

RV1S9353A

Optically Isolated Delta-Sigma Modulator

R08DS0174EJ0100 Rev.1.00 Mar 23, 2020

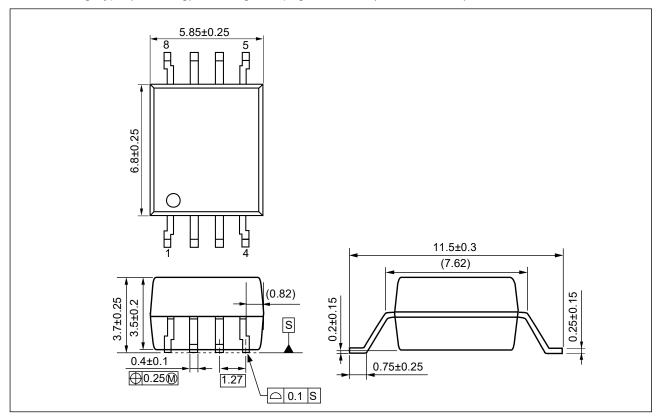
DESCRIPTION

The RV1S9353A is an optically isolated Delta – Sigma Modulator that includes high-Accuracy A/D convertor and converts an analog voltage input into one-bit data stream. The RV1S9353A provides Effective Number of Bit (ENOB) is 13.8bits (typ) with a Sinc³ digital filter.

The RV1S9353A is designed specifically for high common mode transient immunity (CMR) and high linearity (nonlinearity). The RV1S9353A is suitable for current sensing and voltage sensing in motor drives.

FEATURES

- Internal Reference Voltage Tolerance (GE = ±0.5 % TYP.)
- Effective Number of Bit (ENOB = 13.8 bits TYP.)
- Operating Ambient Temperature (TA = -40 to 110 °C)
- Non-linearity (INL = 25 LSB MAX.)
- Input Offset Voltage (Vos = 2 mV MAX.)
- Input Offset Voltage Drift vs. Temperature ($|dVos/dTA| = 2.5 \mu V/^{\circ}C MAX.$)
- Output Clock Frequency (fclk = 10 MHz TYP.)
- High common mode transient immunity (CMR = 15 kV/ μ s MIN.)
- Long creepage distance (8 mm MIN.)
- Embossed tape product: RV1S9353ACCSP-120x#KC0: 2 000 pcs/reel
- Pb-Free product
- · Safety standards
 - UL approved: No. UL1577, Double protection
 - CSA approved: CAN/CSA-C22.2 No.62368-1, Reinforced insulation
 - DIN EN 60747-5-5 approved (Option)

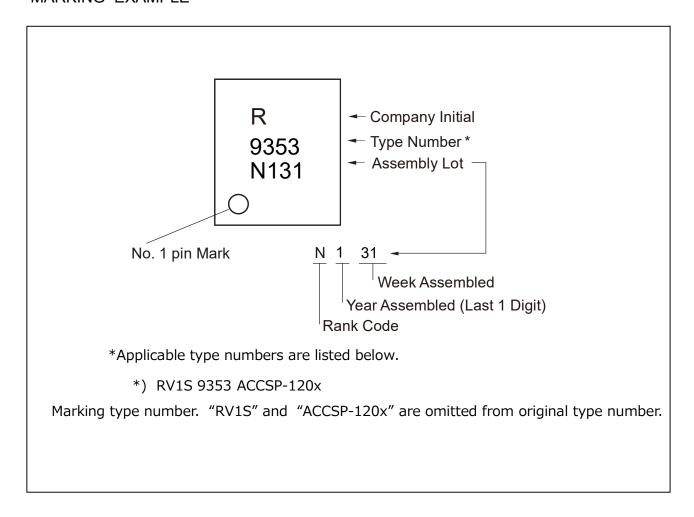

PIN CONNECTION (Top View) 8 7 6 5 1. V_{DD1} 2. V_{IN+} 3. V_{IN} 4. GND1 5. GND2 6. MDAT 7. MCLK 8. V_{DD2}

APPLICATIONS

- · AC Servo, inverter
- Solar inverter
- · Measurement equipment

PACKAGE DIMENSIONS (UNIT: mm)

Lead Bending Type (Gull-wing) For Long Creepage Distance (Surface Mount)



Weight: 0.316g (typ.)

