

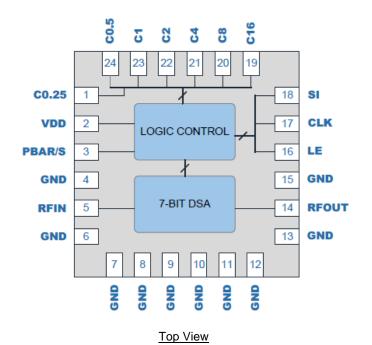
General Description

Qorvo's RFSA3714 is a 7-bit digital step attenuator (DSA) that features high linearity over the entire 31.75dB gain control range with 0.25dB steps. The RFSA3714 features three modes of control: serial, latched parallel, and direct parallel programming. The RFSA3714 has a low insertion loss of 1.5dB at 2GHz. Patent pending circuit architecture provides Overshoot-free transient switching performance. The RFSA3714 is available in a 4mm x 4mm QFN package.

24 Pad 4.0mm x 4.0mm x 0.85mm QFN Package

Product Features

- 7-Bit, 31.75dB Range, 0.25dB Step
- Patented Circuit Architecture
- Overshoot-free Transient of DSA Settings
- Frequency Range 50MHz to 6000MHz
- High Linearity, IIP3 +55dBm Typical
- Serial and Parallel Control Interface
- Switching Time 120nsec Typical
- Single Supply 3V to 5V Operation
- No DC Voltage on RF Pins, External DC Grounding Allowed
- Power-up Default Maximum Attenuation


Applications

- · 2G through 4G Base Stations
- Point-to-Point
- WiFi
- Test Equipment

Ordering Information

Part No.	Description
RFSA3714TR13	13" Reel with 2500 pieces
RFSA3714PCK-410	50MHz to 6000MHz Evaluation Board with 5-piece sample bag

Functional Block Diagram

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−40 to +150 °C
RF Input Power at RFIN, T=105 °C	+30 dBm
RF Input Power at RFOUT, T=105 °C	+27 dBm
Supply Voltage (V _{DD})	-0.5V to +6 V
All Other DC and Logic Pins (1)(2)	-0.5V to +6 V

Notes:

- 1. Supply Voltage Must Be Applied Prior to Any Other Pin Voltages.
- 2. Not to exceed $V_{\text{DD.}}$

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

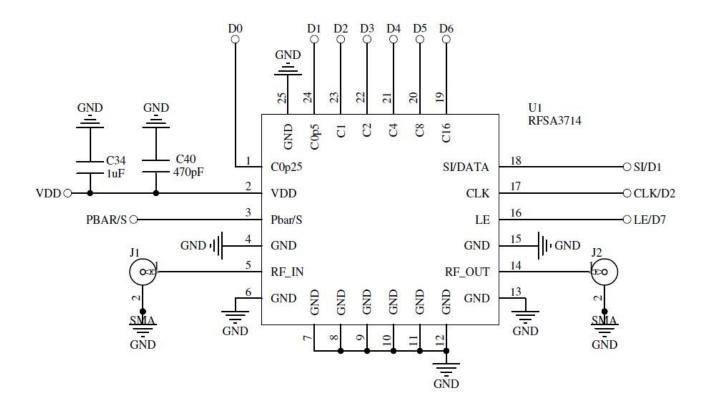
Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Temperature Range (1)	-40		+105	°C
Junction Temperature			+125	°C
Supply Voltage (V _{DD})	+2.7		+5.5	V

Notes:

