection device must present an extremely low capacitance to preserve signal integrity. The external protection device should also have good ESD protection properties including low ESD peak clamping voltage and low dynamic resistance. Mechanically, the package design should allow the traces to easily flow through the package. This is important since differential pair trace lengths should be matched to avoid signal skew.

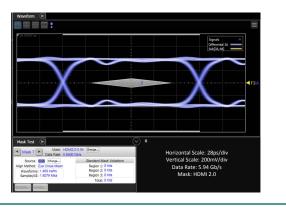
Protection Solutions


RClamp0564P has been specifically designed to protect high-speed interfaces. It has a typical capacitance of 0.17pF and a flow through package design.

HDMI 2.0 Protection Example


A typical HDMI 2.0 protection solution is shown below. RClamp0564P is used to protect two high-speed differential data pairs. Line pairs are routed through pins 1, 5 and pins 3, 4. Ground connection is made at pin 2. RClamp0564P has little affect on a 5.94Gb/s signal with an HDMI 2.0 eye mask as shown in the eye diagrams below. Two RClamp0564P are required to protect all four clock and data differential pairs. The remaining six lines can also be protected using RClamp0564P. However, since they are not as sensitive to capacitive loading as the TMDS lines, a device such as RClamp7538P may be used as shown.

Device Placement

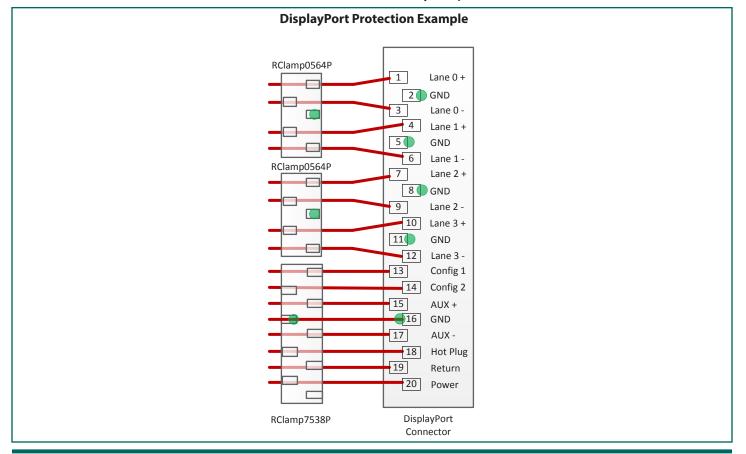

Placement of the protection component is a critical element for effective ESD suppression. TVS diodes should be placed as close to the connector as possible to reduce transient coupling to nearby traces. Ground connections should be made directly to the ground plane using micro-vias. This reduces parasitic inductance in the ground path and minimizes the clamping voltage seen by the protected device.

5.94Gb/s Eye Diagram with RClamp0564P

5.94Gb/s Eye Diagram without RClamp0564P

Application Information

DisplayPort Interface Protection


DisplayPort chips are constantly exposed to external ESD and cable discharge threats. Adding external ESD protection is critical but can be challenging. Both electrical and mechanical requirements must be considered. DisplayPort version 1.4 can use the HBR3 transmission mode (32.4 Gbits/s) provides the necessary bandwidth to support the higher resolution and frame rates of Ultra HD. This is accomplished by increasing the data rate on each data lane from 5.4 Gbps to 8.1 Gbps, which means the protection device must present an extremely low capacitance to preserve signal integrity. The external protection device should also have good ESD protection properties including low ESD peak clamping voltage and low dynamic resistance. Mechanically, the package design should allow the traces to easily flow through the package. This is important since differential pair trace lengths should be matched to avoid signal skew.

Protection Solutions

RClamp0564P has been specifically designed to protect high-speed interfaces. It has a typical capacitance of 0.17pF and a flow through package design. A typical DisplayPort protection solution is shown below. RClamp0564P is used to protect two high-speed differential data pairs. Line pairs are routed through pins 1, 5 and pins 3, 4. Ground connection is made at pin 2. Two RClamp0564P are required to protect all four clock and data differential pairs. The remaining six lines can also be protected using RClamp0564P. However, since they are not as sensitive to capacitive loading as the ML lines, a device such as RClamp7538P may be used as shown.

Device Placement

Placement of the protection component is a critical element for effective ESD suppression. TVS diodes should be placed as close to the connector as possible to reduce transient coupling to nearby traces. Ground connections should be made directly to the ground plane using micro-vias. This reduces parasitic inductance in the ground path and minimizes the clamping voltage seen by the protected device.

