Solid State Relays 1-Phase with Integrated Current Monitoring Types RGS1S

- Product width ranging from 22.5mm to 35mm
- Partial load failure detection
- · Zero cross switching
- Ratings up to 600VACrms & 90AACrms
- Up to 18000A²s for I²t and 1200Vp for blocking voltage
- Control voltage range: 4 32 VDC
- · Local or remote current set-point
- · LED indications for the different faults
- · Alarm signal output for SSR or load circuit malfunction
- IP20 protection
- · Integrated voltage transient protection with varistor
- RoHS compliant
- Short circuit current rating 100kArms

Product Description

This slim RG design is capable of detecting various failure modes occuring to the heaters and also to the product itself. Failures which can be detected include partial load failure, heater loss, open circuit SSR, short circuit SSR and SSR over temperature. A normally closed, potential free alarm, opens in the event of a system or power semiconductor fault.

A load current setpint has to be TEACHed to the SSR either locally by the TEACH button on the front of the device or remotely through the provided terminal.

This product is available either with integrated heatsink (RGC1S series) and also without heatsink (RGS1S series). The minimum product width is 22.5mm. The control and auxiliary terminals are double box clamps to facilitate safe looping whilst the power terminals are either screw terminals or box clamps depending on the model selected.

Solid state relay Number of poles Switching mode Rated operational voltage Control voltage Rated operational current Connection type for control Connection type for power Connection configuration Protection Options

Note: Specifications stated at 25°C unless specified.

Ordering Key

1-Phase SSR	Switching mode	Rated V, Blocking V*	Control voltage	Rated current ¹ I ² t data	Connection input	Connection output	Connection configuration	Protection	Options
RGS1: with no heatsink	S: Zero cross with current sensing	60:600VAC +10% -15%, 1200Vp	D: 4-32VDC	20: 23AAC, 525A ² s 30: 30AAC, 1800A ² s 31: 30AAC, 6600A ² s 61: 65AAC, 18000A ² s 92: 90AAC, 18000A ² s	G: Box Clamp	K: Screw G: Box Clamp	E: Contactor U: SSR	P: Over- temperature protection	HT²: thermal pad

^{*} Rated voltage, Blocking voltage

Selection Guide

Rated output voltage,	Connection	Control	Configuration	•	Rated operational current (I²t value in brackets)			
Blocking voltage	control/ power	voltage		23AAC (525A ² s)	30AAC (180	0A ² s)	30AAC (6600A2s)	
600VAC, 1200Vp	Box Clamp / Screw	4 - 32VDC	E	RGS1S60D20GKEP	RGS1S60D3	0GKEP	RGS1S60D31GKEP	
Rated output voltage, Blocking voltage	Connection control/ power	Control voltage	Configuration	Rated operational current (I ² t value 65AAC (18000A ² s)			s) 18000A²s)	
600VAC, 1200Vp	Box Clamp/ Box Clamp	4 - 32VDC	E U	- RGS1S60D61GGUP		RGS1S60D92GGEP		

^{1:} refer to heatsink selection tables

^{2:} Add suffix HT to SSR part number for factory mounted thermal pad. Conditions apply. Please consult your Carlo Gavazzi sales representative for further details.

Output Specifications

	RGS1S20	RGS1S30	RGS1S31	RGS1S61	RGS1S92	
Max. AC-51 rating ³	23 AAC	30 AAC	30 AAC	65 AAC	90 AAC	
Minimum TEACH Current	1.2 AAC	1.2 AAC	1.2 AAC	5 AAC	5 AAC	
Minimum partial load current	0.2 AAC	0.2 AAC	0.2 AAC	0.83 AAC	0.83 AAC	
Detectable partial load failure	>16.67% from current setpoint for more than 120ms					
Rep. overload current - UL508, PF=0.9 TAMB=40°C, tON=1s, tOFF=9s, 50cycles	60 AAC	84 AAC	84 AAC	168 AC	168 AAC	
Max.off-state leakage current	3 mAAC	3 mAAC	3 mAAC	3 mAAC	3 mAAC	
Max. Transient Surge Current (Itsm) t=10ms	325 Ap	600 Ap	1150 Ap	1900 Ap	1900 Ap	
I²t for fusing (t=10ms) Minimum	525 A ² s	1800 A²s	6600 A²s	18000 A²s	18000 A ² s	
Critical dv/dt (@ Tj init = 40°C)	1000 V/us	1000 V/us	1000 V/us	1000 V/us	1000 V/us	

^{3:} refer to heatsink selection tables

Output Voltage Specifications

Operational Voltage Range	42-600 VAC +10% -15% on max
Blocking Voltage	1200 Vp
Internal Varistor	625V

General Specifications

Latching voltage (across L1-T1)	≤ 20 VAC
Operational frequency range	45 - 65 Hz
Power factor	> 0.9 @ Vrated
Touch protection	IP20
LEDs status indication Supply ON Control ON Load ON Fault	Green, half intensity Green, full intensity Yellow Red ⁴

Pollution degree	2 (non-conductive pollution with possibilities of condensation)
Over-voltage category	III (fixed installations)
Isolation Input to Output IN1, IN2, A1+, A2- to L1, T1	2500Vrms
Alarm to Output	
11+, 12- to L1 , T1	2500Vrms
Alarm to Input	
11+, 12- to A1+, A2-, IN1, IN2	500Vrms
Input & Output to Case	4000Vrms

