DESCRIPTION

The RV1S2285A is an optically coupled isolator containing GaAs light emitting diodes and an NPN silicon phototransistor.
This package is very small and thin with long creepage distance $(8.2 \mathrm{~mm})$.
This small product is suitable for various interface circuits which require surface mounting and high-density mounting.

FEATURES

- Small and long creepage (8.2 mm , LSSOP)
- AC input response
- Operating ambient temperature: $115^{\circ} \mathrm{C}$
- High isolation voltage ($\mathrm{BV}=5000 \mathrm{Vr} . \mathrm{m} . \mathrm{s}$.)
- Embossed tape product : RV1S2285ACCSP-10Yx\#KC0 : $3500 \mathrm{pcs} /$ reel
- Pb-Free product
- Safety standard
- UL : UL1577, Double protection
- CSA : CAN/CSA-C22.2 No.62368-1, Reinforced insulation
- VDE : DIN EN 60747-5-5 (Option)

APPLICATIONS

- Robot controller
- Industrial inverter
- AC Servo
- Programmable logic controller
- Measurement equipment
- Power supply

PACKAGE DIMENSIONS (UNIT : mm)

Weight : 0.075 g (Typ.)

PHOTOCOUPLER CONSTRUCTIONS

Parameter	UNIT (MIN.)
Air Distance	8.2 mm
Creepage Distance	8.2 mm
Isolation Distance	0.15 mm

MARKING EXAMPLE

R			An initial of "Renesas"
2285			Product Part Number*
\bigcirc			No. 1 pin Mark
N744	N		Rank Code
	744		Assembly Lot
		7	Last one-digit of Assembly Year
		44	Weekly Serial Code

*) Applicable type numbers listed below

$$
\text { RV1S } 2285 \text { ACCSP-10Yx }
$$

Marking type number." RV1S" and "ACCSP-10Yx"" are omitted from original type number

ORDERING INFORMATION

Part Number	Order Number	Solder Plating Specification* ${ }^{*}$	Packing Style	Safety Standard Approval	Application Part Number* ${ }^{*}$
$\begin{aligned} & \text { RV1S2285ACCSP } \\ & \text {-10YC } \end{aligned}$	RV1S2285ACCSP -10YC\#SC0	Pb-Free and Halogen Free (Ni/Pd/Au)	$20 \mathrm{pcs}($ Tape $20 \mathrm{pcs} \mathrm{cut)}$	Standard products (UL, CSA approved)	RV1S2285A
	RV1S2285ACCSP -10YC\#KC0		Embossed Tape 3500 pcs/reel		
$\begin{aligned} & \text { RV1S2285ACCSP } \\ & -10 \mathrm{YV} \end{aligned}$	RV1S2285ACCSP -10YV\#SC0		20 pcs (Tape 20 pcs cut)	UL, CSA, DIN EN 60747-5-5 approved	
	RV1S2285ACCSP -10YV\#KC0		Embossed Tape 3500 pcs/reel		

Notes:*1. When specifying CTR rank, please add "/CTR rank" after Order Number.
ex. L rank: RV1S2285ACCSP-10YC\#SC0/L
Notes:*2. For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Diode	Forward Current (DC)	I_{F}	± 30	mA
	Power Dissipation Derating*1	$\triangle \mathrm{PD}^{\prime}{ }^{\circ} \mathrm{C}$	0.6	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Power Dissipation	PD_{D}	60	mW
	Peak Forward Current ${ }^{*}$	Ifp	± 0.5	A
Transistor	Collector to Emitter Voltage	Vceo	80	V
	Emitter to Collector Voltage	$V_{\text {ECo }}$	5	V
	Collector Current	Ic	30	mA
	Power Dissipation Derating*1	$\triangle \mathrm{Pc} /{ }^{\circ} \mathrm{C}$	1.2	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
	Power Dissipation	Pc	120	mW
Isolation Voltage ${ }^{* 3}$		BV	5000	Vr.m.s.
Operating Ambient Temperature		TA	-40~+115	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-40~+125	${ }^{\circ} \mathrm{C}$

