

#### N-Channel Enhancement Mode Power MOSFET

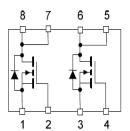
## **Description**

The RMD50N40DFV uses advanced trench technology and design to provide excellent  $R_{DS(ON)}$  with low gate charge. It can be used in a wide variety of applications.

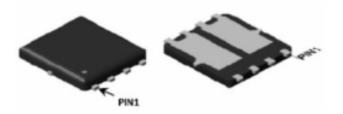
#### **General Feature**

- $V_{DS} = 40V, I_D = 65A$   $R_{DS(ON)} < 7.5m\Omega @ V_{GS} = 10V$  (Typ:6.8mΩ)  $R_{DS(ON)} < 10m\Omega @ V_{GS} = 4.5V$  (Typ:8.5mΩ)
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized Avalanche voltage and current
- Good stability and uniformity with high E<sub>AS</sub>
- Excellent package for good heat dissipation

### **Application**


- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply
- Halogen-free
- P/N suffix V means AEC-Q101 qualified, e.g:RMD50N40DFV

100% UIS TESTED! 100% ∆Vds TESTED!


# Package Marking and Ordering Information

| Device Marking | Device      | Device Package | Reel Size | Tape width | Quantity |
|----------------|-------------|----------------|-----------|------------|----------|
| D50N40         | RMD50N40DFV | DFN5X6-8L      | -         | -          | -        |

| Absolute Maximum Ratings (T <sub>C</sub> =25℃unless otherwise noted) |                  |           |            |  |
|----------------------------------------------------------------------|------------------|-----------|------------|--|
| Parameter                                                            | Symbol           | Value     | Unit       |  |
| Drain-Source Voltage                                                 | V <sub>DS</sub>  | 40        | V          |  |
| Gate-Source Voltage                                                  | V <sub>GS</sub>  | ±20       | V          |  |
| Continuous Drain Current (T <sub>a</sub> =25℃)                       | I <sub>D</sub>   | 65        | Α          |  |
| Continuous Drain Current (T <sub>a</sub> =100℃)                      | I <sub>D</sub>   | 41        | Α          |  |
| Pulsed Drain Currenr (1)                                             | Ірм              | 260       | Α          |  |
| Singel Pulsed Avalanche Energy (2)                                   | Eas              | 96        | mJ         |  |
| Power Dissipation                                                    | P <sub>D</sub>   | 48        | W          |  |
| Thermal Resistance from Junction to Case (4)                         | Rejc             | 2.6       | °C/W       |  |
| Thermal Resistance from Junction to Ambient (4)                      | R <sub>θJA</sub> | 62        | °C/W       |  |
| Junction Temperature                                                 | TJ               | 150       | $^{\circ}$ |  |
| Storage Temperature                                                  | T <sub>STG</sub> | -55~ +150 | $^{\circ}$ |  |