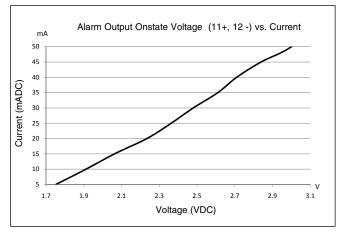
^{4:} refer to Alarm LED Indications

Supply Specifications (A1+, A2-)

Rated supply voltage	24 VDC -15%, +20%
Reverse protection	Yes
Max. supply current	50 mA

Remote TEACH Specifications (IN1)

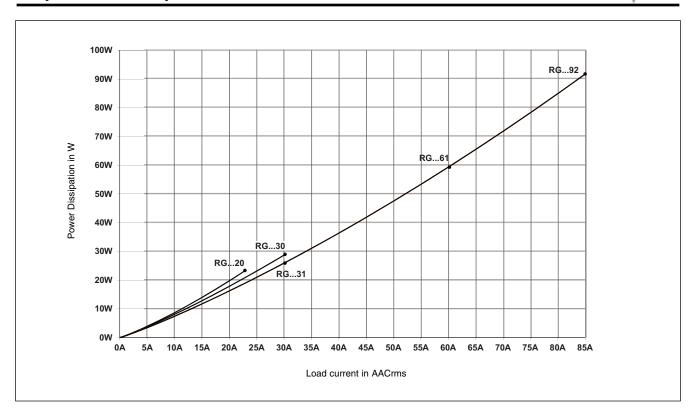
Control voltage range ⁵	4 - 32 VDC
Input current	refer to chart
Reverse protection	Yes


Alarm Specifications (11+, 12-)

Output Type	PNP Open Collector
Normal State ⁶	Normally Closed
Maximum rating	35Vdc, 50mADC
Visual Indication	Red LED ⁴
Alarm output onstate voltage	refer to chart

Remote Teach (IN1) vs. Current Control Voltage (IN2) vs. Current 10.6 10.2 9.8 8.6 8.8 7.4 7 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 Voltage (VDC)

Control Specifications (IN2)


Control voltage range ^{5,7}	4 - 32 VDC		
Pick-up voltage	3.8 VDC		
Drop-out voltage	1 VDC		
Maximum reverse voltage	32 VDC		
Input current	refer to chart		
Max Response time pick-up	0.5 cycle + 500us @ 24VDC		
Min Response time drop-out	0.5 cycle + 500us @ 24VDC		

- 5: DC control to be supplied by a Class 2 power source
- 6: The alarm will open in the case when the power supply is removed
- 7: A partial load failure will not be detected if the ON time is less than 120ms

Output Power Dissipation

Heatsink Selection

RGS1S60D20GKEP

Load current [A]			Thermal resistance [K/W]			Power dissipation [W]	
23.0	3.45	3.02	2.59	2.16	1.73	1.29	23.2
20.7	3.93	3.44	2.95	2.46	1.97	1.48	20.3
18.4	4.55	3.98	3.41	2.84	2.27	1.70	17.6
16.1	5.35	4.68	4.01	3.34	2.67	2.01	15.0
13.8	6.44	5.63	4.83	4.02	3.22	2.41	12.4
11.5	8.00	7.00	6.00	5.00	4.00	3.00	10.0
9.2	10.39	9.09	7.79	6.50	5.20	3.90	7.7
6.9	14.50	12.69	10.88	9.07	7.25	5.44	5.5
4.6	23.06	20.18	17.29	14.41	11.53	8.65	3.5
2.3	50.39	44.09	37.79	31.49	25.20	18.90	1.6
	20	30	40	50	60	70 Ambi	T _A ent temp [°C]

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.45 K/W
Case to heatsink thermal resistance, Rthcs8	< 0.25 K/W

RGS1S60D30GKEP

Load	Incima						ation [W]
32.0	2.62	2.29	1.97	1.64	1.31	0.98	30.5
28.8	2.98	2.60	2.23	1.86	1.49	1.12	26.9
25.6	3.43	3.00	2.57	2.14	1.71	1.29	23.3
22.4	4.01	3.51	3.01	2.51	2.01	1.51	19.9
19.2	4.81	4.21	3.61	3.01	2.41	1.80	16.6
16.0	5.94	5.20	4.46	3.71	2.97	2.23	13.5
12.8	7.69	6.73	5.76	4.80	3.84	2.88	10.4
9.6	10.68	9.34	8.01	6.67	5.34	4.00	7.5
6.4	16.89	14.78	12.67	10.56	8.45	6.33	4.7
3.2	36.77	32.17	27.58	22.98	18.38	13.79	2.2
	20	30	40	50	60	70	T _A
Ambient temp [°C]							

Maximum junction temperature 125°C
Heatsink temperature 100°C

Junction to case thermal resistance, Rthjc <0.3 K/W

Case to heatsink thermal resistance, Rthcs⁸ < 0.25 K/W

RGS1S60D31GKEP

Load current [A]			Thermal resistance [K/W]			Power dissipation [W]	
23.0	2.91	2.54	2.18	1.82	1.45	1.09	27.5
28.8	3.29	2.88	2.47	2.06	1.65	1.23	24.3
25.6	3.78	3.30	2.83	2.36	1.89	1.42	21.2
22.4	4.41	3.86	3.31	2.76	2.21	1.65	18.1
19.2	5.27	4.61	3.95	3.29	2.63	1.98	15.2
16.0	6.49	5.68	4.87	4.06	3.25	2.44	12.3
12.8	8.37	7.32	6.28	5.23	4.19	3.14	9.6
9.6	11.59	10.14	8.69	7.24	5.79	4.34	6.9
6.4	18.26	15.98	13.70	11.41	9.13	6.85	4.4
3.2	39.58	34.63	29.69	24.74	19.79	14.84	2.0
	20	30	40	50	60	70	T _A
Ambient temp [°C]							