1. RF Input Power Handling Derates Above 105°C

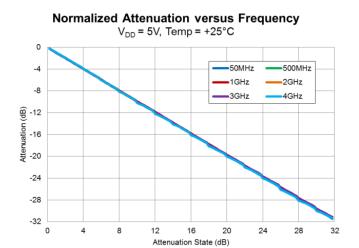
Electrical Specifications

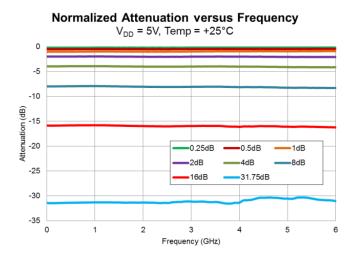

Parameter	Conditions (1)	Min	Тур	Max	Units
	General Performance				
Supply Current	Steady state operation, current draw during attenuation state transitions is higher.		180		μΑ
Thermal Resistance	At maximum attenuation state with RF power applied to the RFIN pin		55		°C/W
RF Input Power at RFIN Pin	Continuous operation at +105°C case			+27	dBm
RF Input Power at RFOUT Pin	temperature			+20	dBm
	RF Performance				
Frequency Range		50		6000	MHz
Insertion Loss	2000MHz, 0dB attenuation setting		1.5		dB
Attenuation Range	0.25dB step size		31.75		dB
	50 MHz to 2.7 GHz	±(0.15 + 2 %))	dB
Absolute Attenuation Error	2.7 GHz to 4 GHz	±(0.15 + 3 %)			dB
	4 GHz to 6 GHz	±(0.25 + 5 %)			dB
Input IP3			+55		dBm
Input P0.1dB			+30		dBm
Return Loss			15		dB
Input and Output Impedance			50		Ω
	General Performance	•			
Switching Time	50% control to 10%/90% RF		120		nsec
Successive Step Phase Delta	2000MHz		2		Deg
	Control				
Digital Logic Low		0		0.63	V
Digital Logic High		1.17		V _{DD}	V

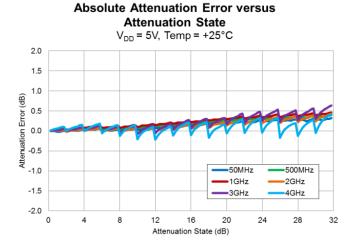
Notes:

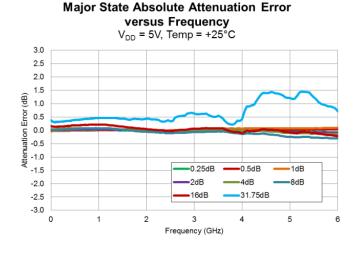
1. Typical performance at these conditions: Temp = 25°C, 2000MHz, 5V Supply Voltage

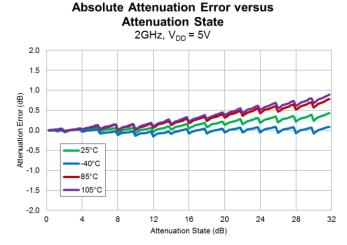
Typical Application Schematic

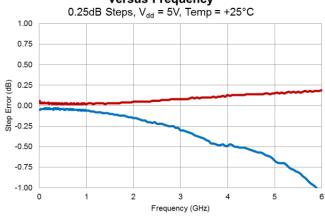


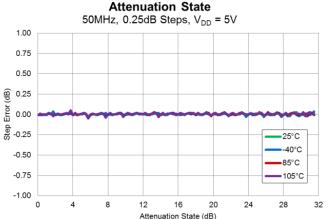



Performance Plots

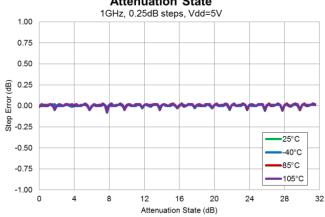

Typical Performance: 0.25dB Steps

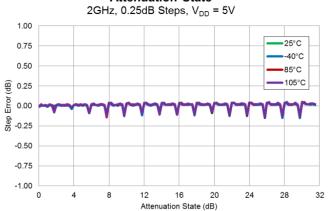

Minimum Insertion Loss versus Frequency V_{DD} = 5V 0 -1 -25°C -40°C -85°C -40°C -85°C -5 0 1 2 3 4 5 6 Frequency (GHz)