PHOTOCOUPLER CONSTRUCTION

Parameter	MIN.
Air Distance	8 mm
Creepage Distance	8 mm
Isolation Distance	0.4 mm

MARKING EXAMPLE

ORDERING INFORMATION

Part Number	Order Number	Solder Plating	Packing Style	Safety Standard	Application
		Specification		Approval	Part Number*1
RV1S9353ACCSP-	RV1S9353ACCSP	Pb-Free	20 pcs	Standard products	RV1S9353A
120C	-120C#SC0	(Ni/Pd/Au)	(Tape 20 pcs cut)	(UL, CSA	
	RV1S9353ACCSP		Embossed Tape 2 000	approved)	
	-120C#KC0		pcs/reel		
RV1S9353ACCSP-	RV1S9353ACCSP		20 pcs	UL, CSA,	
120V	-120V#SC0		(Tape 20 pcs cut)	DIN EN 60747-5-5	
	RV1S9353ACCSP		Embossed Tape 2 000	approved	
	-120V#KC0		pcs/reel		

^{*1} For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Operating Ambient Temperature	TA	-40 to +110	°C
Storage Temperature	Tstg	−55 to +150	°C
Supply Voltage	VDD1, VDD2	6	V
Input Voltage*1	VIN+, VIN-	−2 to V _{DD1} +0.5	V
Input Voltage*1,2	VIN+, VIN-	−6 to V _{DD1} +0.5	V
Output Voltage	MCLK, MDAT	6	V
Isolation Voltage*3	BV	5 000	Vr.m.s.

^{*1} The input voltage of Vin+ and Vin- terminals is less than 6V.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating Ambient Temperature	TA	-40		110	°C
Supply Voltage VDD1	V _{DD1}	4.5	5	5.5	V
Supply Voltage VDD2	V _{DD2}	3.0		5.5	V
Input Voltage (Accurate and Linear)*1	VIN+, VIN-	-200		200	mV

^{*1} Using $V_{IN-} = 0 \text{ V}$ (to be connected to GND1) is recommended. Avoid using V_{IN-} of 2.5 V or more, because the internal test mode is activated when the voltage V_{IN-} reaches more than 2.5 V.

^{*2} Duration of time is within 2 seconds.

^{*3} AC voltage for 1 minute at $T_A = 25$ °C, RH = 60% between input and output. Pins 1-4 shorted together, 5-8 shorted together.

ELECTRICAL CHARACTERISTICS

 $(TYP.: TA = 25^{\circ}C, VIN_{+} = VIN_{-} = 0 V, VDD1 = VDD2 = 5 V,$

MIN., MAX.: refer to RECOMMENDED OPERATING CONDITIONS, unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input Supply Current	IDD1	V _{IN+} = -320 ~ +320 mV		11.5	15.5	mA
Outro d Comple Compant	l===	V _{DD2} = 5 V		5	8	mA
Output Supply Current	IDD2	V _{DD2} = 3.3 V		4.5	7	mA
Input Bias Current	lin	V _{DD1} = V _{DD2} = 5 V, V _{IN+} = 0 V		-2.5		μА
Low Level Saturated Output Voltage	Vol	Iоит = 1.6 mA			0.6	V
High Level Saturated Output Voltage	Vон	IOUT = -200 μA	VDD2 -0.6	VDD2 -0.1		V
Output Short-circuit Current	losc	Vout = VDD2 or Vout = GND2		18	40	mA
Equivalent Input Resistance	Rin	VIN+ or VIN- single ended		500		kΩ
Output Clock Frequency	fclk		9	10	11	MHz
Isolation Resistance	Rı-o	V _{I-O} = 1 kV _{DC} , T _A = 25°C	10 ¹¹			Ω
Isolation Capacitance	C _I -O	f = 1 MHz		0.7		pF
Data Hold Time *1	thddat		10			ns
Common Mode Transient Immunity *2	CMR	Vcm = 1 kV, TA = 25°C	15	25		kV/ <i>μ</i> s

^{*1} The data hold time (thddat) is that the data (MDAT) will stay stable following the rising edge of the clock (MCLK). thddat is shown in the below timing chart.