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.2 K/W
Case to heatsink thermal resistance, Rthcs8	< 0.25 K/W

RGS1S60D61GGUP, RGS1S60D92GGEP

Load current [A]			Thermal resistance [K/W]			Power dissipation [W]		
							•	
90.0	0.62	0.52	0.41	0.31	0.21	0.11	98.4	
81.0	0.77	0.66	0.54	0.42	0.31	0.19	85.9	
72.0	0.97	0.83	0.70	0.56	0.43	0.29	74.0	
63.0	1.23	1.07	0.91	0.75	0.59	0.43	62.5	
54.0	1.55	1.35	1.16	0.97	0.77	0.58	51.7	
45.0	1.93	1.69	1.45	1.21	0.97	0.73	41.4	
36.0	2.53	2.21	1.89	1.58	1.26	0.95	31.6	
27.0	3.55	3.11	2.66	2.22	1.77	1.33	22.5	
18.0	5.67	4.97	4.26	3.55	2.84	2.13	14.1	
9.0	12.46	10.90	9.34	7.79	6.23	4.67	6.4	
	20	30	40	50	60	70	T _A	
	Ambient temp [°C]							

Maximum junction temperature 125°C

Heatsink temperature 100°C

Junction to case thermal resistance, Rthjc <0.2 K/W

Case to heatsink thermal resistance, Rthcs8 < 0.25 K/W

^{8:} Thermal resistance case to heatsink values are applicable upon application of a fine layer if silicon based thermal paste HT02S from Electrolube between SSR and heatsink.

Heatsink Selection for RGS1S...HT

RGS1S...HT: RGS1S.. with attached thermal pad. Available upon request.

RGS1S60D20GKEPHT

Load current [A]		Thermal resistance [K/W]				Power dissipation [W]	
23.0	3.18	2.75	2.32	1.88	1.45	1.02	23.2
20.7	3.81	3.32	2.83	2.34	1.85	1.35	20.3
18.4	4.55	3.98	3.41	2.84	2.27	1.70	17.6
16.1	5.35	4.68	4.01	3.34	2.67	2.01	15.0
13.8	6.44	5.63	4.83	4.02	3.22	2.41	12.4
11.5	8.00	7.00	6.00	5.00	4.00	3.00	10.0
9.2	10.39	9.09	7.79	6.50	5.20	3.90	7.7
6.9	14.50	12.69	10.88	9.07	7.25	5.44	5.5
4.6	23.08	20.18	17.29	14.41	11.53	8.65	3.5
2.3	50.39	44.09	37.79	31.49	25.20	18.90	1.6
	20	30	40	50	60	70	TA
Ambient temp							

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.45 K/W
Case to heatsink thermal resistance, Rthcs	< 0.9 K/W

RGS1S60D30GKEPHT

Load current [A]			Thermal resistance [K/W]			Power dissipation [W]	
32.0	2.29	1.96	1.64	1.31	0.98	0.65	30.5
28.8	2.76	2.39	2.01	1.64	1.27	0.90	26.9
25.6	3.35	2.92	2.49	2.06	1.63	1.21	23.3
22.4	4.01	3.51	3.01	2.51	2.01	1.51	19.9
19.2	4.81	4.21	3.61	3.01	2.41	1.80	16.6
16.0	5.94	5.20	4.46	3.72	2.97	2.23	13.5
12.8	7.69	6.73	5.77	4.80	3.84	2.88	10.4
9.6	10.68	9.34	8.01	6.67	5.34	4.00	7.5
6.4	16.89	14.78	12.67	10.56	8.45	6.33	4.7
3.2	36.77	32.17	27.58	22.98	18.38	13.79	2.2
	20	30	40	50	60	70	T _A
						Ambi	ent temp [°C]

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.3 K/W
Case to heatsink thermal resistance, Rthcs	< 0.85 K/W

RGS1S60D31GKEPHT

Load current [A]		Thermal resistance [K/W]			Power dissipation [W]		
32.0	2.82	2.45	2.09	1.73	1.36	1.00	27.5
28.8	3.29	2.88	2.47	2.06	1.65	1.23	24.3
25.6	3.78	3.30	2.83	2.36	1.89	1.42	21.2
22.4	4.41	3.86	3.31	2.76	2.21	1.65	18.1
19.2	5.27	4.61	3.95	3.29	2.63	1.98	15.2
16.0	6.49	5.68	4.87	4.06	3.25	2.44	12.3
12.8	8.37	7.32	6.28	5.23	4.19	3.14	9.6
9.6	11.59	10.14	8.69	7.24	5.79	4.34	6.9
6.4	18.26	15.98	13.70	11.41	9.13	6.85	4.4
3.2	39.58	34.63	29.69	24.74	19.79	14.84	2.0
	20	30	40	50	60	70	TA
Ambie							ent temp [°C

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.2 K/W
Case to heatsink thermal resistance, Rthcs	< 0.8 K/W

