

RMP6N60LD RMP6N60IP RMP6N60TI RMP6N60T2

N-CHANNEL ENHANCEMENT MODE MOSFET

General Description

RMP6N60 is an N-channel enhancement mode MOSFET, which uses the self-aligned planar process and improved terminal technology, reducing the conduction loss, enhancing the avalanche energy.

MAIN CHARACTERISTICS

$V_{ m DSS}$	600	V
I_D	6.0	A
R _{DS(ON)}	1.5	Ω
Crss	11	pF

FEATURES

- Low Crss
- Low gate charge
- Fast switching
- Improved ESD capability
- Improved dv/dt capability
- 100% avalanche energy test

APPLICATIONS

- High efficiency swith mode power supplies
- Electronic lamp ballasts
- UPS

Package Marking And Ordering Information

Device	Device Package	Marking
RMP6N60IP	TO-251	6N60
RMP6N60LD	TO-252	6N60
RMP6N60TI	TO-220F	6N60
RMP6N60T2	TO-220	6N60

ABSOLUTE MAXIMUM RATINGS (Te=25°C)

Parameter	Symbol		Value	Unit	
Drain-Source Voltage		V _{DSS}		V	
Continues Drain Current	I_D	Tc=25°C Tc=100°C	6* 2.8*	A	
Plused Drain Current (note 1)		I_{DM}	24	A	
Gate-to-Source Voltage		V_{GS}	±30	V	
Single Pulsed Avalanche Energy (note 2)	E _{AS}		E _{AS} 218		mJ
Avalanche Current (note 1)	I_{AR}		4.0	A	
Repetitive Avalanche Energy (note 1)	E _{AR}		10	mJ	
Peak Diode Recovery (note 3)		dv/dt	4.5	V/ns	
Power Dissipation	P _D Tc=25℃	P _D Tc=25°C TO-220 TO-220F		W	
Power Dissipation Derating Factor	P _{D(DF)} Above 25 °C TO-220 TO-220F		0.39 0.8 0.26	W/°C	
Operating and Storage Temperature Range	T _J , T _{STG}		150, -55~+150	$^{\circ}\! \mathbb{C}$	
Maximum Temperature for Soldering	T_{L}		300	$^{\circ}\! \mathbb{C}$	

THERMAL CHARACTERISTICS

Parameter	Symbol		Max	Unit
		TO-251/TO-252	2.5	
Thermal Resistance, Junction to Case	Rth(j-c)	TO-220	1.25	°C/W
		TO-220F	3.79	
		TO-251/TO-252	83	
Thermal Resistance, Junction to Ambient	Rth(j-A)	TO-220	62.5	°C/W
		TO-220F	62.5	

^{*} Drain current limited by maximum junction temperature

ELECTRICAL CHARACTERISTICS

Off-Characteristics						
Parameter	Symbol	Tests Conditions	Min	Туре	Max	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	$I_D=250\mu A, V_{GS}=0V$	600	-	-	V
Breakdown Voltage Temperature Coefficient	$\triangle BV_{DSS}/\triangle$ T_J	I_D =250 μ A, referenced to 25 $^{\circ}$ C	-	0.7	-	V/°C
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =600V, V_{GS} =0V, T_{C} =25°C	-	-	1	μА
_		V _{DS} =480V, T _C =125°C	-	-	10	μΛ
Gate-body leakage current, forward	I _{GSSF}	V _{DS} =0V, V _{GS} =30V	-	-	100	nA
Gate-body leakage current, reverse	I_{GSSR}	$V_{DS}=0V, V_{GS}=-30V$	-	-	-100	nA

On-Characteristics						
Parameter	Symbol	Tests Conditions	Min	Туре	Max	Unit
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.0	-	4.0	V
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =3.0A	-	1.5	1.65	Ω
Forward Transconductance	$g_{ m fs}$	V _{DS} = 40V, I _D =3.0A (note4)	-	5	-	S

Dynamic Characteristics						
Parameter	Symbol	Tests Conditions	Min	Туре	Max	Unit
Input capacitance	C _{iss}		-	800	1280	pF
Output capacitance	Coss	V _{DS} =25V, V _{GS} =0V, f=1.0MHZ	-	75	145	pF
Reverse transfer capacitance	Crss		-	11	18	pF

Switching Characteristics						
Parameter	Symbol	Tests Conditions	Min	Туре	Max	Unit
Turn-On delay time	t _d (on)	V_{DD} =300V, I_{D} =6A, R_{G} =25 Ω (note 4, 5)	-	25	60	ns
Turn-On rise time	t _r		ı	58	125	ns
Turn-Off delay time	t _d (off)		-	75	160	ns
Tum-Off Fall time	t_{f}		-	58	125	ns
Total Gate Charge	Qg		-	30	35	nC
Gate-Source charge	Qgs	V _{DS} =480V, I _D =6A, V _{GS} =10V (note 4, 5)	-	3.8	-	nC
Gate-Drain charge	Qgd	, , , ,	-	14	-	nC