*1 Derating from $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
*2 PW = $100 \mu \mathrm{~s}$, Duty Cycle = 1\%
*3 AC voltage for 1 minute at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RH}=60 \%$ between input and output.
Pins 1-2 shorted together, 3-4 shorted together.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Diode	Forward Voltage	V_{F}	$\mathrm{IF}_{\mathrm{F}}= \pm 5 \mathrm{~mA}$		1.15	1.4	V
	Terminal Capacitance	C_{t}	$\mathrm{V}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		20		pF
Transistor	Collector to Emitter Dark Current	$\mathrm{I}_{\text {ceo }}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=80 \mathrm{~V}$			100	nA
Coupled	Current Transfer Ratio (IC/IF)* ${ }^{*}$	CTR	$\mathrm{IF}_{\mathrm{F}}= \pm 5 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	50	200	400	\%
	CTR1/CTR2 ${ }^{\text {注 } 2}$	CTR1/CTR2	$\mathrm{I}_{\mathrm{F}}= \pm 5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	0.3	1.0	3.0	
	Collector Saturation Voltage	$\mathrm{V}_{\text {CE (} \text { (at) }}$	$\mathrm{I}_{\mathrm{F}}= \pm 10 \mathrm{~mA}, \mathrm{Ic}_{\mathrm{C}}=2 \mathrm{~mA}$			0.3	V
	Isolation Resistance	$\mathrm{R}_{1-\mathrm{O}}$	$\mathrm{V}_{\text {I-O }}=1 \mathrm{k} \mathrm{V}_{\text {DC }}$	10^{11}			Ω
	Isolation Capacitance	$\mathrm{ClO}_{\text {- }}$	$\mathrm{V}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0.4		pF
	Rise Time ${ }^{*}$	tr_{r}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I} \mathrm{I}=2 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$		4		$\mu \mathrm{s}$
	Fall Time ${ }^{* 3}$	t_{f}			5		

*1. CTR rank

CTR rank	CTR(\%)	Condition
	$50 \sim 400$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
	$10 \sim$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
M	$50 \sim 150$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
	$10 \sim$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
L	$100 \sim 300$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
	$20 \sim$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$
K	$150 \sim 350$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
	$20 \sim$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}$

*2. $\mathrm{CTR} 1=\mathrm{IC}_{1} / \mathrm{IF}_{\mathrm{F}}, \mathrm{CTR} 2=\mathrm{I} \mathrm{I} 2 / \mathrm{I}_{\mathrm{F} 2}$

*3. Test circuit for switching time

TYPICAL CHARACTERISTICS (TA $=+25^{\circ} \mathrm{C}$, unless otherwise specified)

FORWARD CURRENT vs

COLLECTOR TO EMITTER DARK CURRENT vs. AMBIENT TEMPERATURE

TRANSISTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE

COLLECTOR CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE

COLLECTOR CURRENT vs. COLLECTOR SATURATION VOLTAGE

Remark The graphs indicate nominal characteristics.

TYPICAL CHARACTERISTICS (TA $=+25^{\circ} \mathrm{C}$, unless otherwise specified)

SWITCHING TIME vs.
LOAD RESISTANCE

CURRENT TRANSFER RATIO vs. FORWARD CURRENT

NORMALIZED CURRENT TRANSFER RATIO vs. AMBIENT TEMPERATURE

SWITCHING TIME vs.
LOAD RESISTANCE

FREQUENCY RESPONSE

Remark The graphs indicate nominal characteristics.

TAPING SPECIFICATIONS (UNIT: mm)

Tape Direction

Outline and Dimensions (Tape)

Outline and Dimensions (Reel)

Packing: $3500 \mathrm{pcs} /$ reel

RECOMMENDED MOUNT PAD DIMENSIONS (UNIT : mm)

Remark
All dimensions in this figure must be evaluated before use.

NOTES ON HANDLING

1. Recommended soldering conditions
(1) Infrared reflow soldering

- Peak reflow temperature $260^{\circ} \mathrm{C}$ or below (package surface temperature)
- Time of peak reflow temperature
- Time of temperature higher than $220^{\circ} \mathrm{C}$ 10 seconds or less
60 seconds or less
- Time to preheat temperature from 120 to $180^{\circ} \mathrm{C} \quad 120 \pm 30 \mathrm{~s}$
- Number of reflows

Three

- Flux

Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)

Recommended Temperature Profile of Infrared Reflow

(2) Wave soldering

- Temperature $260^{\circ} \mathrm{C}$ or below (molten solder temperature)
- Time 10 seconds or less
- Preheating conditions $120^{\circ} \mathrm{C}$ or below (package surface temperature)
- Number of times One (Allowed to be dipped in solder including plastic mold portion.)
- Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)
(3) Soldering by Soldering Iron
- Peak Temperature (lead part temperature) $350^{\circ} \mathrm{C}$ or below
- Time (each pins) 3 seconds or less
- Flux Rosin flux containing small amount of chlorine
(The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)
(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead
(b) Please be sure that the temperature of the package would not be heated over $100^{\circ} \mathrm{C}$
(4) Cautions
- Flux Cleaning

Avoid cleaning with Freon based or halogen-based (chlorinated etc.) solvents.