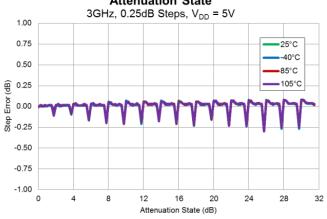


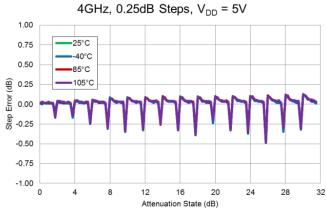

Performance Plots

Typical Performance: 0.25dB Steps

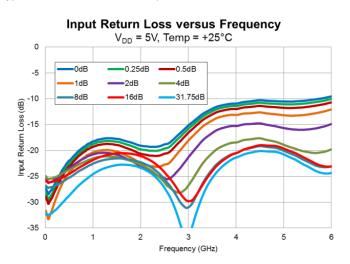

Worst Case Successive Step Error versus Frequency

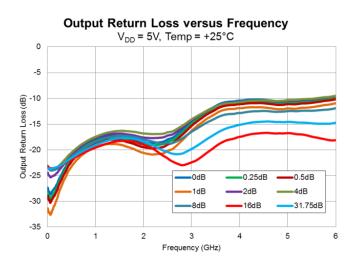

Successive Step Error versus

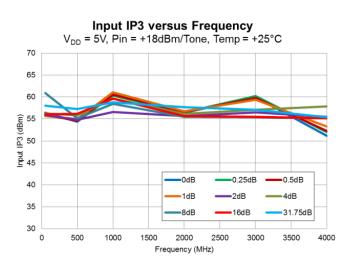

Successive Step Error versus Attenuation State


Successive Step Error versus Attenuation State

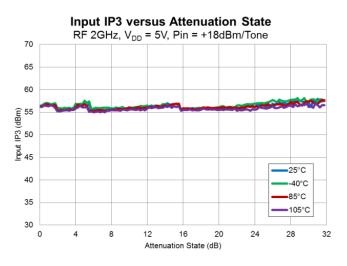
Successive Step Error versus Attenuation State

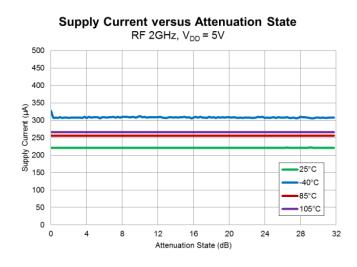

Successive Step Error versus Attenuation State

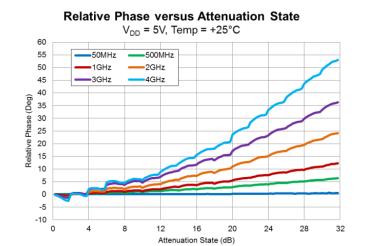




Performance Plots


Typical Performance: 0.25dB Steps



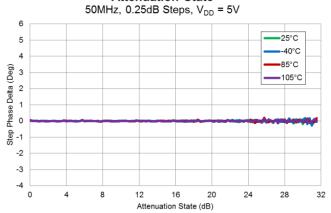

Performance Plots

0

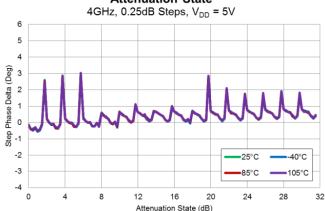
-10

Typical Performance: 0.25dB Steps

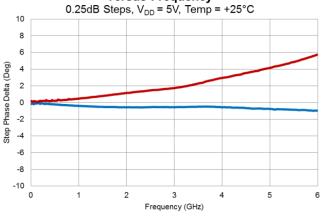
Relative Phase versus Frequency V_{DD} = 5V, Temp = +25°C 80 0.25dB 0.5dB -1dB 70 2dB 4dB -8dB 60 16dB 31.75dB Relative Phase (Deg) 50 40 30 20 10


Successive Step Phase Delta versus Attenuation State

3

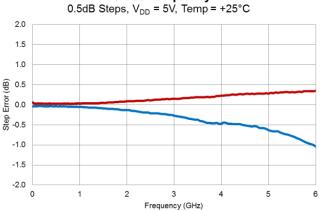

Frequency (GHz)

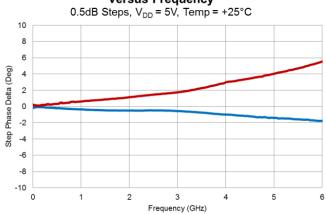
2


5

Successive Step Phase Delta versus Attenuation State

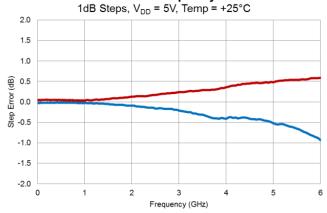
Worst Case Successive Step Phase Delta versus Frequency



