
RFSA3713

5MHz to 6000MHz, Digital Step Attenuator

The RFMD's RFSA3713 is a 7-bit digital step attenuator (DSA) that features high linearity over the entire 31.75dB gain control range with 0.25dB steps. The RFSA3713 uses serial control interface. The RFSA3713 has a low insertion loss of 1.4dB at 2GHz. Patent pending circuit architecture provides overshoot-free transient switching performance. External address pins allow up to eight DSAs to be controlled on a single bus. The RFSA3713 is available in a 3mm x 3mm QFN package.

Functional Block Diagram

Ordering Information

RFSA3713SQ	Sample bag with 25 pieces
RFSA3713SR	7" Reel with 100 pieces
RFSA3713TR7	7" Reel with 2500 pieces
RFSA3713PCK-410	5MHz to 6000MHz PCBA with 5-piece sample bag

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

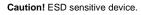
For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

RF MICRO DEVICES[®] and RFMD[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

Package: QFN, 16-pin, 3.0mm x 3.0mm x 0.85mm

Features

- 7-Bit, 31.75dB Range, 0.25dB Step
- Patent Pending Circuit Architecture
- Overshoot-free Transient Switching Performance
- Frequency Range 5MHz to 6000MHz
- High Linearity, IIP3 >55dBm
- Serial Control Interface
- Fast Switching Speed, <120nsec Typical
- Serial Addressable Supports Up to Eight Addresses
- Single Supply 3V to 5V Operation
- RF Pins Have No DC Voltage, Can be DC Grounded Externally
- Power-up Default Setting Is Maximum Attenuation


Applications

- 2G through 4G Base Stations
- Point-to-Point
- WiMax/WiFi
- Test Equipment

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage (V _{DD})	-0.5 to +6.0	V
All Other DC and Logic Pins (Supply Voltage Must Be Applied Prior to Any Other Pin Voltages)	-0.5 to V_{DD}	V
Maximum Input Power at RFIN Pin at 85°C Case Temperature	+30	dBm
Maximum Input Power at RFOUT Pin at 85°C Case Temperature	+27	dBm
Storage Temperature Range	-40 to +150	°C
ESD Rating - Human Body Model (HBM)	1000	V
Moisture Sensitivity Level	MSL1	

RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, < 1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Recommended Operating Condition

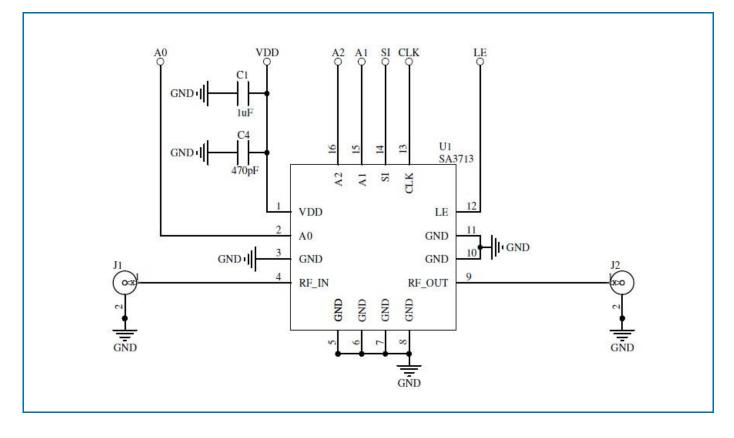
Parameter	Specification				
	Min	Тур	Мах	Unit	
Operating Temperature Range (RF Input Power Handling Derates above +85°C)	-40		+105	°C	
Operating Junction Temperature			125	°C	
Supply Voltage	2.7		5.5	V	