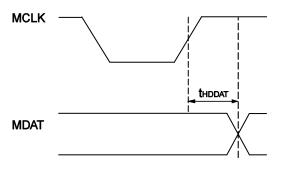


Fig. Timing Chart

*2 Common Mode Transient Immunity (CMR) is specified by the rate of rise / fall of a pulse applied between GND1 on the input side and GND2 on the output side (pins 4 and 5) by using the circuit shown in **Fig. 6 CMR Test Circuit**. CMR is defined at the point that clock signals are corrupted.

ELECTRICAL CHARACTERISTICS (Tested with Sinc³ filter, 256 decimation ratio.)

 $(TYP.: TA = 25^{\circ}C, VIN_{+} = VIN_{-} = 0 V, VDD1 = VDD2 = 5 V,$

MIN., MAX.: refer to RECOMMENDED OPERATING CONDITIONS, unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Integral Non-linearity *3	INL	$T_A = -40 \sim 85^{\circ}C$, $V_{IN+} = -200 \sim +200 \text{ mV}$		3	15	LSB
		T _A = 85 ~ 110°C,			25	LSB
Differential Non-linearity *4	DNL	T _A = -40 ~ 110°C, V _{IN+} = -200 ~ +200 mV			0.9	LSB
Input Offset Voltage *5	Vos		-2	0	2	mV
Input Offset Voltage Drift vs. Temperature	dVos/dTa			0.2	2.5	μV/°C
Input Offset Voltage Drift vs. Supply Voltage	dVos/dVDD1			40		μV/V
Internal Reference Voltage *6	VREF			320		mV
Absolute Internal Reference	0	T _A = 25°C	-0.5		0.5	%
Voltage Tolerance	GE	T _A = -40 ~ 110°C	-1		1	%
Internal Reference Voltage Drift vs. Temperature	dVref/dTa			30	60	ppm/°C
Internal Reference Voltage Drift vs. Supply Voltage	dVREF/dVDD1			0.2		mV/V
Input DC Common-Mode Rejection Ratio *7	CMRRIN			80		dB

*3 Integral non-linearity (INL) is the maximum deviation between the ideal conversion line (best-fit line) and measured points. The best-fit line is obtained by using the least-squares method from the differential input voltage (VIN+ – VIN-: VIN+ = -200 mV to 200 mV, VIN- = 0 V) and the output data that is measured under the circuit shown in **Fig. 7 INL Test Circuit**. INL is defined as the ratio (%) obtained by dividing [Half of the peak to peak value of the deviation] by [full-scale differential input voltage 400 mV].

For example, if the differential input voltage is $V_{IN+} = -200$ mV to 200 mV, and the peak to peak value of the deviation is 0.49 mV, Integral non-linearity is obtained as follows:

 $INL = 0.49 \text{ mV}/(2 \times 400 \text{ mV}) = 0.06\%$

And Input Full-Scale 640 mV (-320 to 320 mV) of RV1S9353A is assigned 16 bits ($2^{16} = 65536$).

Therefore, Least Significant Bit (LSB) is 9.75 μ V.

By LSB indication, above-mentioned INL is 0.49 mV/(2×0.00975 mV) = 25 LSBs.

- *4 Differential non-linearity (DNL) is the difference between a measured code width and ideal 1 LSB in the ADC transfer curve.
- *5 Input offset voltage (Vos) is a measured value after Sinc³ digital filter when the input voltage is 0 V (VIN+ = VIN- = 0 V).
- *6 Absolute Internal Reference Voltage Tolerance (GE) is the gap rate between the ideal conversion line slope (Slope = 1) and a best-fit line slope that provided by the least-squares method from a real conversion level output for the differential input voltage (VIN+ VIN-: VIN+ = -200 mV to 200 mV, VIN- = 0 V).
- *7 Input DC Common-Mode Rejection Ratio (CMRRIN) is the ratio of the differential signal (VIN+ = -200 mV to 200 mV, VIN- = 0 V) to the common-mode signal (VIN+ = VIN- = -200 mV to 200 mV: Both input pins are connected). CMRRIN is defined as follows,

CMRRIN (dB) = 20 log (Vdo/Vco)

Vdo : Output voltage when the differential signal voltage input

Vco: Output voltage when the common-mode signal voltage input

ELECTRICAL CHARACTERISTICS (Tested with Sinc³ filter, 256 decimation ratio.)