Drain-Source Diode Characteristics and Maximum Ratings							
Parameter	Symbol	Tests Conditions	Min	Туре	Max	Unit	
Maximum Continuous Drain-Source Diode Forward Current		Is	-	-	6	A	
Maximum Pulsed Drain-Source Diode Forward Current	I_{SM}		-	-	24	A	
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _S =6A	-	-	1.4	V	
Reverse recovery time	t _{rr}	t _т V _{GS} =0V, I _S =6А		340	-	ns	
Reverse recovery charge	Qrr	dI _F /dt=100A/μs (note 4)	-	2.7	-	μС	

Notes:

- 1: Pulse width limited by maximum junction temperature
- 2: I=25mH, I_AS=4A, V_DD=50V, R_G=25 Ω , Starting T_J=25 $^{\circ}$ C
- 3: I_{SD} \leqslant 6A, di/dt \leqslant 300A/ μ s, V_{DD} \leqslant BV $_{DSS}$, Starting T_{J} =25 $^{\circ}$ C
- 4: Pulse Test: Pulse Width ≤300 μ s, Duty Cycle≤2%
- 5: Essentially independent of operating temperature

RATING AND CHARACTERISTICS CURVES (RMP6N60LD(IP)(TI)(T2))

10 *Notes: 1. V_{DS} = 20V 2. 250µs Pulse Test ID, Drain Current[A] 150°C 25°C -55°C 0.1 6 4 8 V_{GS}, Gate-Source Voltage[V]

Fig. 1 On-State Characteristics

Fig. 3 Breakdown Voltage Variation vs Temperature

Fig. 4 On-Resistance Variation vs Temperature

V_{DS} = 120V

 $V_{DS} = 300V$

 $V_{DS} = 480V$

10

8

Fig. 5 Capacitance Characteristics

Fig. 6 Gate Charge Characteristics

RATING AND CHARACTERISTICS CURVES (RMP6N60LD(IP)(TI)(T2))

Fig. 7 Maximum Safe Operating Area

Fig. 8 Maximum Drain Current vs Case Temperature

Fig. 9 Transient Thermal Response Curve (TO-251/TO-252)

Fig. 10 Transient Thermal Response Curve(TO-220/TO-262)

Fig. 11 Transient Thermal Response Curve(TO-220F)

TEST CIRCUITS AND WAVEFORMS

Fig.12 Resistive Switching Test Circuit & Waveforms

Fig.13 Gate Charge Test Circuit & Waveform

Fig.14 Unclamped Inductive Switching Test Circuit & Waveforms

PACKAGE MECHANICAL DATA

TO-251

SYMBOL	MILLIMETERS		SYMBOL	MILLIMETERS		
21MDOF	Min	Max	SIMDOL	Min	Max	
A	2.0	2.6	E	8.0	9.6	
В	0.9	1.3	L	14.25	17.25	
C	0.4	0.6	b1	0.69	0.92	
D	5.8	6.8	c1	0.4	0.6	
L1	5.7	6.2	D1	4.8	5.8	
A1	1.0	1.3	ь	0.64	0.89	
е	2. 28	TYP				

TO-251

COMMON DIMENSIONS

CVMDOL	MM				
SYMBOL	MIN	NOM	MAX		
A	2.20	2.30	2.38		
A2	0.97	1.07	1.17		
b	0.72	0, 78	0.85		
b1	0.71	0.76	0.81		
b3	5. 23	5. 33	5. 46		
С	0.47	0.53	0.58		
c1	0.46	0.51	0.56		
D	6.00	6.10	6. 20		
D1		5. 30REF			
E	6.50	6.60	6.70		
E1	4.70	4.83	4. 92		
е		2. 286BSC			
Н	16.10	16.40	16.60		
L1	9. 20	9.40	9.60		
L3	0.90	1.02	1. 25		
L5	1.70	1.80	1.90		
θ 1	5°	7°	9°		
θ2	5°	7°	9°		

TO-252

MILLI		METERS	GYYYPD A T	MILLIMETERS		
SYMBOL	Min	Max	SYMBOL	Min	Max	
A	2.1	2.4	е	2. 29	BSC	
A1	550	0.13	Н	9.6	11.1	
b	0.6	0.9	L3	0.8	1.4	
b2	0.8	1.2	L4	0.6	1.1	
b3	5.2	5.5	D	5.8	6.3	
С	0.4	0.6	E	6.3	6.7	

TO-220F

SYMBOL	MILLIMETERS		SYMBOL	MILLIMETERS	
	Min	Max	21WDOF	Min	Max
A	9.96	10.36	K	2.34	2.74
J	4.5	4.9	0	0.4	0.6
M	28	29. 6	G	0.7	0.9
E	15. 4	15. 6	D	2.9	3.3
L	15.5	16.1	С	3. 25	3.5
N	2.2	2.9	I	2.54 TYP	
F		1.4			

SYMBOL	MILLIMETERS		cymor	MILLIMETERS	
	Min	Max	SYMBOL	Min	Max
A	4.2	4.8	С	0.4	0.6
D1	8.9	9.4	b	0.7	0.9
E	9.7	10.3	A1	1.2	1.4
H1	6.3	6.9	Q	2.7	2. 9
b2	1.27	1.43	A2	2.3	2.5
ØP.	3.6	3.9	е	2.54 TYP	
D	15.5	15.7			