Nominal Operating Parameters

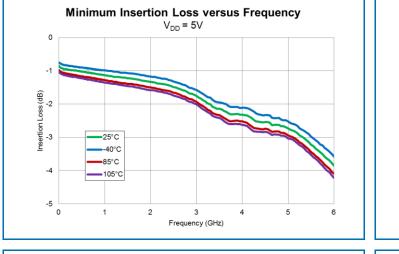
Parameter	Specification		Unit	Condition			
Parameter	Min	Тур	Max	Unit	Condition		
General Performance							
Supply Current		180		μA	Steady state operation, current draw during attenuation state transitions is higher.		
Thermal Resistance		55		°C/W	At maximum attenuation state with RF power applied to the RFIN pin.		
RF Input Power at RFIN Pin			27	dBm			
RF Input Power at RFOUT Pin			20	dBm	Continuous operation at +85°C case temperature		
RF Performance							
Frequency Range	5		6000	MHz			
Insertion Loss		1.4		dB	2000MHz, 0dB attenuation		
Attenuation Range		31.75		dB	0.25dB step size		
Absolute Attenuation Error	±	:(0.2 + 4%	6)	dB			
Input IP3		55		dBm			
Input P0.1dB		30		dBm			
Return Loss		15		dB			
Input and Output Impedance		50		Ω			

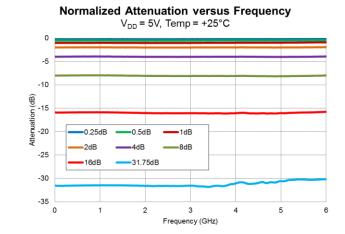
 RF Micro Devices Inc.
 7628 Thorndike Road, Greensboro, NC 27409-9421
 DS150128

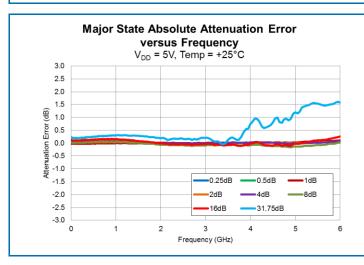
 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.
 RF MiCRO DEVICES® and RFMD® are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

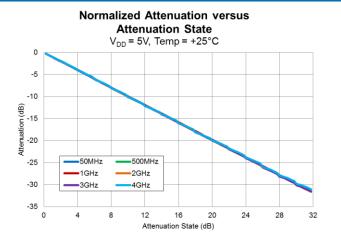

Parameter	Specification			Unit	Condition		
Falameter	Min	Тур	Мах	Unit	Condition		
RF Performance – Continued							
Switching Speed		120		nsec	50% control to 10%/90% RF		
Successive Step Phase Delta		2		Deg	2000MHz		
Control							
Digital Logic Low			0.63	V			
Digital Logic High	1.17			V			

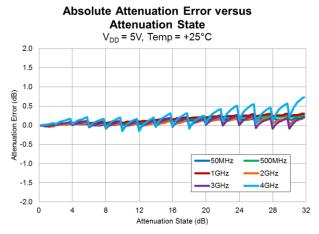
Note: Typical performance at these conditions: Temp = +25°C, 2000MHz, 5V Supply Voltage

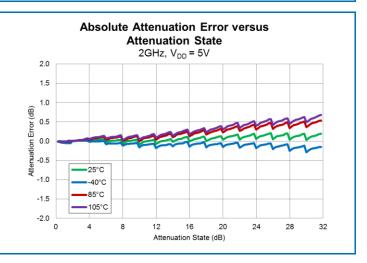

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 DS150128 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of application circuitry and specifications at any time without prior notice.