 $(TYP.: TA = 25^{\circ}C, VIN_{+} = VIN_{-} = 0 V, VDD1 = VDD2 = 5 V,$

MIN., MAX.: refer to RECOMMENDED OPERATING CONDITIONS, unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Signal to Noise Ratio *8	SNR	V _{IN+} = 35 Hz, 400 mVpk-pk	80	85		dB
Signal to Noise and Distortion Ratio *9	SNDR	(141 mVr.m.s.) sine wave	69	79		dB
Effective Number of Bit *10	ENOB			13.8		bits

*8 Signal to Noise Ratio (SNR) is the ratio of the AC signal power to the noise power that excludes harmonic signals and DC. SNR is defined as follows,

SNR (dB) = 10 log(Ps/PN)

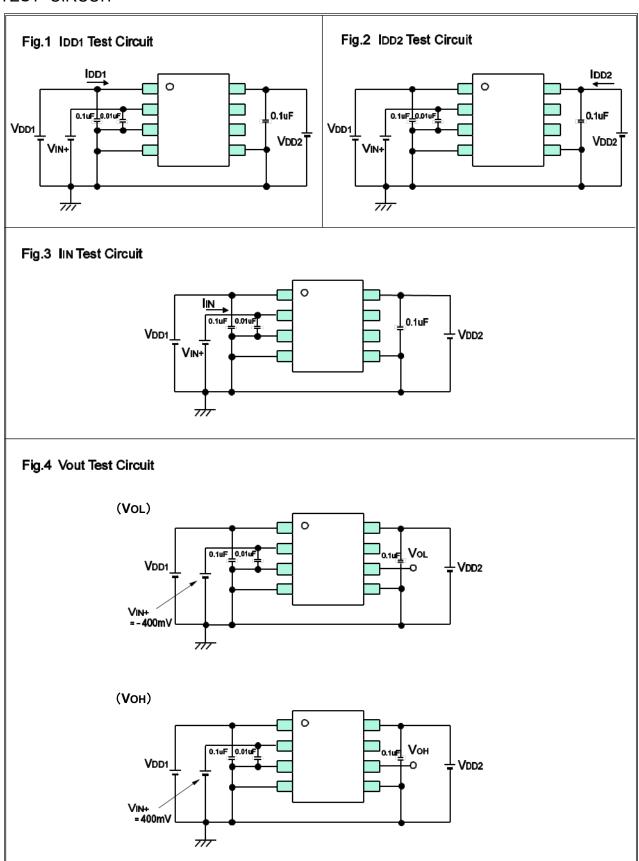
Ps: Signal power (fundamental)

PN: Noise power (excluding harmonic signals and DC)

*9 Signal to Noise and Distortion ratio (SNDR) is the ratio of the AC signal power (fundamental) to the noise power plus distortion power. SNDR is defined as follows,

SNDR (dB) = $10 \log(Ps/(PN + PH2 + PH3 + ... + PH5))$

Ps: Signal power (fundamental)


Pn: Noise power (excluding harmonic signals and DC)

PH2, PH3 ... PH5: Second through fifth harmonics power

*10 Effective Number of Bit (ENOB) is the effective resolution of ADC that is considered the noise. ENOB is defined as follows,

ENOB (bits) = (SNR-1.76)/6.02

TEST CIRCUIT

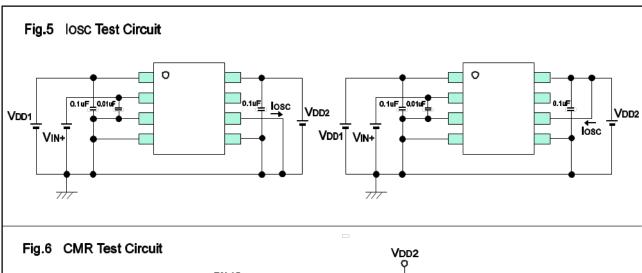
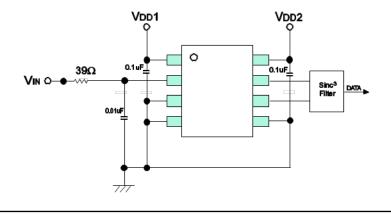
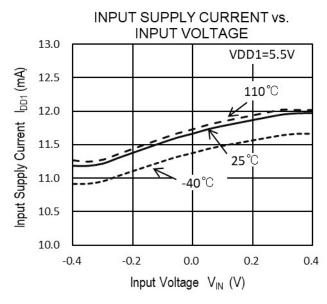