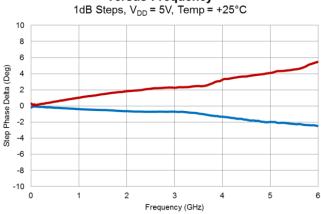

Performance Plots

Typical Performance: 0.25dB Steps

Worst Case Successive Step Error versus Frequency



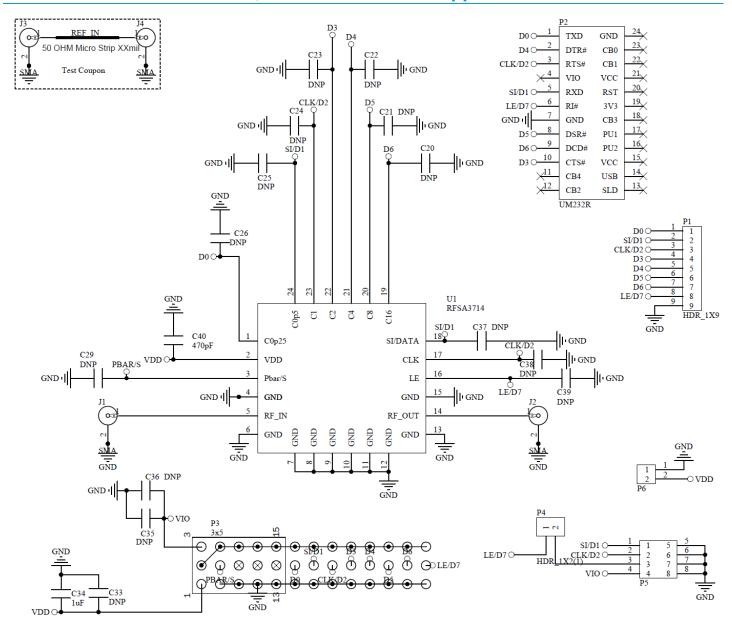
Worst Case Successive Step Phase Delta versus Frequency



Typical Performance: 1.0dB Steps

Worst Case Successive Step Error versus Frequency

Worst Case Successive Step Phase Delta versus Frequency



Notes:

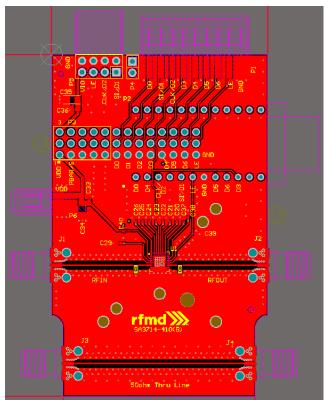
- 1. Top 2 Plots: Attenuator remains monotonic if step error is less than +0.5dB.
- 2. Bottom 2 Plots: Attenuator remains monotonic if step error is less than +1.0dB.

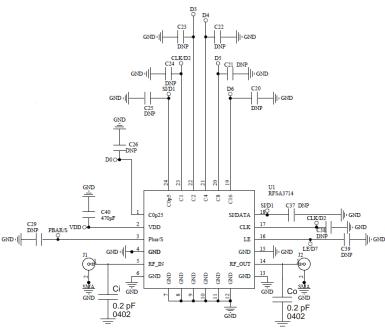
Evaluation Board Schematic, 50MHz to 6000MHz Application

Evaluation Board Bill of Materials, 50MHz to 6000MHz Application

Reference Des.	Value	Description	Manuf.	Part Number	
		SA3714-410	Dynamic Details (DDI) Toronto	SA3714-410(B)	
U1		Digital Step Attenuator 50MHz to 6000MHz	Qorvo	RFSA3714SB	
C34	1μF	CAP, 10%, 25V, X7R, 1206	Taiyo Yuden (USA), Inc.	CE TMK316BJ105KL-T	
J1 – J4		CONN, SMA, END LNCH, UNIV, HYB MNT	Molex	SD-7351-4000	
P1		CONN, HDR, ST, 9-PIN, 0.100"	Samtec Inc.	TSW-109-07-G-S	
P2		CONN, SKT, 24-PIN DIP, 0.600", T/H	Aries Electronics Inc.	24-6518-10	
M1 ⁽¹⁾		MOD, USB TO SERIAL UART, SSOP-28	Future Technology Devices	UM232R	
P3 ⁽²⁾		CONN, HDR, ST, 3 x 5, 0.100", T/H	Samtec Inc.	TSW-105-07-L-T	
P4		CONN, HDR, ST, 2-PIN, 0.100:	Samtec Inc.	TSW-102-07-G-S	
P5		CONN, HDR, 2 x 4, RA, 0.100, T/H	Samtec Inc.	TSW-104-08-G-D-RA	
P6		CONN, HDR, ST, PLRZD, 2-PIN, 0.100"	ITW Pancon	MPSS100-2-C	
C40	470pF	CAP, 5%, 50V, C0G, 0402	Murata Electronics	GRM1555C1H471JA01D	
S1, S2 ⁽²⁾		Jumper, 2-Pin	3M Interconnect Solutions	929950-00	
C20 – C26, C29, C33, C35 – C39, S6		DNP			