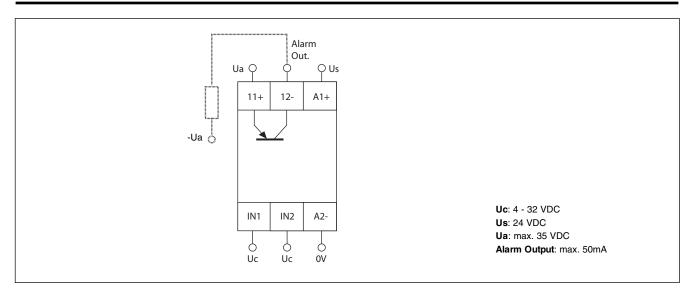
RGS1S60D61GGUPHT, RGS1S60D92GGEPHT

Load current [A]		Thermal resistance [K/W]				Power dissipation [W]	
90.0	0.07	-	-	-	•	-	98.4
81.0	0.22	0.11	-	-	-	-	85.9
72.0	0.42	0.28	0.15	0.01	-	-	74.0
63.0	0.68	0.52	0.36	0.20	0.04	-	62.5
54.0	1.03	0.84	0.65	0.45	0.26	0.06	51.7
45.0	1.54	1.30	1.05	0.81	0.57	0.33	41.4
36.0	2.32	2.00	1.69	1.37	1.05	0.74	31.6
27.0	3.55	3.11	2.66	2.22	1.77	1.33	22.5
18.0	5.67	4.97	4.26	3.55	2.84	2.13	14.1
9.0	12.46	10.90	9.34	7.79	6.23	4.67	6.4
	20	30	40	50	60	70	TA
Ambient temp [°C]							

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.2 K/W
Case to heatsink thermal resistance, Rthcs	< 0.8 K/W

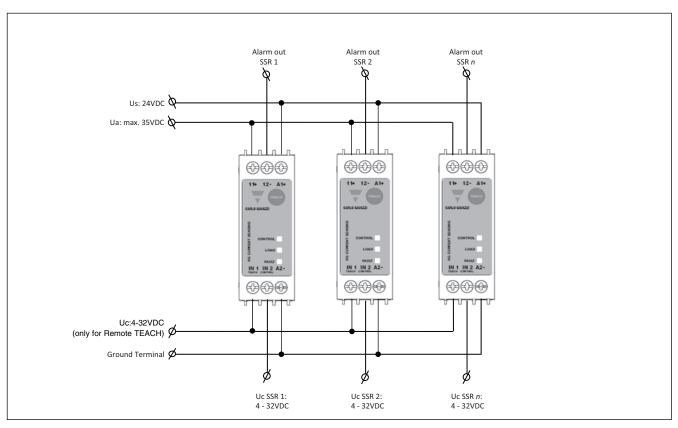
Terminal Markings

A2- CONTROL TOOL ON TOOL OF THE PROPERTY OF TH

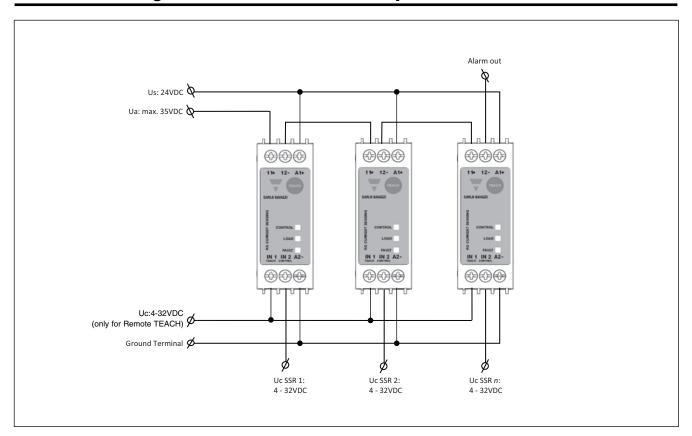

RG...61GGUP

1 L1: Line connection
2 T1: Load connection
11+: Alarm supply
12-: Alarm output
A1+: Supply voltage
A2-: Ground connection
IN 1: Remote TEACH signal
IN 2: Control voltage

Note:


- Local TEACH by pressing front button for more than 3 sec but less than 5 sec $\,$
- Fan supply (24VDC) for RGC1A60D90GGEP has to be supplied directly to fan

Connection Diagram

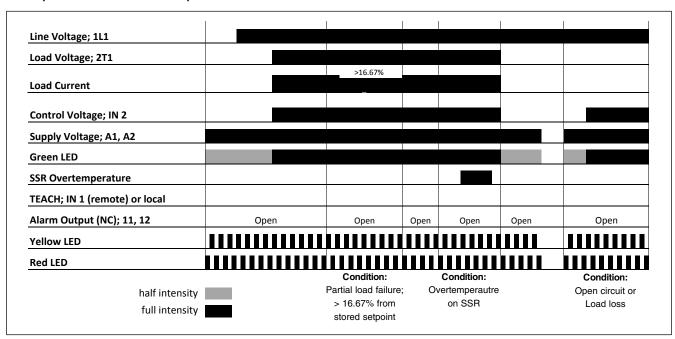


Connection Diagram for Separate Alarm Outputs

Connection Diagram for Series Alarm Outputs

Alarm LED Indications (Red LED)

Flashes	Description of Fault	Timing Diagram
1	Locked TEACH	3s 3 s
2	Open SSR / Heater	3s
3	SSR Overtemperature	3s
4	SSR Short Circuit	■ ■ ■ ■ → ■ ■ ■
50%	No TEACH setpoint	→ ← 0.5s
100%	Partial Load Failure	