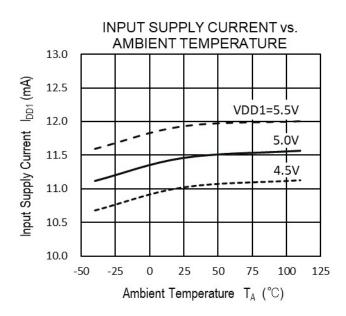
Fig.6 CMR Test Circuit

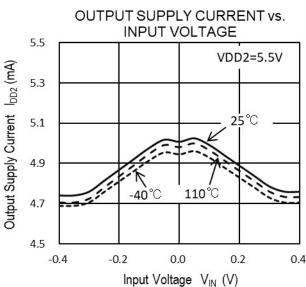
VDD2

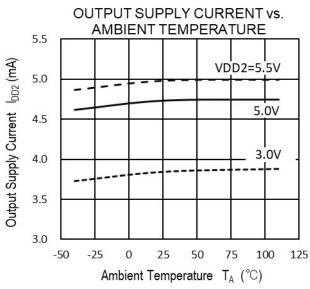

78L05

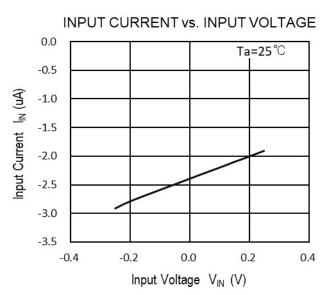
9V

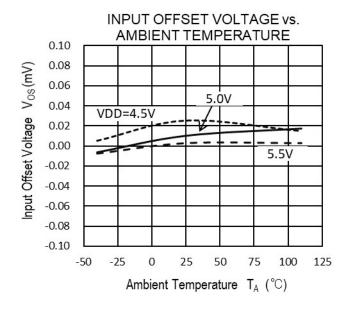

0.1uF

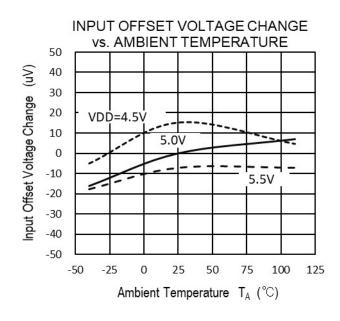

VCM

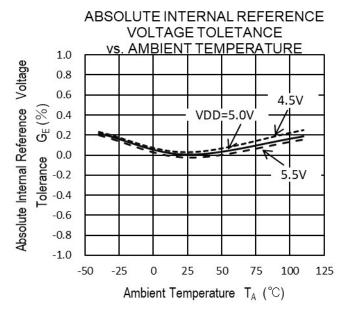

Fig.7 Vos, INL, DNL, GE, SNR, SNDR, ENOB Test Circuit

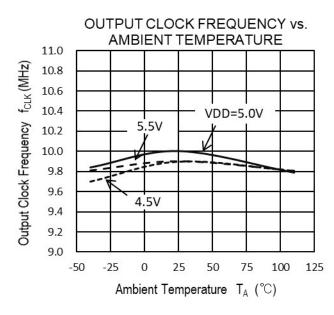


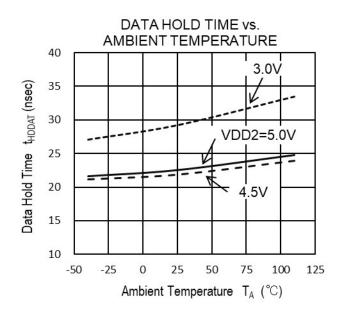

TYPICAL CHARACTERISTICS (TA = 25° C, VIN+ = VIN- = 0 V, VDD1 = VDD2 = 5 V, tested with Sinc³ filter, 256 decimation ratio, unless otherwise specified)