Notes:


- 1. M1 should be mounted into P2 with respect to the Pin 1 alignment of M1 and P2.
- 2. Jumpers S1 and S2 should be installed on P3.

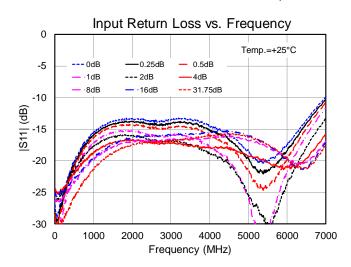


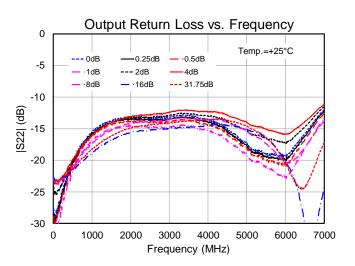
Application for Enhanced Return Loss from 4 GHz to 6 GHz

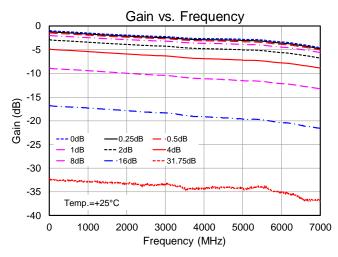
The small signal frequency response of the RFSA3714 is improved to 6GHz by added a small tuning circuit to both the input and output side of the DSA on the existing evaluation board.

RFSA3714-PCB Evaluation Board with Additional Tuning Capacitors

Notes:

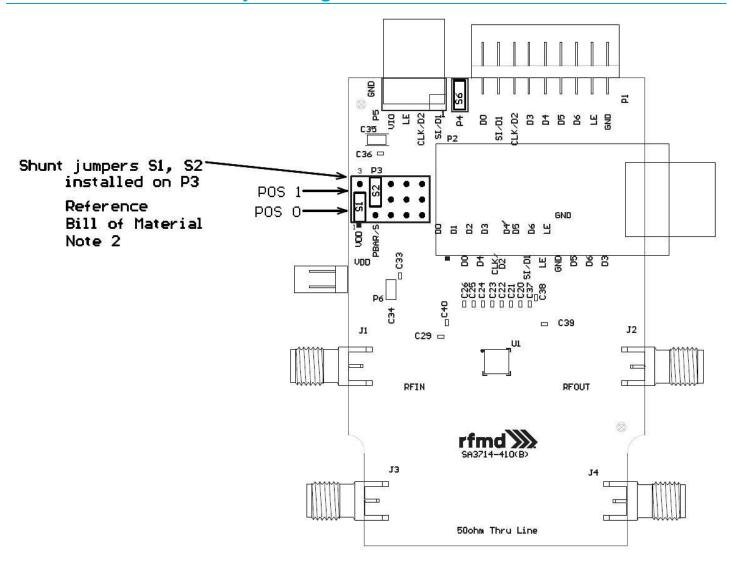

- 1. Distance from Ci right edge to U1 left edge: 95 mils.
- 2. Distance from Co left edge to U1 right edge: 40 mils.





Performance Plots - Enhanced Return Loss from 4 GHz to 6 GHz

Test conditions unless otherwise noted: V_{DD} = +5.0V, Temp.= +25 °C



Evaluation Board Assembly Drawing

Evaluation Board Jumper Programming

Jumpers	Connector	Connector Signal Position U1 Connection		U1 Connection	Comment
C1		Logio Voltago	0	VDD (from P6)	
S1	Do	Logic Voltage	1	VIO (from P5)	
60	P3	DD /0	0	GND	Parallel Mode
S2		PBar/S	1	U1_VDD	Serial Mode
66	D4	1.5	OPEN	LE	All Other Modes
S6 P4	P4	LE	Installed	LE (from P5 Pin 3)	Serial Mode Using P5

Notes:

^{1.} Default jumper settings are BOLD.