Mode of Operation

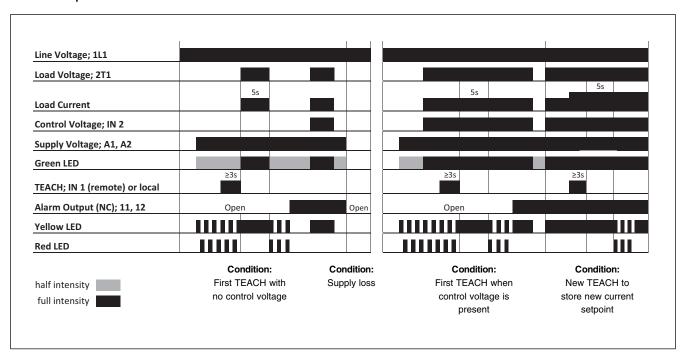
Introduction:

The RGS1S must have a stored current setpoint to operate as a Solid State Relay with a Sensing function. The current setpoint is the nominal operating current that is expected through the SSR when all heater loads are functioning properly. The SSR is shipped without having a stored setpoint. This current setpoint is to be stored upon a TEACH procedure as explained below. The wrong setpoint is stored if heater loads are faulty or mains supply voltage is not close to operating voltage during the TEACH procedure.

Caution: In case of a brand new RGS1S (i.e. an RGS1S that does not have a stored current set point), a TEACH procedure on no load (i.e., no load connected to the RGS1S load terminal 2/T1) will result in a stored current set point of 0A.

SSR Operation without the TEACH procedure

Upon application of supply voltage, the yellow and red LED will flash continuously in sequence (i.e., scroll) indicating that the device has no current setpoint stored. The green LED is ON at half intensity indicating the presence of supply voltage. As soon as control voltage is applied the green LED will be ON at full intensity. The alarm output, which is normally closed, is open to indicate that the SSR has no stored setpoint.


If mains supply is present upon application of control voltage the SSR will switch ON despite having no stored current setpoint. However, even though the SSR switches ON, the Sensing features associated with the RGS1S are disabled as shown in the above operations diagram. The Sensing features will be enabled ONLY once the TEACH procedure explained below is completed.

For SSR to switch ON upon application of control voltage, supply voltage has to be present across terminals A1, A2.

Mode of Operation (cont.)

The TEACH procedure

The TEACH procedure can be performed either locally or remotely. For local TEACH, the front 'TEACH' button on the SSR has to be pressed for at least 3 seconds (but less than 5 seconds). Remote TEACH can be performed by applying a high signal on terminal IN 1 for a duration of at least 3 seconds (but less than 5 seconds).

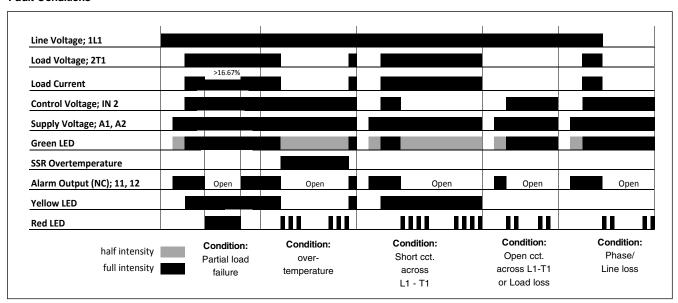
Supply voltage has to be present across terminals A1, A2 for the TEACH function to be performed and SSR to operate.

TEACH in the absence of a control signal

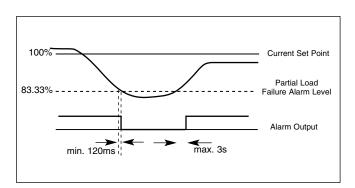
It is possible to TEACH the SSR without the presence of a control signal. In case of no previous stored setpoint (factory default), red and yellow LED will flash accordingly indicating this. The TEACH function will start as soon as the push button is released. The SSR will switch fully ON for 5 seconds (yellow LED ON during these 5 seconds) at the end of which, a load current setpoint is recorded. If TEACH procedure is successful the yellow and red LED will blink together for three times to indicate a successful setpoint measurement. The alarm output across terminals 11, 12 closes indicating a normal situation.

In case of an unsuccessful TEACH, the red & yellow LED will scroll continously indicating that no current setpoint is stored. If load current does not stabilise during the 5 seconds TEACH sequence, it will not be possible to store setpoint. Another attempt to do a TEACH may be done until setpoint is recorded.

TEACH when control signal is present


In this case the TEACH procedure is identical to the TEACH procedure when there is no control signal. During the 5 seconds TEACH the status of the load switching will not be distinguished from unTEACHed state since load was ON before TEACH. Load remains ON as long as control voltage is present.

If SSR is in a LOCKed position (see below) it will not be possible to perform a new TEACH. SSR has to be unLOCKed first.


Mode of Operation (cont.)

Fault Conditions

Partial Load Failure

This occurs when the load current decreases by more than 16.67% as compared to the stored setpoint. During this failure mode the SSR remains ON but alarm output opens to indicate an alarm condition. The red LED is continuously ON during this condition. If current rises back to normal levels the alarm indications switch to the normal state.

Over Temperature

If the SSR derating curve is exceeded during normal operation, an over-temperature condition is detected and the SSR output switches OFF. A visual alarm is indicated by the red blinking LED (3 flashes see details in ALARM LED INDICATIONS) and alarm signal opens. The alarm resets automatically when the overtemperature condition is no longer present.

