

120mΩ, 1.3A Power Switch with Programmable Current Limit

General Description

The RT9728C is a cost effective, low voltage, single P-MOSFET high-side power switch IC for USB application with a programmable current limit feature. Low switch-on resistance (typ.120m Ω) and low supply current (typ. 120µA) are realized in this IC. The RT9728C offers a programmable current limit threshold between 75mA and 1.3A (typ.) via an external resistor. The $\pm 10\%$ current limit accuracy can be realized for all current limit settings. In addition, a flag output is available to indicate fault conditions to the local USB controller. Furthermore, the chip also integrates an embedded delay function to prevent mis-operation from happening due to high inrush current. The RT9728C is an ideal solution for USB power supply and can support flexible applications since it is functional for various current limit requirements. It is available in SOT-23-6 and WDFN-6L 2x2 packages.

Ordering Information

RT9728C Package Type
E: SOT-23-6
QW: WDFN-6L 2x2
Lead Plating System

G: Green (Halogen Free and Pb Free)

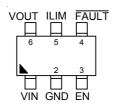
-H: Chip Enable High

Note:

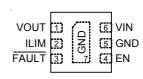
Richtek products are:

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.

Features


- ±10% Current Limit Accuracy @ 1.3A
- Adjustable Current Limit: 75mA to 1.3A (typ.)
- Meet USB Current Limiting Requirements
- Operating Voltage Range: 2.5V to 5.5V
- Reverse Input-Output Voltage Protection
- Built-in Soft-Start
- 120mΩ High-Side MOSFET
- 120μA Supply Current
- RoHS Compliant and Halogen Free

Applications


- USB Bus/Self Powered Hubs
- USB Peripheral Ports
- ACPI Power Distribution
- Battery Power Equipment
- 3G/3.5G Data Card, Set-Top Boxes

Pin Configuration

(TOP VIEW)

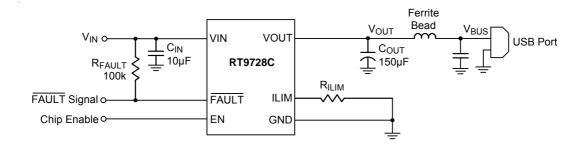
SOT-23-6

WDFN-6L 2x2

Marking Information

RT9728CHGE

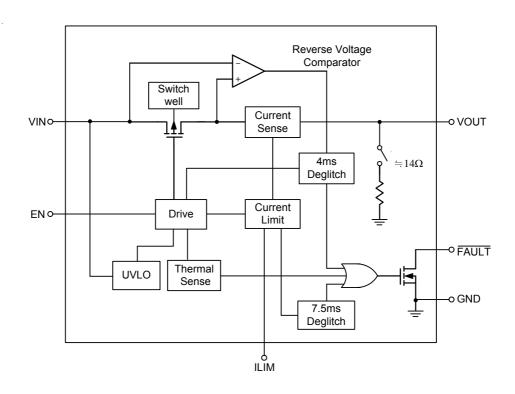
42=DNN


42= : Product Code DNN: Date Code

RT9728CHGQW

3W: Product Code W: Date Code

Typical Application Circuit



Functional Pin Description

Pin No. SOT-23-6 WDFN-6L 2x2		Pin Name	Din Franction			
		rin Name	Pin Function			
1	6	VIN	Input voltage.			
2	5, 7 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.			
3	4	EN	Chip enable.			
4	3	FAULT	Active-low open-drain output. Asserted during over-current, over-temperature, or reverse-voltage conditions.			
5	2	ILIM	Current limit set pin. External resistor is used to set current limit threshold, and $19.1 \text{k}\Omega \leq R_{\text{ILIM}} \leq 232 \text{k}\Omega$ is recommend.			
6	1	VOUT	Power switch output.			

Functional Block Diagram

Operation

The RT9728C are current-limited, power-distribution switches using P-channel MOSFETs for applications where short circuits or heavy capacitive loads will be encountered. These devices allow the user to program the current-limit threshold between 75mA and 1.3A (typ) via an external resistor. Additional device shutdown features include over temperature protection and reverse-voltage protection.