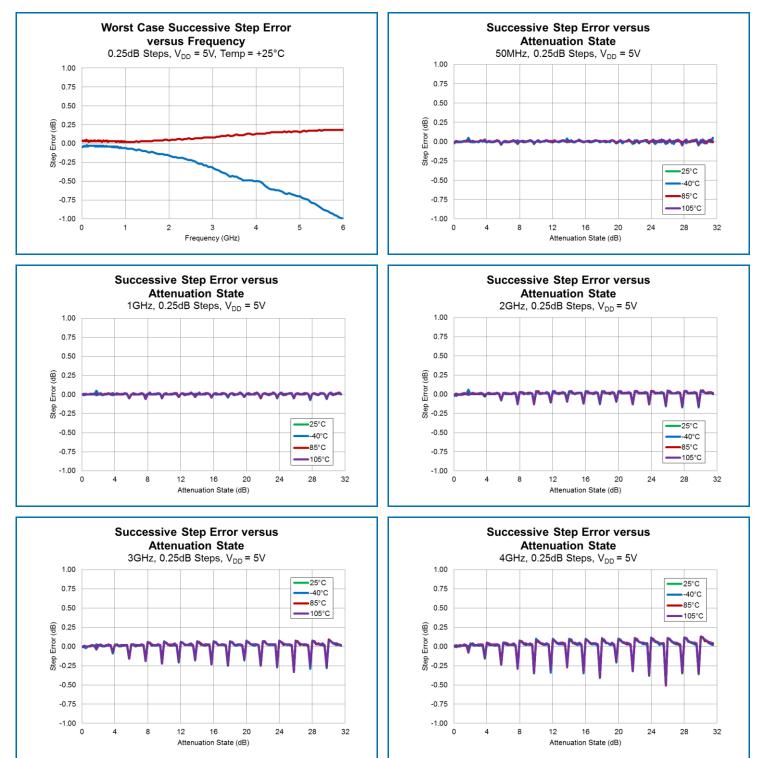



Typical Application Schematic





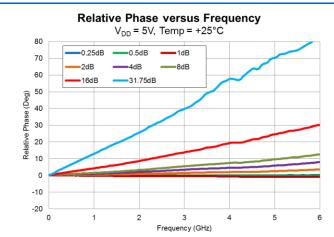


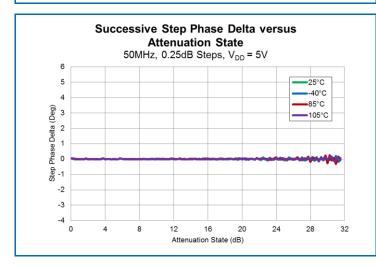


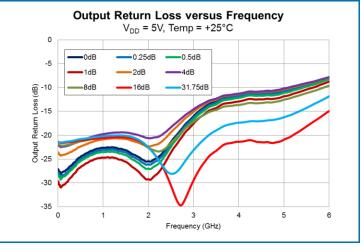
RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

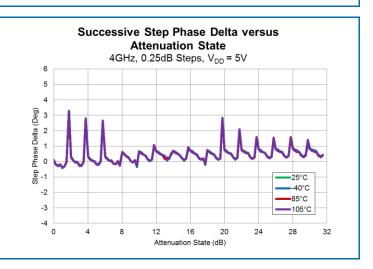
DS150128



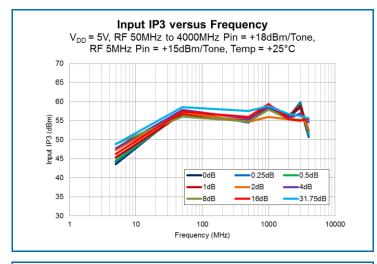


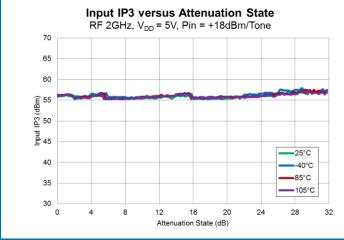

Note: Attenuator remains monotonic if step error is less than +0.25dB.