SSR Short Circuit

This condition is detected in the absence of a control signal and load current (in the region of 800mA and over) still flowing through the SSR. A visual indication is given by the red blinking LED (4 flashes - see details in ALARM LED INDICATIONS) and open alarm across terminals 11, 12. The yellow LED stays ON even though the green LED is at half intensity (i.e. absence of control input voltage) to indicate status of load.

SSR Open Circuit / Heater Loss / Line Loss

SSR output remains OFF even after application of the control voltage on terminal IN 2. A visual indication is given by the red blinking LED (2 flashes - see details in ALARM LED INDICATIONS) and open alarm across terminals 11, 12.

Alarm auto reset

In all alarm conditions described above, the alarm LED and signal output from terminals 11, 12 reset automatically to the normal condition as soon as the alarm condition is no longer present. There is no need for an alarm reset.

Other functions: TEACH LOCK/UNLOCK

The device can be locked to prevent undesirable local TEACH. This can be done by sending a pulse with a duration between 1s and 1.5s to the remote TEACH terminal IN 1. To TEACH a LOCKed unit, a pulse with duration between 1s and 1.5s has to be applied first to terminal IN 1, before performing the TEACH. The initial condition of the unit after every power up (through A1, A2 terminals) is UNLOCKed.

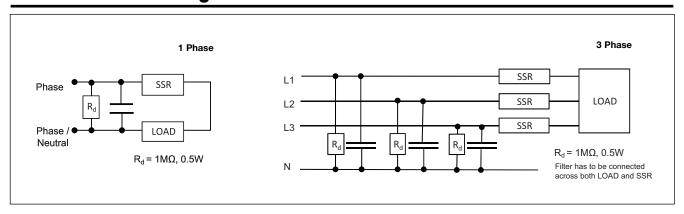
Agency Approvals and Conformances

Conformance & Approvals	EN/IEC 60947-4-3 EN/IEC 62314 UL 508 Recognised (E172877) CSA 22.2 No. 14-13 (204075)
Short Circuit Current Rating	100kA, UL508

Electromagnetic Compatibility

	Immunity	IEC/EN 61000-4-3
C/EN 61000-4-2	,	Performance Criteria 1 Performance Criteria 1
formance Criteria 1		Performance Criteria 1
formance Criteria 1		IEC/EN 61000-4-6
	Immunity	
C/EN 61000-4-4	10V/m, 0.15 - 80 MHz	Performance Criteria 1
formance Criteria 1	Voltage Dips Immunity	IEC/EN 61000-4-11
formance Criteria 1	• •	Performance Criteria 2
E/EN 61000-4-5	•	Performance Criteria 2
formance Criteria 1	•	Performance Criteria 2 Performance Criteria 2
formance Criteria 1		IEC/EN 61000-4-11
formance Criteria 2	0% for 5000ms	Performance Criteria 2
formance Criteria 2		
formance Criteria 2		
60947-4-3	Radio Interference	
	Field Emission (Radiated)	IEC/EN 55011
C/EN60947-4-3	30 - 1000MHz	Class A (industrial)
ss A (no filtering needed)		
C/EN 55011		
ss A (industrial) with fil		
s - see filter information		
for	ormance Criteria 1 EN 61000-4-4 ormance Criteria 1 EN 61000-4-5 ormance Criteria 1 EN 61000-4-5 ormance Criteria 1 ormance Criteria 1 ormance Criteria 2 ormance Criteria 2 ormance Criteria 2 ormance Criteria 2 ormance Criteria 3 EN60947-4-3 EN60947-4-3 S A (no filtering needed) EN 55011 S A (industrial) with fil	In the state of th

Note:


- · Control input lines must be installed together to maintain products' susceptability to Radio Frequency interference.
- Use of AC solid state relays may, according to the application and the load current, cause conducted radio interferences. Use of mains filters may be
 necessary for cases where the user must meet E.M.C requirements. The capacitor values given inside the filtering specification tables should be taken only
 as indications, the filter attenuation will depend on the final application.
- Performance Criteria 1: No degradation of performance or loss of function is allowed when the product is operated as intended.
- Performance Criteria 2: During the test, degradation of performance or partial loss of function is allowed. However when the test is complete the
 product should return operating as intended by itself.
- Performance Criteria 3: Temporary loss of function is allowed, provided the function can be restored by manual operation of the controls.

Filtering - EN / IEC 55011 Class A compliance (for class B compliance contact us)

Part Number	Suggested filter for compliance	Maximum Heater current
RGS1S60D20GKEP	100 nF / 760V / X1	20 AAC
RGS1S60D30GKEP	220 nF / 760V / X1	30 AAC
RGS1S60D31GKEP	220 nF / 760V / X1	30 AAC
RGS1S60D61GGUP	470 nF / 760V / X1	65 AAC
RGS1S60D92GGEP	470 nF / 760V / X1	65 AAC

Filter Connection Diagrams

Environmental Specifications

3°F to +158°F)
)°F to +212°F)

Relative humidity	95% non-condensing @ 40°C	
UL flammability rating (housing)	UL 94 V0	
Installation altitude	0-1000m. Above 1000m derate linearly by 1% of FLC per 100m up to a maximum of 2000m	