- Do not use fixing agents or coatings containing halogen-based substances.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output or between collectoremitters at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.
3. Measurement conditions of current transfer ratios (CTR), which differ according to photocoupler

Check the setting values before use, since the forward current conditions at CTR measurement differ according to product.

When using products other than at the specified forward current, the characteristics curves may differ from the standard curves due to CTR value variations or the like. Therefore, check the characteristics under the actual operating conditions and thoroughly take variations or the like into consideration before use.

USAGE CAUTIONS

1. Protect against static electricity when handling.
2. Avoid storage at a high temperature and high humidity.

SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

Parameter	Symbol	Rating	Unit
Climatic test class (IEC 60068-1/DIN EN 60068-1)		40/115/21	
Dielectric strength maximum operating isolation voltage Test voltage (partial discharge test, procedure a for type test and random test) $\mathrm{U}_{\mathrm{pr}}=1.6 \times \mathrm{U}_{\mathrm{IORm}}, \mathrm{Pd}_{\mathrm{d}}<5 \mathrm{pC}$	UIorm Upr	$\begin{aligned} & 1100 \\ & 1760 \end{aligned}$	$\bigvee_{\text {peak }}$ $V_{\text {peak }}$
Test voltage (partial discharge test, procedure b for all devices) $U_{\text {pr }}=1.875 \times$ UוORм, $\mathrm{P}_{\mathrm{d}}<5 \mathrm{pC}$	U_{pr}	2063	$V_{\text {peak }}$
Highest permissible overvoltage	Uוотм	8000	$V_{\text {peak }}$
Degree of pollution (IEC 60664-1/DIN EN 60664-1 (VDE 0110-1))		2	
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303-11))	CTI	400	
Material group (IEC 60664-1/DIN EN 60664-1 (VDE 0110-1))		II	
Storage temperature range	$\mathrm{T}_{\text {stg }}$	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$
Operating temperature range	T_{A}	$-40 \sim+115$	${ }^{\circ} \mathrm{C}$
Isolation resistance, minimum value $\begin{aligned} & V_{10}=500 \mathrm{~V} \text { dc at } T_{A}=25^{\circ} \mathrm{C} \\ & V_{10}=500 \mathrm{~V} \text { dc at } T_{A} \text { MAX. at least } 100^{\circ} \mathrm{C} \end{aligned}$	Ris MIN. Ris MIN.	$\begin{aligned} & 10^{12} \\ & 10^{11} \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Safety maximum ratings (maximum permissible in case of fault, see thermal derating curve) Package temperature Current (input current $\mathrm{I}_{\mathrm{F}}, \mathrm{Psi}=0$) Power (output or total power dissipation) Isolation resistance $\mathrm{V}_{10}=500 \mathrm{~V}$ dc at $\mathrm{T}_{\mathrm{A}}=\mathrm{Tsi}$	Tsi Isi Psi Ris MIN.	$\begin{gathered} 175 \\ 400 \\ 700 \\ 10^{9} \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~mA} \\ \mathrm{~mW} \\ \Omega \end{gathered}$

Method a) Destructive Test, Type and Sample Test

$$
\begin{aligned}
& t_{1}, \mathrm{t}_{2}=1 \mathrm{to} 10 \mathrm{sec} \\
& \mathrm{t}_{3} \mathrm{t}_{4}=1 \mathrm{sec} \\
& \mathrm{t}_{\mathrm{m} \text { (PARTIAL }} \\
& \mathrm{t}_{\text {IISCHARGE })}=10 \mathrm{sec} \\
& \mathrm{t}_{\mathrm{ini}}=60 \mathrm{sec} \\
& \hline
\end{aligned}
$$

Method b) Non-destructive Test, 100\% Production Test

$$
\begin{aligned}
& \mathrm{t}_{3}, \mathrm{t}_{4}=0.1 \mathrm{sec} \\
& \mathrm{t}_{\mathrm{p} \text { (PARTIAL DISCHARGE) }}=1.0 \mathrm{sec} \\
& \mathrm{t}_{\text {test }}=1.2 \mathrm{sec}
\end{aligned}
$$

| Caution GaAs Products | This product uses gallium arsenide (GaAs).
 GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe
 the following points.
 - Follow related laws and ordinances when disposing of the product. If there are no applicable laws
 and/or ordinances, dispose of the product as recommended below.
 1. Commission a disposal company able to (with a license to) collect, transport and dispose of
 materials that contain arsenic and other such industrial waste materials.
 2. Exclude the product from general industrial waste and household garbage, and ensure that the
 product is controlled (as industrial waste subject to special control) up until final disposal.
 - Do not burn, destroy, cut, crush, or chemically dissolve the product. |
| :---: | :--- | :--- |
| - Do not lick the product or in any way allow it to enter the mouth. | |