Evaluation Board Programming with USB Interface

Serial Mode

All programming jumpers on the evaluation board are set to the default values indicated in the table. Refer to the Control Bit Generator (CBG) Software Reference Manual for detailed instructions on how to setup the software for use. Apply the supply voltage to P6. Select 'RFSA3714' from the RFMD parts list of the CBG user interface. Set the attenuation value using the CBG user interface. The attenuator is set to the desired state and measurement can be taken.

Latched Parallel Mode

Evaluation board programming jumper S2 is set to '0'. All other programming jumpers are not required and can be set to any position. Refer to the Control Bit Generator Software Reference Manual for detailed instructions on how to set up the software for use. Apply the supply voltage to P6. Select 'RFSA3714-P' from the RFMD part list of the CBG user interface. Set the attenuation value using the CBG user interface. The attenuator is set to the desired state and measurements can be taken.

Evaluation Board Programming with External Bus

Serial Mode

The configuration allows the user to control the attenuator through the P5 connector using an external harness. Remove the USB interface board if it is currently installed on the evaluation board. Connect a user-supplied harness to the P5 connector. Note that the top row of P5 contains the serial bus signals and the bottom row is ground. Programming jumper S1 is set to '0' and S2 is set to '1'. Jumper S6 is installed and allows the LE signal to be routed from the P5 connector to the attenuator. Apply the supply voltage P6. Send the appropriate signals onto the serial bus lines in accordance with the Serial Mode Timing Diagram. The attenuator is set to the desired state and measurements can be taken.

Latched Parallel Mode

This configuration allows the user to control the attenuator through the P1 connector using an external harness. Remove the USB interface it if is currently installed on the evaluation board. Connect a user-supplied harness to the P1 connector. The parallel bus signal names for P1 are indicated on the evaluation board. Programming jumper S2 is set to '0' to select parallel mode. All other programming jumpers are not required and can be set to any position. Apply the supply voltage to P6. Send the appropriate signals onto the parallel bus lines in accordance with the Latched Parallel Mode Timing Diagram. The attenuator is set to the desired state and measurements can be taken.

Direct Parallel Mode

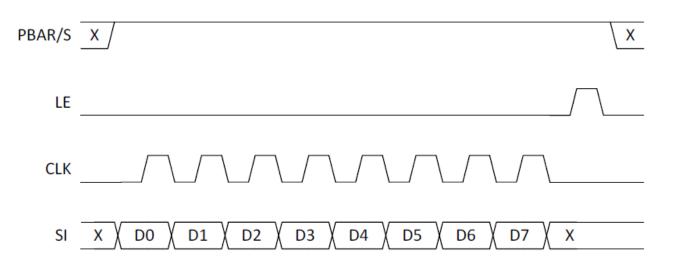
This configuration allows the user to control the attenuator through the P1 connector using an external harness. When using this mode the LE signal is held at logic high so that the attenuation will change immediately when there is a change in logic state for any of the parallel bus signals. Remove the USB interface if it is currently installed on the evaluation board. Connect a user-supplied harness to the P1 connector. The parallel bus signal names for P1 are indicated on the evaluation board. Programming jumper S2 is set to '0' to select parallel mode. All other programming jumpers are not required and can be set to any position. Apply the supply voltage to P6. Send the appropriate signals onto the parallel bus lines. The attenuator is set to the desired state and measurements can be taken.

Default Power-up State

The default attenuation state is maximum (31.75dB) when supply voltage is applied to the attenuator in both serial and parallel modes. If a different attenuation state is desired during power up, this can be accomplished by applying signals according to the Parallel Mode Truth Table. The attenuator will power up to the state applied to the parallel bus during turn on. The LE signal must be held to logic '0' during power up.