Weight

RGS1SGKEP	approx. 163g
RGS1SGGEP	approx. 172g
RGS1SGGUP	approx. 225g

Connection Specifications

POWER CONNECTIONS: 1/L1, 2 Use 75°C copper (Cu) conductors	/T1 RG20, 30, 31GKEP		RG92GGEP	RG61GGUP	
Stripping Length (X)	12mm		11mm		
Connection type	M4 screw with cap	M4 screw with captivated washer		M5 screw with box clamp	
Rigid (Solid & Stranded) UL/ cUL rated data					
	2 x 2.56 mm ² 2 x 14 10 AWG	1 x 2.56 mm ² 1 x 14 10 AWG		25mm² 3 AWG	
Flexible with end sleeve	2 x 1.0 2.5mm ²	1 x 1.04mm²	1 0 5	10	
	2 x 2.54mm ² 2 x 18 14 AWG 2 x 14 12 AWG	1 x 18 12 AWG		16mm² 6 AWG	
Flexible without end sleeve	2 x 1.0 2.5mm ² 2 x 2.5 6mm ² 2 x 18 14 AWG 2 x 14 10 AWG	1 x 1.0 6mm ² 1 x 18 10 AWG	1 x 4 1 x 12	25mm² . 3 AWG	
Torque specifications	Pozidriv 2 UL : 2Nm (17.7lb-i IEC: 1.5 - 2.0Nm (2 Nm (22lb-in.) 3.0Nm (22 - 26.6lb-in)	
Aperture for termination lug	12.3r	nm	N/	/A	

CONTROL CONNECTIONS:

A1(+), A2(-), IN1, IN2, 11 (+), 12(-)

Use $60/75^{\circ}\text{C}$ copper (Cu) conductors

Torque specifications

M3, Pozidriv 1 UL: 0.5Nm (4.4lb-in) IEC: 0.4 - 0.5Nm (3.5 - 4.4lb-in)

Stripping Length (X)			
Rigid (Solid & Stranded)			
UL/ cUL rated data			

2 x 1.0..2.5mm² 1 x 1.0..2.5mm² 2 x 18..14 AWG 1 x 18..14 AWG

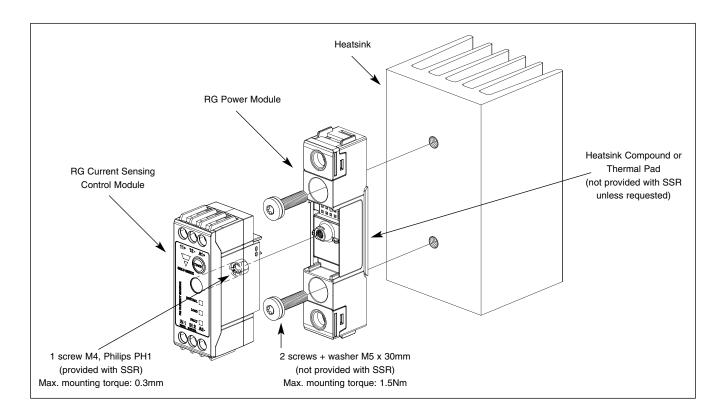
Flexible with end sleeve

2 x 1.0..2.5mm² 1 x 1.0..2.5mm² 2 x 18..14AWG 1 x 18..14AWG

Dimensions

RGS...GKEP ⊕⊕⊕ 90.5 000 RGS...GGEP 90 @@@ RGS...GGUP 90 Housing width tolerance +0.5mm, -0mm...as per DIN43880

All other tolerances: \pm 0.5mm


Mounting Instructions for RGS1S

Thermal stress will reduce the lifetime of the SSR. Therefore it is necessary to select the appropriate heatsinks, taking into account the surrounding temperature, load current and the duty cycle.

A small amount of thermally conductive silicone paste must be applied to the back of the SSR. The RG Power Module should be first mounted on the heatsink with two M5 screws. Gradually tighten each screw (alternating between the two) until both are tightened with a torque of 0.75Nm. Then tighten both screws to their final mounting torque of 1.5Nm.

In case of a thermal pad attached to the back of the SSR, no thermal paste is required. The RG Power Module is gradually tightened (alternating between the 2 screws) to a maximum torque of 1.5Nm.

Once the power module is tightened to heatsink, the control module can be mounted on top of the power module and screwed with a torque of 0.3Nm to ensure good contact between the 2 units.

Short Circuit Protection

Protection Co-ordination, Type 1 vs Type 2:

Type 1 protection implies that after a short circuit, the device under test will no longer be in a functioning state. In type 2 co-ordination the device under test will still be functional after the short circuit. In both cases, however the short circuit has to be interrupted. The fuse between enclosure and supply shall not open. The door or cover of the enclosure shall not be blown open. There shall be no damage to conductors or terminals and the condcutors shall not separate from terminals. There shall be no breakage or cracking of insulating bases to the extent that the integrity of the mounting of live parts is impaired.

Discharge of parts or any risk of fire shall not occur.

The product variants listed in the table hereunder are suitable for use on a circuit capable of delivering not more than 100,000A rms Symmetrical Amperes, 600 Volts maximum when protected by fuses. Tests at 100,000A were performed with Class J fuses, fast acting; please refer to the table below for maximum allowed ampere rating of the fuse. Use fuses only.

Class CC fuses are represented by tests performed on Class J fuses.