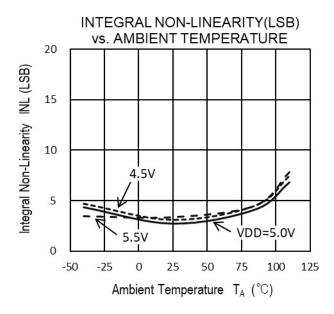


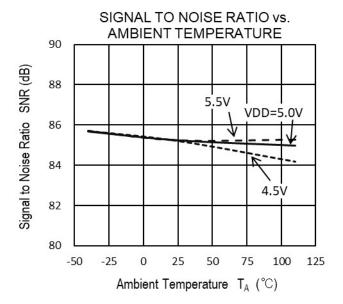


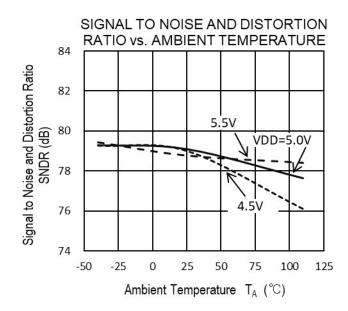


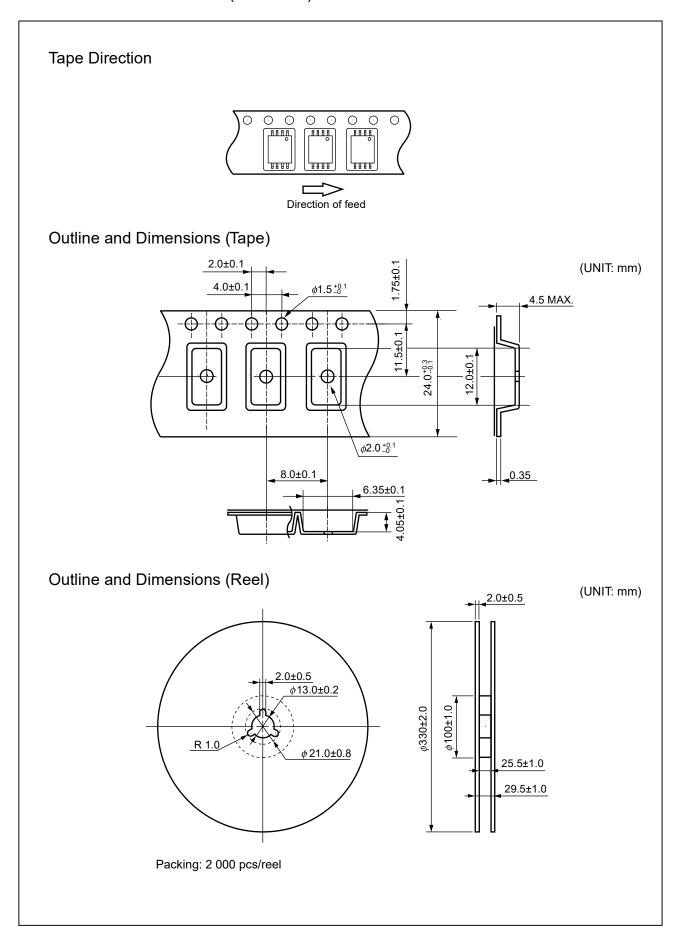


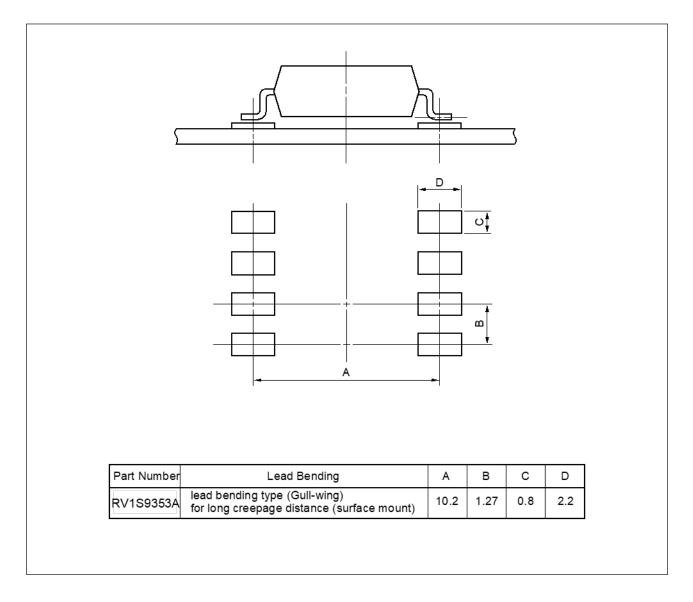

Remark The graphs indicate nominal characteristics.