Pin Configuration and Description

Pad No.	Label	Description
1	C0.25	0.25dB Parallel Control Bit
2	VDD	Supply Voltage
3	PBAR/S	Mode Select Pin Logic Low = Parallel Logic High = Serial
4	GND	Ground Pin
5	RFIN	RF Input Pin, Incident RF power must enter this pin for rated thermal performance and reliability. Do not apply DC power to this pin. Pin may be DC grounded externally and is grounded thru resistors internal to the part.
6	GND	Ground Pin
7	GND	Ground Pin
8	GND	Ground Pin
9	GND	Ground Pin
10	GND	Ground Pin
11	GND	Ground Pin
12	GND	Ground Pin
13	GND	Ground Pin
14	RFOUT	RF Output Pin; Do not apply DC power to this pin. Pin may be DC grounded externally and is grounded thru resistors internal to the part.
15	GND	Ground Pin
16	LE	Latch Enable, the leading edge of signal on LE causes the attenuator to change setting for serial and latched parallel modes. For direct parallel mode keep LE at a logic high level.
17	CLK	Serial Clock Input
18	SI	Serial Data Input
19	C16	16dB Parallel Control Bit
20	C8	8dB Parallel Control Bit
21	C4	4dB Parallel Control Bit
22	C2	2dB Parallel Control Bit
23	C1	1dB Parallel Control Bit
24	C0.5	0.5dB Parallel Control Bit


RFSA3714

50MHz to 6000MHz, Digital Step Attenuator

Serial Mode Attenuation Word Truth Table

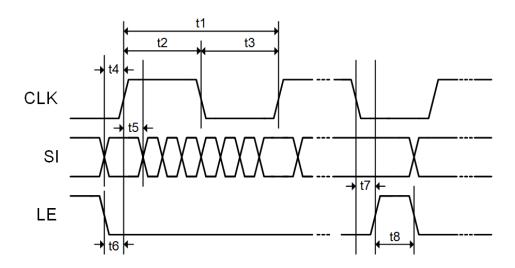
	Attenuation Word							Attonuction State
D7	D6	D5	D4	D3	D2	D1	D0 (LSB)	Attenuation State
X	L	L	L	L	L	L	L	0dB / Reference Insertion Loss
Х	L	L	L	L	L	L	Н	0.25dB
X	L	L	L	L	L	Н	L	0.5dB
X	L	L	L	L	Н	L	L	1dB
Х	L	L	L	Н	L	L	L	2dB
Х	L	L	Н	L	L	L	L	4dB
X	L	Н	L	L	L	L	L	8dB
Х	Н	L	L	L	L	L	L	16dB
X	Н	Н	Н	Н	Н	Н	Н	31.75dB

Serial Mode Timing Diagram

Note: Bit D7 is not used and can be set to logic high or low


RFSA3714

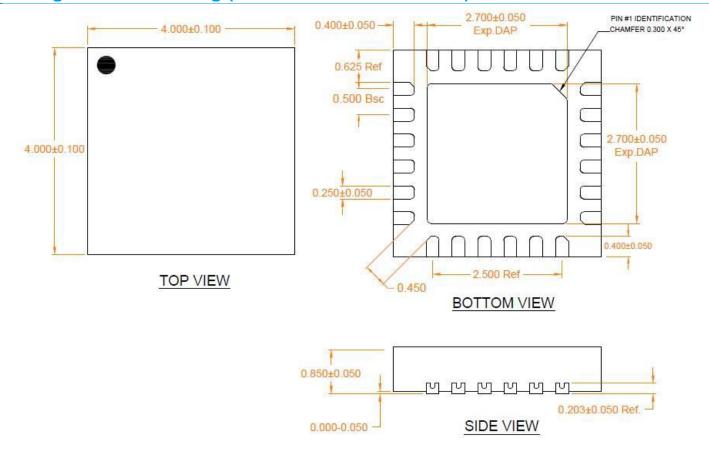
50MHz to 6000MHz, Digital Step Attenuator


Parallel Mode Truth Table

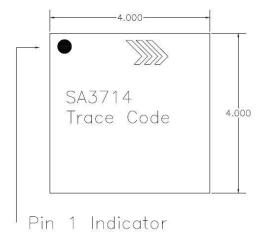
		Parallel I	nput Contr	ol Setting			
D6 (C16)	D5 (C8)	D4 (C4)	D3 (C2)	D2 (C1)	D1 (C0.5)	D0 (C0.25)	Attenuation State
L	L	L	L	L	L	L	0dB / Reference Insertion Loss
L	L	L	L	L	L	Н	0.25dB
L	L	L	L	L	Н	L	0.5dB
L	L	L	L	Н	L	L	1dB
L	L	L	Н	L	L	L	2dB
L	L	Н	L	L	L	L	4dB
L	Н	L	L	L	L	L	8dB
Н	L	L	L	L	L	L	16dB
Н	Н	Н	Н	Н	Н	Н	31.75dB