The driver controls the gate voltage of the power switch. The driver incorporates circuitry that controls the rise and fall times of the output voltage to limit large current and voltage surges and provides built-in soft-start functionality. The RT9728C enters the constant-current mode when the load exceeds the current-limit threshold.

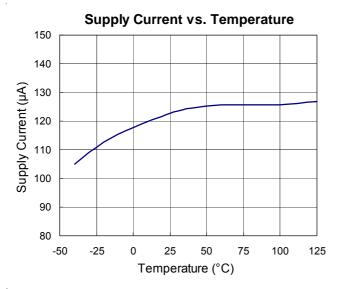
Absolute Maximum Ratings (Note 1)

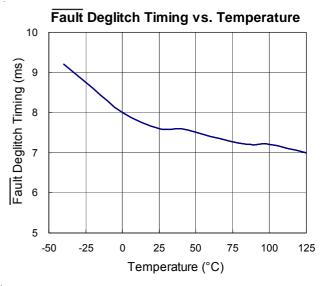
Supply Input Voltage	0.3V to 6V
• Other Pin Voltage	0.3V to 6V
 Power Dissipation, P_D @ T_A = 25°C 	
SOT-23-6	0.4W
WDFN-6L 2x2	0.606W
Package Thermal Resistance (Note 2)	
SOT-23-6, θ_{JA}	250°C/W
WDFN-6L 2x2, θ_{JA}	165°C/W
WDFN-6L 2x2, θ_{JC}	7°C/W
• Lead Temperature (Soldering, 10 sec.)	260°C
• Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
Recommended Operating Conditions (Note 4)	
•	
Supply Input Voltage, VIN	2.5V to 5.5V

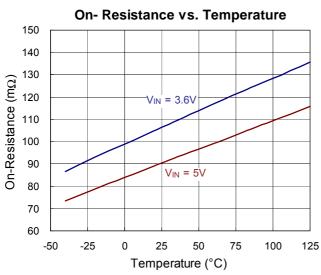
Electrical Characteristics

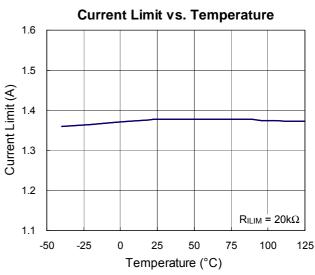
(V_{IN} = 3.6V, 19.1k Ω \leq R_{ILIM} \leq 232k Ω , T_A = 25°C, unless otherwise specified)

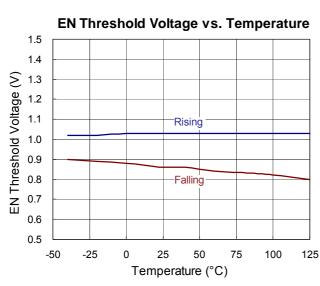
Parameter		Symbol	Test Conditions		Min	Тур	Max	Unit
	Logic-High	ViH			1.1			V
EN Input Voltage	Logic- Low	VIL				0.66		
Current Limit Threshold Resistor Range		RILIM	(nominal 1%) from ILIM to GND		19.1		232	kΩ
Under Voltage Lock	Under Voltage Lockout		V _{IN} rising			2.3	1	٧
Threshold		Vuvlo	V _{IN} falling			2.1	-	
Shutdown Current		Ishdn	V _{IN} = 5.5V, no load on V _{OUT} , V _{EN} = 0V			1	3	μΑ
Quiescent Current		IQ	V _{IN} = 5.5V, no load on V _{OUT}	R _{ILIM} = 20kΩ		120	170	μА
				R _{ILIM} = 210kΩ		120	170	
Reverse Leakage Current		I _{REV}	V _{OUT} = 5.5V, V _{IN} = 0V			1	3	μΑ
Static Drain-Source On-State Resistance		R _{DS(ON)}	I _{SW} = 0.2A			120		mΩ
Current Limit			$R_{\rm ILIM}$ = 20k Ω		1190	1295	1400	
			$R_{\rm ILIM}$ = 49.9k Ω		468	520	572	m A
		ILIM	$R_{\rm ILIM} = 210 k\Omega$		110	130	150	mA
			ILIM shorted to VIN		50	75	100	