#### Schematic diagram



Top View Bottom View

## Electrical Characteristics (T<sub>C</sub>=25°C unless otherwise noted)

| Parameter                                 | Symbol                                                | Test Condition                                           | Min | Туре | Max  | Unit |  |
|-------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|-----|------|------|------|--|
| Static Characteristics                    |                                                       |                                                          |     |      |      |      |  |
| Drain-source breakdown voltage            | V <sub>(BR)DSS</sub>                                  | V <sub>GS</sub> = 0V, I <sub>D</sub> =250μA              | 40  | -    | -    | V    |  |
| Zero gate voltage drain current           | I <sub>DSS</sub>                                      | V <sub>DS</sub> =40V, V <sub>GS</sub> = 0V               | -   | -    | 1    | μA   |  |
| Gate-body leakage current                 | lgss                                                  | V <sub>GS</sub> =±20V,V <sub>DS</sub> = 0V               | -   | -    | ±100 | nA   |  |
| Gate threshold voltage <sup>(3)</sup>     | V <sub>GS(th)</sub>                                   | V <sub>DS</sub> =V <sub>GS</sub> , I <sub>D</sub> =250μA | 1   | 1.5  | 2.5  | V    |  |
| (2)                                       |                                                       | V <sub>GS</sub> =10V, I <sub>D</sub> =30A                | -   | 6.8  | 7.5  | 0    |  |
| Drain-source on-resistance <sup>(3)</sup> | R <sub>DS(on)</sub>                                   | V <sub>GS</sub> =4.5V, I <sub>D</sub> =20A               | -   | 8.5  | 10   | mΩ   |  |
| Dynamic characteristics                   |                                                       |                                                          |     |      |      |      |  |
| Input Capacitance                         | Ciss                                                  |                                                          | -   | 2956 | -    |      |  |
| Output Capacitance                        | Coss                                                  | V <sub>DS</sub> =20V, V <sub>GS</sub> =0V, f =1MHz       | -   | 225  | -    | pF   |  |
| Reverse Transfer Capacitance              | Crss                                                  |                                                          | -   | 197  | -    |      |  |
| Switching characteristics                 |                                                       |                                                          |     |      |      |      |  |
| Turn-on delay time                        | t <sub>d(on)</sub>                                    |                                                          | -   | 8    | -    |      |  |
| Turn-on rise time                         | tr                                                    | $V_{DD}$ =20V, $I_D$ =30A, $R_L$ =1 $\Omega$             | -   | 16   | -    |      |  |
| Turn-off delay time                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 21                                                       | -   | ns   |      |      |  |
| Turn-off fall time                        | t <sub>f</sub>                                        |                                                          | -   | 10   | -    |      |  |
| Total Gate Charge                         | Qg                                                    | \/D0_00\/_ID_00A                                         | -   | 46   | -    |      |  |
| Gate-Source Charge                        | Qgs                                                   |                                                          | -   | 7.2  | -    | nC   |  |
| Gate-Drain Charge                         | Qgd                                                   | - VGS=10V                                                | -   | 8.8  | -    |      |  |
| Source-Drain Diode characteristics        | •                                                     | •                                                        | •   | •    |      |      |  |
| Diode Forward voltage <sup>(3)</sup>      | V <sub>DS</sub>                                       | V <sub>GS</sub> =0V, I <sub>S</sub> =1A                  | -   | -    | 1.2  | V    |  |
| Diode Forward current <sup>(4)</sup>      | Is                                                    |                                                          | -   | -    | 65   | Α    |  |

#### Notes:

- 1. Repetitive Rating: pulse width limited by maximum junction temperature
- 2. EAS Condition:TJ=25°C,VDD=20V,RG=25  $\Omega$  ,L=0.5mH
- 3. Pulse Test: pulse width≤300µs, duty cycle≤2%
- 4. Surface Mounted on FR4 Board,t≤10 sec