Remark The graphs indicate nominal characteristics.



Remark The graphs indicate nominal characteristics.

TAPING SPECIFICATIONS (UNIT: mm)

RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)

Remark All dimensions in this figure must be evaluated before use.

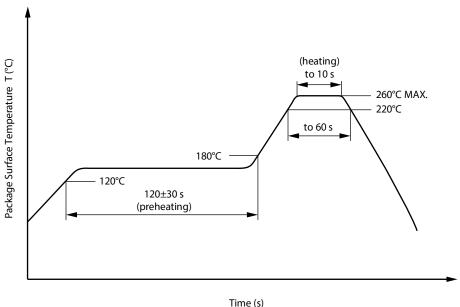
NOTES ON HANDLING

1. Recommended soldering conditions

(1) Infrared reflow soldering

· Peak reflow temperature 260°C or below (package surface temperature)

• Time of peak reflow temperature 10 seconds or less Time of temperature higher than 220°C 60 seconds or less • Time to preheat temperature from 120 to 180°C 120±30 s


· Number of reflows Three

• Flux Rosin flux containing small amount of chlorine (The flux

with a maximum chlorine content of 0.2 Wt% is

recommended.)

Recommended Temperature Profile of Infrared Reflow

(2) Wave soldering

 Temperature 260°C or below (molten solder temperature)

• Time 10 seconds or less

Preheating conditions 120°C or below (package surface temperature)

· Number of times One (Allowed to be dipped in solder including plastic mold portion.)

 Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine

content of 0.2 Wt% is recommended.)

(3) Soldering by Soldering Iron

• Peak Temperature (lead part temperature) 350°C or below

• Time (each pins) 3 seconds or less

• Flux Rosin flux containing small amount of chlorine

(The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

- (a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead
- (b) Please be sure that the temperature of the package would not be heated over 100°C

(4) Cautions

Flux Cleaning

Avoid cleaning with Freon based or halogen-based (chlorinated etc.) solvents.

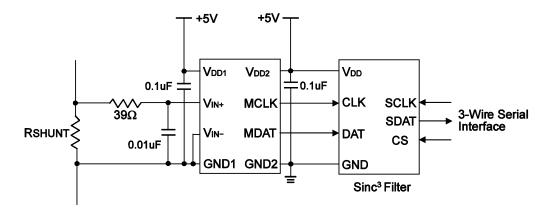
• Do not use fixing agents or coatings containing halogen-based substances.

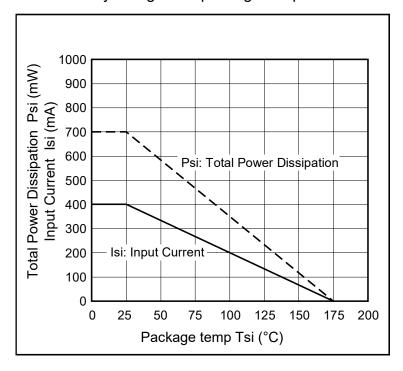
2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.

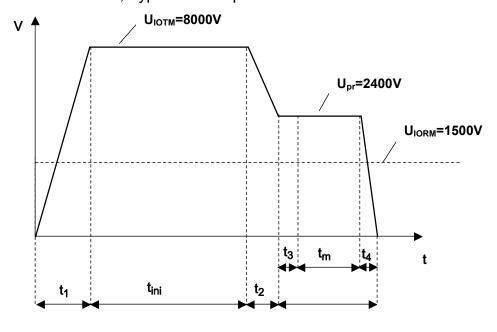
USAGE CAUTIONS

- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. Board designing
 - (1) Below figure shows a typical application circuit where the RV1S9353A is used. A digital filter (Sinc³ filter) reduces high frequency quantization noise from the RV1S9353A and convers from one-bit data stream to 3-wire serial data.