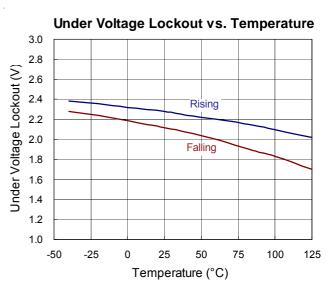


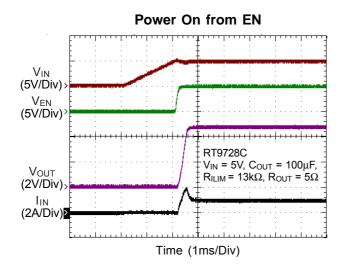

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Reverse Voltage Comparator Trip Point (Vout – VIN)				135	-	mV
FAULT Output Low Voltage	VoL	IFAULT = 1mA		180		mV
FAULT Off State Leakage		VFAULT = 5.5V		1	-	μΑ
FAULT Deglitch		FAULT assertion or de-assertion due to over current condition	5	7.5	10	
		FAULT assertion or de-assertion due to reverse voltage condition	2	4	6	ms
FAULT Flag Assertion Offset	V _{FAULT_OFS}	Offset between fault flag assertion level versus ILIM trigger level (Note 5)	-100		0	mA
Thermal Shutdown Temperature	T _{SD}	(Note 5)		160		°C

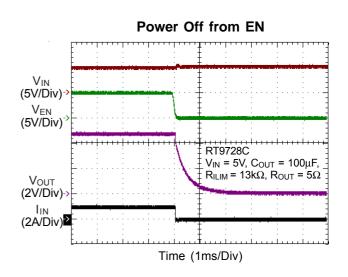

- **Note 1.** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured at T_A = 25°C on a low effective thermal conductivity single-layer test board per JEDEC 51-3. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. Guarantee by design.

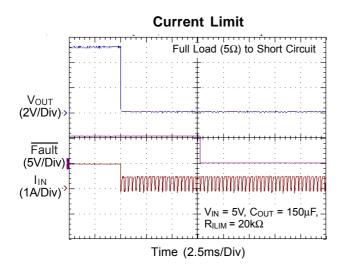


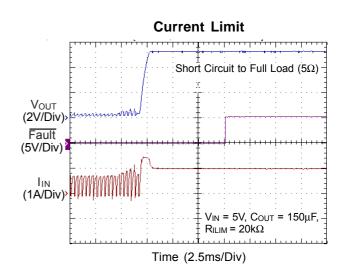

Typical Operating Characteristics

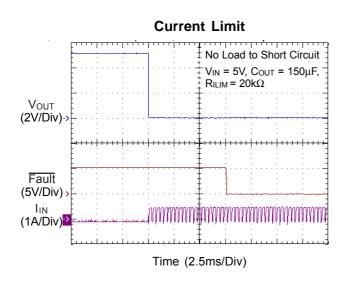


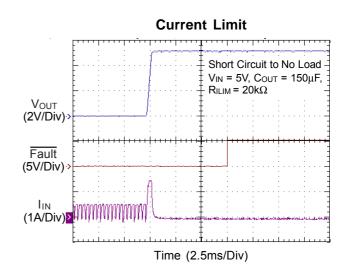


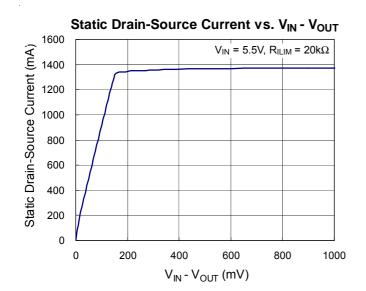


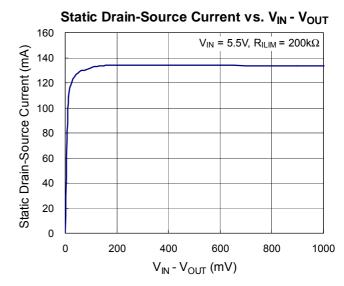



Copyright ©2020 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.