Latched Parallel Mode Timing Diagram

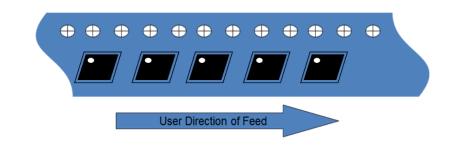
Serial Bus Timing Specification Diagram

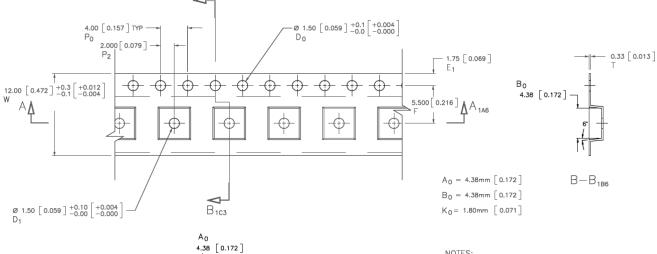


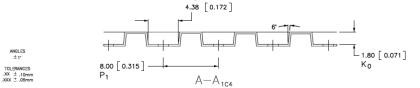
Serial Bus Timing Specifications


Parameter	Symbol	Min.	Max.	Unit
CLK Frequency	1/t1		25	MHz
CLK High Time	t2	20		ns
CLK Low Time	t3	20		ns
SI Setup Time	t4	5		ns
SI Hold Time	t5	5		ns
LE Low Setup Time	t6	5		ns
LE High Setup Time	t7	5		ns
LE High Time	t8	10		ns

Package Outline Drawing (Dimensions in millimeters)

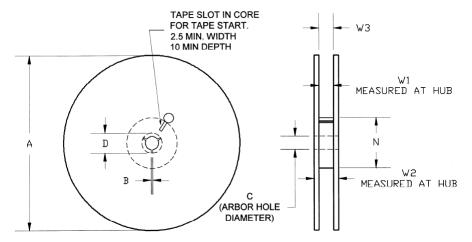

Branding Diagram



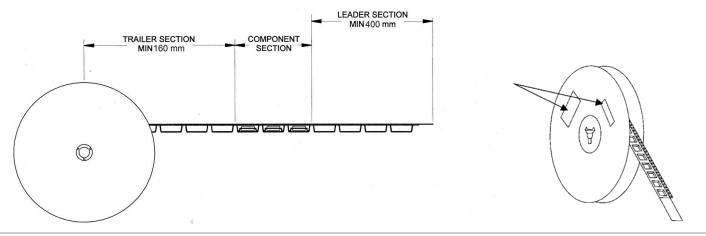

Trace Code to be assigned by SubCon

Tape and Reel Information – Carrier and Cover Tape Dimensions

OTES:


- 1. ALL DIMENSIONS ARE MILLIMETERS [INCHES]
- 2. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ± 0.2mm
- 3. MATERIAL 0.33 [0.013] CARBON POLYSTYRENE
- POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS
 TRUE POSITION OF POCKET, NOT POCKET HOLE
- 5. 325 METERS / 22" CROSSWOUND REEL

Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.172	4.38
Covity	Width	В0	0.172	4.38
Cavity	Depth	K0	0.071	1.80
	Pitch	P1	0.315	8.00
Centerline Distance	Cavity to Perforation - Length Direction	P2	0.079	2.00
Centenine Distance	Cavity to Perforation - Width Direction	F	0.217	5.50
Cover Tape	Width	С	0.362	9.20
Carrier Tape	Width	W	0.472	12.0


Tape and Reel Information – Reel Dimensions

Standard T/R size = 2,500 pieces on a 13" reel.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Diameter	Α	12.992	330.0
Flange	Thickness	W2	0.717	18.2
	Space Between Flange	W1	0.504	12.8
Hub	Outer Diameter	N	4.016	102.0
	Arbor Hole Diameter	С	0.512	13.0
	Key Slit Width	В	0.079	2.0
	Key Slit Diameter	D	0.787	20.0

Tape and Reel Information - Tape Length and Label Placement

Notes

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.