Co-ordination type 1 (UL508)

Part No.	Max. fuse size [A]	Class	Current [kA]	Voltage [VAC]
RGS1S60D20GKEP	30	J or CC	100	Max. 600
RGS1S60D30GKEP	30	J or CC	100	Max. 600
RGS1S60D31GKEP	40	J	100	Max. 600
RGS1S60D61GGUP	80	J	100	Max. 600
RGS1S60D92GGEP	80	J	100	Max. 600

Co-ordination type 2 (IEC/EN 60947-4-2/ -4-3)

Part No.	Prospective short		Ferraz Shawmut	Siba	Siba	
	circuit current	Max fuse		Max fuse		
	[kArms]	size [A]	Part number	size [A]	Part number	
RGS1S20	10	40	6.6xx CP URD 22x58 /40	32	50 142 06.32	max. 600
	100	40	6.6xx CP URD 22x58 /40	32	50 142 06.32	max. 600
RGS1S30,31	10	40	6.9xx CP GRC 22 x 58 / 40	32	50 142 06.32	max. 600
	100	40	6.6xx CP URD 22 x 58 / 40	32	50 142 06.32	max. 600
RGS1S61,92	10	100	6.9xx CP GRC 22x58 /100	100	50 194 20.100	max. 600
	10	100	A70QS100-4	100	50 194 20.100	max. 600
	100	100	6.621 CP URGD 27x60 /100	100	50 194 20.100	max. 600
	100	100	A70QS100-4	100	50 194 20.100	max. 600

Type 2 Protection with Miniature Circuit Breakers (M. C. B.s)

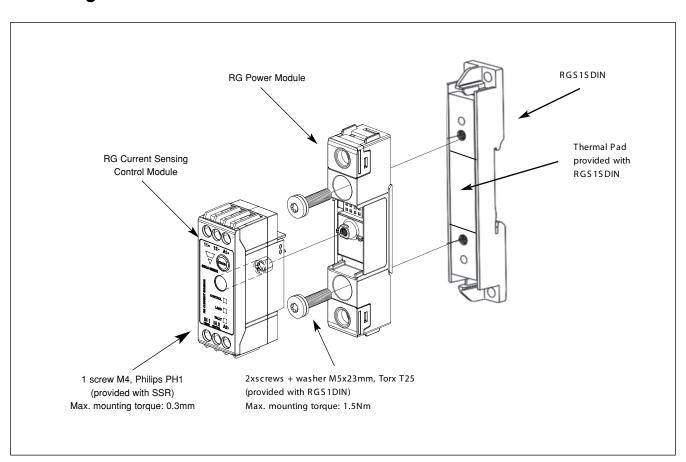
Solid State Relay type	ABB Model no. for Z - type M. C. B. (rated current)	ABB Model no. for B - type M. C. B. (rated current)	Wire cross sectional area [mm²]	Minimum length of Cu wire conductor [m] ⁹	
RGS1S20	1-pole S201 - Z4 (4A) S201 - Z6 UC (6A)	S201 - B2 (2A) S201 - B2 (2A)	1.0 1.0 1.5	21.0 21.0 31.5	
RGS1S30	1-pole S201 - Z10 (10A)	S201-B4 (4A)	1.0 1.5 2.5	7.6 11.4 19.0	
	S201 - Z16 (16A)	S201-B6 (6A)	1.0 1.5 2.5 4.0	5.2 7.8 13.0 20.8	
	S201 - Z20 (20A)	S201-B10 (10A)	1.5 2.5	12.6 21.0	
	S201 - Z25 (25A)	S201-B13 (13A)	2.5 4.0	25.0 40.0	
	2-pole S202 - Z25 (25A)	S202-B13 (13A)	2.5 4.0	19.0 30.4	
RGS1S31	1-pole S201 - Z20 (20A)	S201-B10 (10A)	1.5 2.5 4.0	4.2 7.0 11.2	
	S201 - Z32 (32A)	S201-B16 (16A)	2.5 4.0 6.0	13.0 20.8 31.2	
	2-pole S202 - Z20 (20A)	S202-B10 (10A)	1.5 2.5 4.0	1.8 3.0 4.8	
	S202 - Z32 (32A)	S202-B16 (16A)	2.5 4.0 6.0 10.0	5.0 8.0 12.0 20.0	
	S202 - Z50 (50A)	S202-B25 (25A)	4.0 6.0 10.0	14.8 22.2 37.0	
RGS1S61 RGS1S92	1-pole S201 - Z32 (32A)	S201-B16 (16A)	2.5 4.0 6.0	3.0 4.8 7.2	
	S201 - Z50 (50A)	S201-B25 (25A)	4.0 6.0 10.0 16.0	4.8 7.2 12.0 19.2	
	S201 - Z63 (63A)	S201-B32 (32A)	6.0 10.0 16.0	7.2 12.0 19.2	

^{9.} Between MCB and Load (including return path which goes back to the mains).

Note: A prospective current of 6kA and a 230/400V power supply system is assumed for the above suggested specifications. For cables with different cross section than those mentioned above please consult Carlo Gavazzi's Technical Support Group.

Accessories

RG DIN Clip


Ordering Key

DIN clip accessory

RGS1DIN

This DIN Clip accessory can be mounted to any RGS model and will enable the RGS to be DIN rail mount. Current rating @ 40°C is 10AAC. Refer to 'Current Derating' section for Space Derating.

Mounting Instructions for RGS1DIN to RGS

The RG Power Module is gradually tightened (alternating between the 2 screws) to a maximum torque of 1.5Nm.

Once the power module is tightened to the RGS1DIN, the control module can be mounted on top of the power module and screwed with a torque of 0.3Nm to ensure good contact between the 2 units.