Copyright ©2020 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS9728C-04 November 2020

www.richtek.com

Applications Information

The RT9728C is a single P-MOSFET high-side power switch with active-high/low enable input, optimized for self-powered and bus-powered Universal Serial Bus (USB) applications. The switch's low R_{DS(ON)} meets USB voltage drop requirements and a flag output is available to indicate fault conditions to the local USB controller.

Current Limiting and Short Circuit Protection

When a heavy load or short circuit situation occurs while the switch is enabled, large transient current may flow through the device. The RT9728C includes a current-limit circuitry to prevent these large currents from damaging the MOSFET switch and the hub downstream ports. The RT9728C provides an adjustable current limit threshold between 120mA and 1.3A (typ) via an external resistor, $R_{\rm ILIM}$, between 19.1k Ω and 232k Ω . However, if the ILIM pin is connected to $V_{\rm IN}$, the current limit threshold will be 75mA (typ). The maximum –100mA fault flag assertion offset needs cautions, especially for very low ILIM applications. Taking the application of ILIM = 250mA as an example, the minimum fault flag assertion level might

be 150mA (40% error versus its target). For short ILIM to VIN condition (75mA) the fault flag may go low. Once the current limit threshold is exceeded, the device enters constant-current mode until either thermal shutdown occurs or the fault is removed. The table1 shows a recommended current limit value vs. $R_{\rm ILIM}$ resistor.

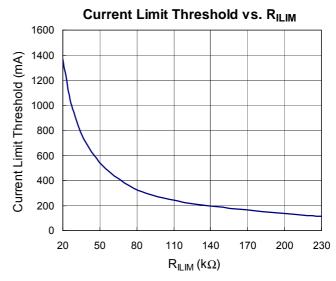


Figure 1. Current Limit Threshold vs RILIM

Table 1. Recommended RILIM Resistor Selections

Desired Nominal	Ideal Resistor	Closet 1%	Actual Limits (Include R Tolerance)			
Current Limit (mA)	(k Ω)	Resistor (k Ω)	IOS Min (mA)	IOS Nom (mA)	IOS Max (mA)	
75	Short ILIM to VIN		50.0	75.0	100.0	
120	226.1	226.0	101.3	120.0	142.1	
200	134.0	133.0	173.7	201.5	233.9	
300	88.5	88.7	262.1	299.4	342.3	
400	65.9	66.5	351.1	396.7	448.7	
500	52.5	52.3	443.9	501.6	562.4	
600	43.5	43.2	535.1	604.6	674.1	
700	37.2	37.4	616.0	696.0	776.0	
800	32.4	32.4	708.7	8.008	892.9	
900	28.7	28.7	797.8	901.5	1005.2	
1000	25.8	26.1	875.4	989.1	1102.8	
1100	23.4	23.2	982.1	1109.7	1237.3	
1200	21.4	21.5	1057.9	1195.4	1332.9	
1300	19.7	19.6	1178.0	1308.5	1439.0	

Copyright ©2020 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS9728C-04 November 2020 www.richtek.com

Fault Flag

The RT9728C provides a FAULT signal pin which is an Nchannel open drain MOSFET output. This open drain output goes low when current exceeds current limit threshold, $V_{OUT} - V_{IN}$ exceeds reverse voltage trip level, or the die temperature exceeds 160°C approximately. The FAULT output is capable of sinking a 1mA load to typically 180mV above ground. The FAULT pin requires a pull-up resistor; this resistor should be large in value to reduce energy drain. A $100k\Omega$ pull-up resistor works well for most applications. In case of an over-current condition, FAULT will be asserted only after the flag response delay time, tD, has elapsed. This ensures that FAULT is asserted upon valid over-current conditions and that erroneous error reporting is eliminated. For example, false over-current conditions may occur during hot-plug events when extremely large capacitive loads are connected, which induces a high transient inrush current that exceeds the current limit threshold. The FAULT response delay time, t_D, is typically 7.5ms.