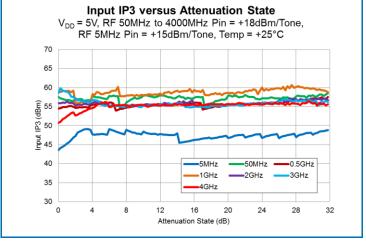

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 DS150128 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

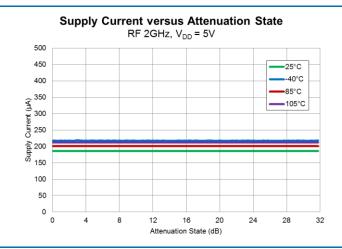


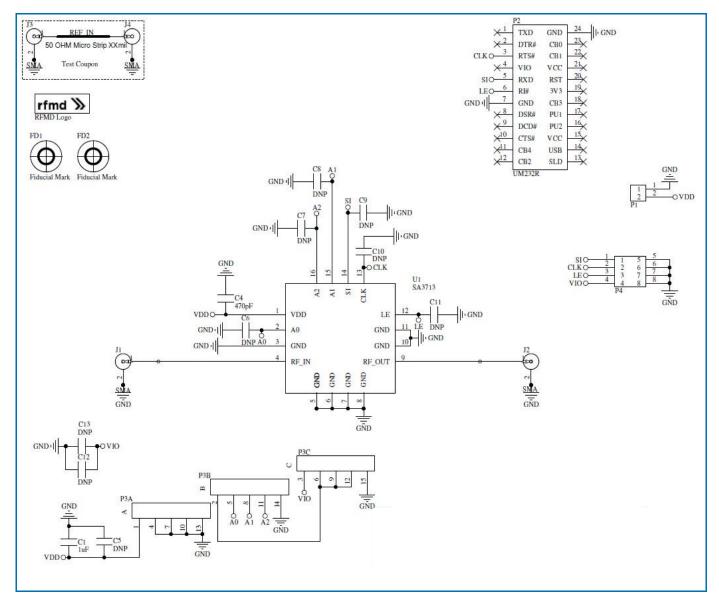
Relative Phase versus Attenuation State $V_{DD} = 5V$, Temp = +25°C 60 55 50MHz -500MHz 50 -1GHz 2GHz 45 3GHz 4GHz 40 Relative Phase (Deg) 35 30 25 20 15 10 5 0 -5 -10 0 4 8 12 16 20 24 28 32


Attenuation State (dB)




RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421


DS150128



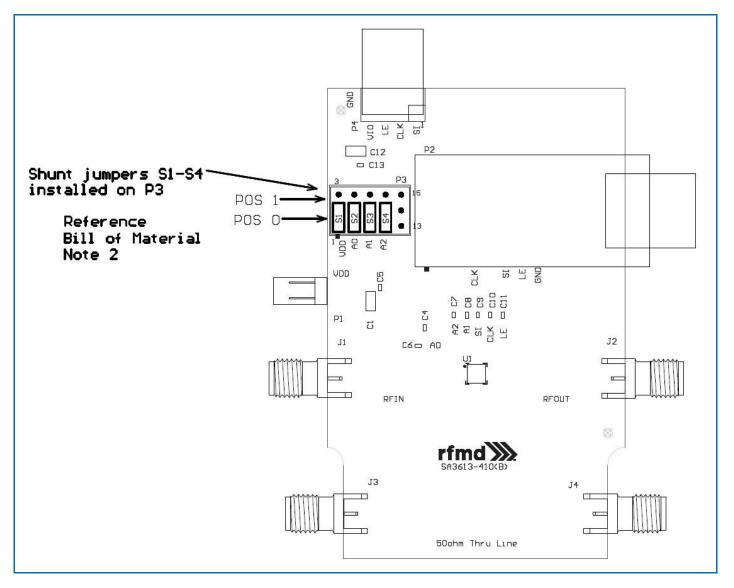
Evaluation Board Schematic

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS150128

Evaluation Board Bill of Materials (BOM)