## **Test Circuit**

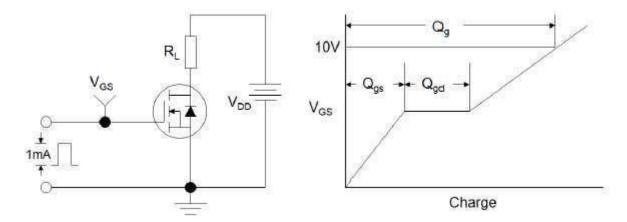



Figure1:Gate Charge Test Circuit & Waveform

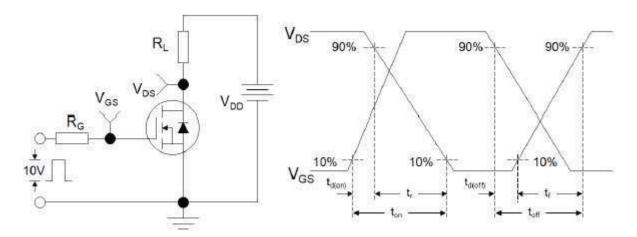



Figure 2: Resistive Switching Test Circuit & Waveforms

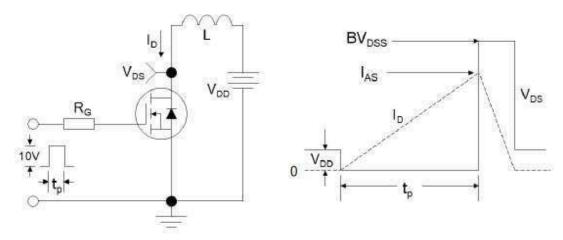



Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms



## RATING AND CHARACTERISTICS CURVES (RMD50N40DFV)

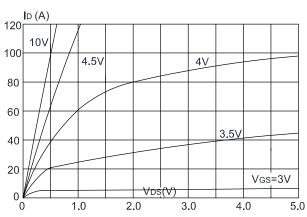



Figure1: Output Characteristics

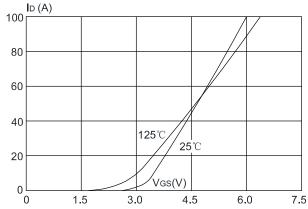



Figure 2: Typical Transfer Characteristics



Figure 3:On-resistance vs. Drain Current

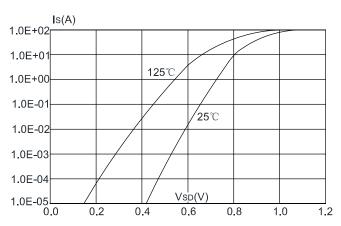



Figure 4: Body Diode Characteristics

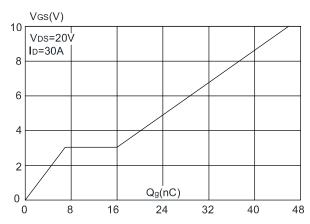
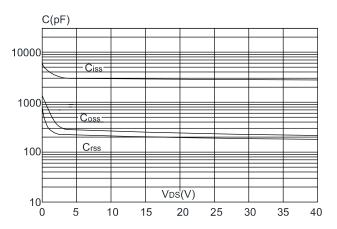
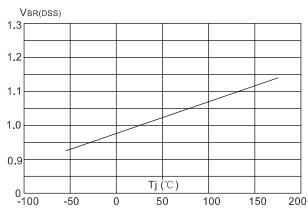
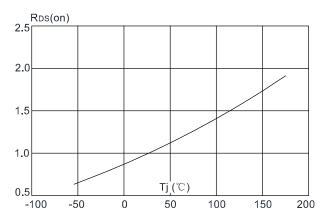



Figure 5: Gate Charge Characteristics



Figure 6: Capacitance Characteristics



## RATING AND CHARACTERISTICS CURVES (RMD50N40DFV)



**Figure 7:** Normalized Breakdown Voltage vs. Junction Temperature



**Figure 8:** Normalized on Resistance vs. Junction Temperature

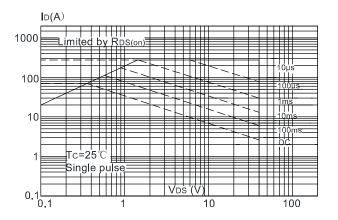
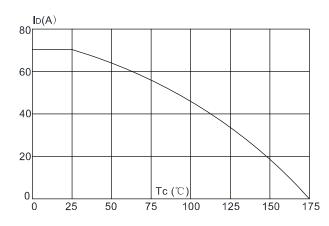
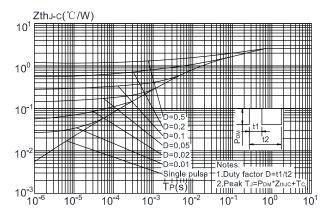
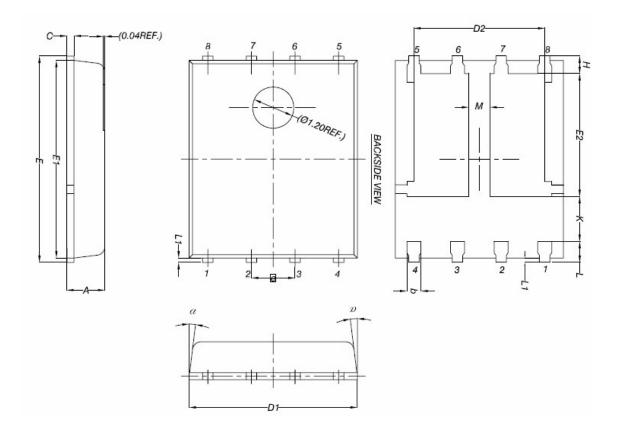





Figure 9: Maximum Safe Operating Area




**Figure 10:** Maximum Continuous Drain Current vs Case Temperature



**Figure.11:** Maximum Effective Transient Thermal Impedance, Junction-to-Case



## **DFN5X6-8L Package Information**



|      | MILLIMETERS |      |      |  |
|------|-------------|------|------|--|
| DIM. | MIN.        | NOM. | MAX  |  |
| Α    | 0.90        | 1.00 | 1.10 |  |
| b    | 0.33        | 0.41 | 0.51 |  |
| С    | 0.20        | 0.25 | 0.30 |  |
| D1   | 4.80        | 4.90 | 5.00 |  |
| D2   | 3.61        | 3.81 | 3.96 |  |
| Ε    | 5.90        | 6.00 | 6.10 |  |
| E1   | 5.70        | 5.75 | 5.80 |  |
| E2   | 3.38        | 3.58 | 3.78 |  |
| е    | 1.27 BSC    |      |      |  |
| Н    | 0.41        | 0.51 | 0.61 |  |
| K    | 1.10        | 0.70 | -    |  |
| L    | 0.51        | 0.61 | 0.71 |  |
| L1   | 0.06        | 0.13 | 0.20 |  |
| М    | 0.50        | -    | -    |  |
| α    | 0°          | -    | 12°  |  |