Supply Filter/Bypass Capacitor

A 10µF low ESR ceramic capacitor connected from V_{IN} to GND and located close to the device is strongly recommended to prevent input voltage drooping during hotplug events. However, higher capacitor values may be used to further reduce the voltage droop on the input. Without this bypass capacitor, an output short may cause sufficient ringing on the input (from source lead inductance) to destroy the internal control circuitry. Note that the input transient voltage must never exceed 6V as stated in the Absolute Maximum Ratings.

Output Filter Capacitor

Standard bypass methods should be used to minimize inductance and resistance between the bypass capacitor and the downstream connector to reduce EMI and decouple voltage droop caused by hot-insertion transients in downstream cables. Ferrite beads in series with VBUS, the ground line and the bypass capacitors at the power connector pins are recommended for EMI and ESD protection. The bypass capacitor itself should have a low dissipation factor to allow decoupling at higher frequencies.

For commercial applications where the ambient

temperature is 0°C to 70°C (such as a PC or USB hub), RT9728C supports an output capacitor range of up to 120μF. For industrial applications with an ambient temperature of -40°C to 125°C, please limit the output capacitance to less than 50µF to ensure normal startup.

Chip Enable Input

The RT9728C will be disabled when the EN pin is in a logic-low condition. During this condition, the internal circuitry and MOSFET are turned off, reducing the supply current to 1µA typical. The maximum guaranteed voltage for a logic-low at the EN pin is 0.66V. A minimum guaranteed voltage of 1.1V at the EN pin will turn on the RT9728C. Floating the input may cause unpredictable operation and EN should not be allowed to go negative with respect to GND. The EN signal must be asserted after input voltage ready or higher than UVLO threshold to satisfy the power sequence.

Under-Voltage Lockout

Under-voltage lockout (UVLO) prevents the MOSFET switch from turning on until input voltage exceeds approximately 2.3V (typ.). If input voltage drops below approximately 2.1V (typ.), UVLO turns off the MOSFET switch.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

 $P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For SOT-23-6 packages, the thermal resistance, θ_{JA} , is 250°C/ W on a standard JEDEC 51-3 single-layer thermal test board. For WDFN-6L 2x2 packages, the thermal

www.richtek.com

resistance, θ_{JA} , is 165°C/W on a standard JEDEC 51-3 single-layer thermal test board. The maximum power dissipation at T_A = 25°C can be calculated by the following formula :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (250^{\circ}C/W) = 0.4W$ for SOT-23-6 package

 $P_{D(MAX)}$ = (125°C - 25°C) / (165°C/W) = 0.606W for WDFN-6L 2x2 package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curves in Figure 2 allow the designer to see the effect of rising ambient temperature on the maximum power dissipation.

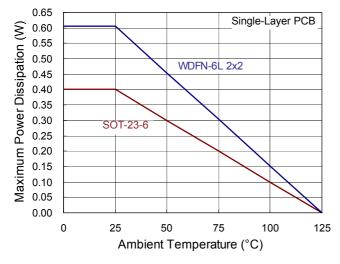
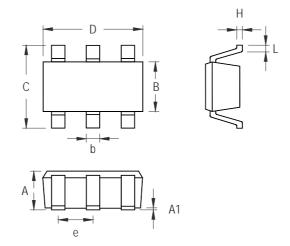



Figure 2. Derating Curve of Maximum Power Dissipation

Outline Dimension

Cumbal	Dimensions	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.889	1.295	0.031	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.250	0.560	0.010	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

SOT-23-6 Surface Mount Package