Description	Reference Designator	Manufacturer	Manufacturer's P/N
SA3613-410		Dynamic Details (DDI) Toronto	SA3613-410(B)
Digital Step Attenuator, 5MHz to 4000MHz	U1	RFMD	RFSA3713SB
CAP, 1µF, 10%, 25V, X7R, 1206	C1	Taiyo Yuden (USA), Inc.	CE TMK316BJ105KL-T
CONN, SMA, END LNCH, UNIV, HYB MNT, FLT	J1-J4	Molex	SD-73251-4000
CONN, HDR, ST, PLRZD, 2-PIN, 0.100"	P1	ITW Pancon	MPSS100-2-C
CONN, HDR, ST, 3 x 5, 0.100", T/H	P3	Samtec Inc.	TSW-105-07-L-T
CONN, HDR, 2 x 4, RA, 0.100", T/H	P4	Samtec Inc.	TSW-104-08-G-D-RA
CONN, SKT, 24-PIN DIP, 0.600", T/H	P2	Aries Electronics Inc.	24-6518-10
MOD, USB TO SERIAL UART, SSOP-28	M1 (See Note 1)	Future Technology Devices Int'l	UM232R
CAP, 470pF, 5%, 50V, C0G, 0402	C4	Murata Electronics	GRM1555C1H471JA01D
Jumper, 2-Pin	S1-S4 (See Note 2)	3M Interconnect Soltuions	929950.00
DNP	C5-C13	N/A	N/A

Notes:


1. M1 should be mounted into P2 with respect to the Pin 1 alignment of M1 and P2.

2. Install S1-S4 into P3 as indicated on the Evaluation Board Assembly Drawing.

RFSA3713

Evaluation Board Assembly Drawing

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS150128

Evaluation Board Jumper Programming

Jumpers	Connector	Signal Position U1 Connection		U1 Connection	Comment	
S1		Logic	0	VDD (From P1)		
51		Voltage	1	VIO (From P4)		
S2		A0	0	GND	External Address	
52	D 2		1	U1_VDD	External Address	
60	P3	A1	0	GND		
S3		AI	AT	1	U1_VDD	External Address
64		A2	0	GND		
54	S4		1	U1_VDD	External Address	

Note: Default jumper settings are **BOLD**.

Evaluation Board Programming Using USB Interface

Serial Addressable Mode

All programming jumpers on the evaluation board are set to the default values indicated in the table. Refer to the Control Bit Generator (CBG) Software Reference Manual for detailed instructions on how to setup the software for use. Apply the supply voltage to P1. Select 'RFSA3713' from the RFMD parts list of the CBG user interface. Set the attenuation value using the CBG user interface. The attenuator is set to the desired state and measurement can be taken. Note that the external address bits must all be set to '0' when using the USB interface as the CGB software does not have the capability to set the external address in the serial data stream at this time.

Evaluation Board Programming Using External Bus

Serial Addressable Mode

The configuration allows the user to control the attenuator through the P4 connector using an external harness. Remove the USB interface board if it is currently installed on the evaluation board. Connect a user-supplied harness to the P4 connector. Note that the top row of P4 contains the serial bus signals and the bottom row is ground. Programming jumper S1 is set to '0'. External address jumpers S2 through S4 can be set to any value desired by the user. Apply the supply voltage P1. Send the appropriate signals onto the serial bus lines in accordance with the Serial Mode Timing Diagram. The attenuator is set to the desired state and measurements can be taken.

Default Power-up State

The default attenuation state is maximum (31.75dB) when supply voltage is applied to the attenuator. The LE signal must be held to logic '0' during power up.