Fig. RV1S9353A Typical application circuit

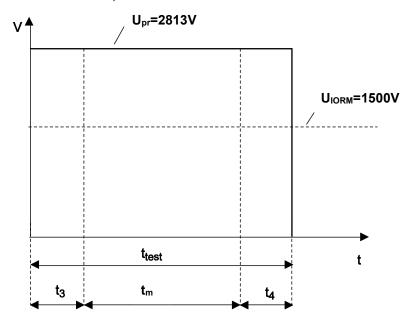
- (2) By-pass capacitor of more than 0.1 μ F is used between V_{DD} and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm.
- (3) Keep the pattern connected the input (V_{IN+}, V_{IN-}) and the output (MCLK, MDAT), respectively, as short as possible. MCLK and MDAT are digital signal, but when the lines between the photocoupler and a digital filter are long, the digital filter might not read the data.
 - When using long lines, use a line driver between the photocoupler and the digital filter, and keep the pattern between the output (MCLK, MDAT) and the line driver as short as possible.
- (4) Do not connect any routing to the portion of the frame exposed between the pins on the package of the photocoupler. If connected, it will affect the photocoupler's internal voltage and the photocoupler will not operate normally.
- (5) Because the maximum frequency of the signal input to the photocoupler must be lower than the allowable frequency band, be sure to connect an anti-aliasing filter (an RC filter with R = 39 Ω and C = 0.01 μ F, for example).
- (6) When V_{DD1} is lower than 4.5 V that is the outside of the recommended operating condition, the output (MCLK, MDAT) of this product is unstable, and this might produce undesirable operation. Be sure to check the operation of an IC that is connected to this product during Power-up and Power-down process. And we recommend to use a disable function (shutdown function) of the connected IC or a reset IC to avoid this undesirable operation.
- 3. Avoid storage at a high temperature and high humidity.


SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

Parameter	Symbol	Spec.	Unit
Climatic test class (IEC 60068-1/DIN EN 60068-1)		40/110/21	
Dielectric strength			
maximum operating isolation voltage	UIORM	1 500	Vpeak
Test voltage (partial discharge test, procedure a for type test and random test)	Upr	2 400	Vpeak
$U_{pr} = 1.6 \times U_{IORM}, Pd < 5 pC$			
Test voltage (partial discharge test, procedure b for all devices)	Upr	2 813	Vpeak
$U_{pr} = 1.875 \times U_{IORM}, Pd < 5 pC$			
Highest permissible overvoltage	UTR	8 000	Vpeak
Degree of pollution (IEC 60664-1/DIN EN 60664-1 (VDE 0110-1))		2	
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303 Part 11))	CTI	175	
Material group (IEC 60664-1/DIN EN 60664-1 (VDE 0110-1))		III a	
Storage temperature range	Tstg	-55 to +150	°C
Operating temperature range	T _A	-40 to +110	°C
Isolation resistance, minimum value			
V _{IO} = 500 V dc at T _A = 25°C	Ris MIN.	10 ¹²	Ω
V _{IO} = 500 V dc at T _A MAX. at least 100°C	Ris MIN.	10 ¹¹	Ω
Safety maximum ratings (maximum permissible in case of fault, see thermal			
derating curve)			
Package temperature	Tsi	175	°C
Current (input current I _F , Psi = 0)	Isi	400	mA
Power (output or total power dissipation)	Psi	700	mW
Isolation resistance			
V _{IO} = 500 V dc at T _A = Tsi	Ris MIN.	10 ⁹	Ω

Dependence of maximum safety ratings with package temperature

Method a Destructive Test, Type and Sample Test


 $t_1, t_2 = 1 \text{ to } 10 \text{ sec}$

 $t_3, t_4 = 1 \text{ sec}$

t_{m(PARTIAL DISCHARGE)}= 10 sec t_{test} = 12 sec

t_{ini} = 60 sec

Method b Non-destructive Test, 100% Production Test

 $t_3, t_4 = 0.1 \text{ sec}$ $t_{m(PARTIAL\ DISCHARGE)}$ = 1.0 sec t_{test} = 1.2 sec

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

All trademarks and registered trademarks are the property of their respective owners.