Applications Information

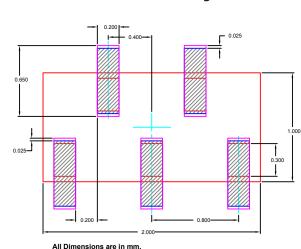
Assembly Guidelines

The small size of this device means that some care must be taken during the mounting process to insure reliable solder joints. The figure at the right details Semtech's recommended mounting pattern. Recommended assembly guidelines are shown in Table 1. Note that these are only recommendations and should serve only as a starting point for design since there are many factors that affect the assembly process. Exact manufacturing parameters will require some experimentation to get the desired solder application. Semtech's recommended mounting pattern is based on the following design guidelines:

Land Pattern

The recommended land pattern follows IPC standards and is designed for maximum solder coverage. Detailed dimensions are shown elsewhere in this document.

Solder Stencil


Stencil design is one of the key factors which will determine the volume of solder paste which is deposited onto the land pad. The area ratio of the stencil aperture will determine how well the stencil will print. The area ratio takes into account the aperture shape, aperture size, and stencil thickness. An area ratio of 0.70 - 0.75 is preferred for the subject package. The area ratio of a rectangular aperture is given as:

Area Ratio = (L * W) / (2 * (L + W) * T)

Where:

L = Aperture Length W = Aperture Width T = Stencil Thickness

Semtech recommends a stencil thickness of 0.100mm for this device. The stencil should be laser cut with electropolished finish. The stencil should have a positive taper of approximately 5 degrees. Electro polishing and tapering the walls results in reduced surface friction and better paste release. For small pitch components, Semtech recommends a square aperture with rounded corners for consistent solder release. Due to the small aperture size, a solder paste with Type 4 or smaller particles are recommended.

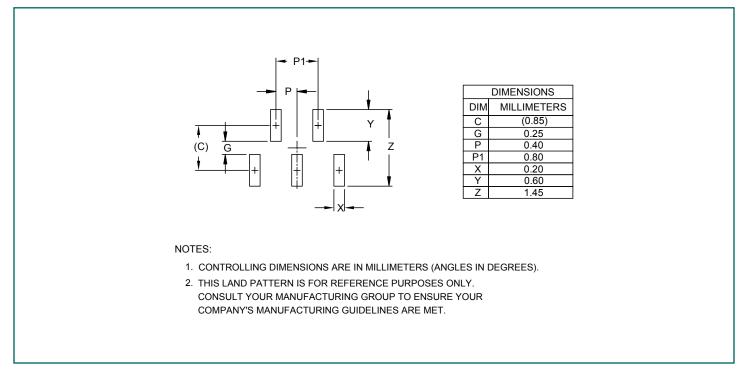
Land Pad.

PCB Pad Finish

Table 1 - Recommended Assembly Guidelines					
Assembly Parameter	Recommendation				
Solder Stencil Design	Laser Cut, Electro-Polished				
Aperture Shape	Rectangular with rounded				
	corners				
Solder Stencil Thickness	0.100mm (0.004″)				
Solder Paste Type	Type 4 size sphere or smaller				
Solder Reflow Profile	Per JEDEC J-STD-020				
PCB Solder pad Design	Non-Solder Mask Defined				

OSP or NiAu

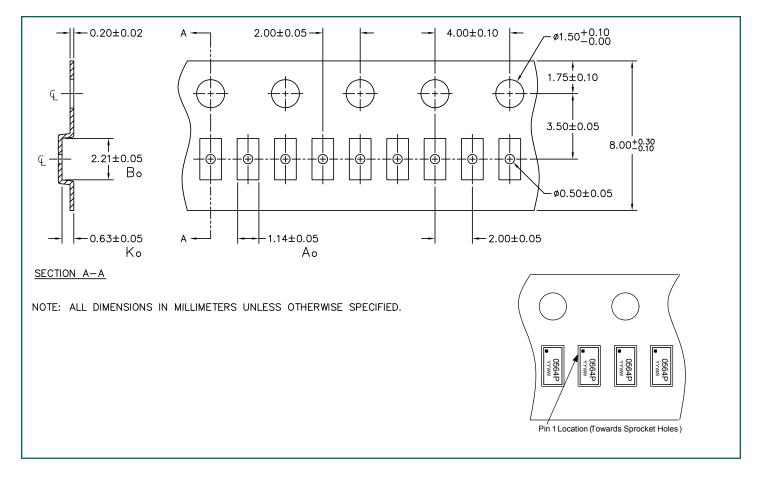
Stencil opening


Component

Recommended Mounting Pattern

Outline Drawing - SGP2010N5

Land Pattern - SGP2010N5



Marking Code

Notes: YYWW = Alphanumeric Date Code

Tape and Reel Specification

Ordering Information

Part Number	Qty per Reel	Reel Size		
RClamp0564P.TNT	10000	7 Inch		
RailClamp and RClamp are registered trademarks of Semtech Corporation.				