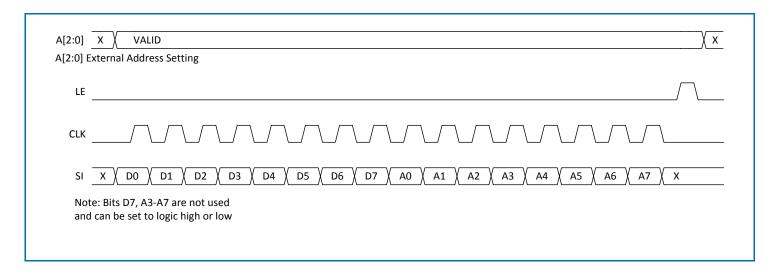
RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 DS150128 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Pin Names and Descriptions

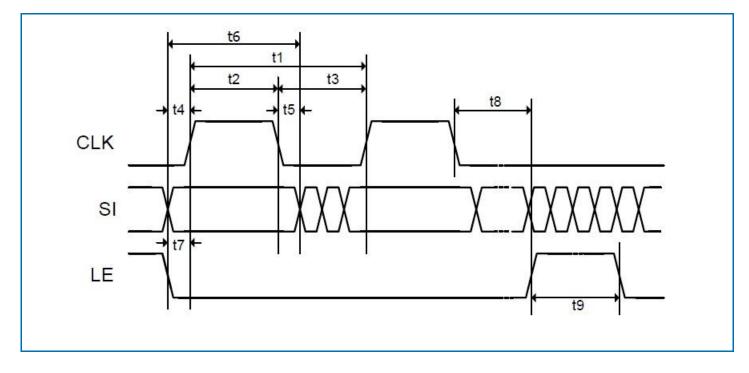
Pin	Name	Description
1	VDD	Supply Voltage
2	A0	A0 External Address Pin
3	GND	Ground Pin
4	RFIN	RF Input Pin Incident RF power must enter this pin for rated thermal performance and reliability Do not apply DC power to this pin. Pin may be DC grounded externally and is grounded thru resistors internal to the part.
5	GND	Ground Pin
6	GND	Ground Pin
7	GND	Ground Pin
8	GND	Ground Pin
9	RFOUT	RF Output Pin; Do not apply DC power to this pin. Pin may be DC grounded externally and is grounded thru resistors internal to the part.
10	GND	Ground Pin
11	GND	Ground Pin
12	LE	Latch Enable The leading edge of signal on LE causes the attenuator to change state
13	CLK	Serial Clock Input
14	SI	Serial data Input
15	A1	A1 External Address Pin
16	A2	A2 External Address Pin

Serial Addressable Mode Attenuation Word Truth Table

D7	D6	D5	D4	D3	D2	D1	D0 (LSB)	Attenuation State
Х	L	L	L	L	L	L	L	0dB / Reference Insertion Loss
х	L	L	L	L	L	L	Н	0.25dB
Х	L	L	L	L	L	н	L	0.5dB
Х	L	L	L	L	н	L	L	1dB
Х	L	L	L	н	L	L	L	2dB
Х	L	L	Н	L	L	L	L	4dB
Х	L	н	L	L	L	L	L	8dB
Х	н	L	L	L	L	L	L	16dB
Х	Н	Н	Н	Н	н	Н	Н	31.75dB


RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS150128

Serial Addressable Mode Address Word Truth Table


A7	A6	A5	A4	A3	A2 (MSB)	A1	A0	Address Setting
х	х	х	х	Х	L	L	L	000
х	х	х	х	х	L	L	н	001
х	х	х	х	Х	L	н	L	010
х	х	х	х	х	L	н	н	011
х	х	х	х	х	н	L	L	100
х	х	х	х	Х	н	L	н	101
х	х	х	х	х	н	н	L	110
Х	х	х	х	Х	н	н	н	111

Serial Addressable Mode Timing Diagram

Serial Bus Timing Specifications

Parameter	Limit	Unit	Comment
t1	25	MHz max	CLK Frequency
t2	20	ns min	CLK High
t3	20	ns min	CLK Low
t4	5	ns min	SI to CLK Setup Time
t5	5	ns min	SI to CLK Hold Time
t6	30	ns min	SI Valid
t7	5	ns min	LE to CLK Setup Time
t8	5	ns min	CLK to LE Setup Time
t9	10	ns min	LE Pulse Width