
BRIDGE_UART_I2C

UART to I2C Bridge Controller
Rev. 1.1

Key Design Features

● Synthesizable, technology independent IP Core for FPGA,
ASIC and SoC

● Supplied as human-readable VHDL (or Verilog) RTL source

● UART (Master) connects to a standard I2C bus and operates as
a fully ‘transparent’ bridge between the two buses

● Support for standard UART data rates between 9600 and
921600 baud

● Support for all common I2C bit rates such as 100kbps,
400kbps, 1Mbps and 4Mbps

● Simple command interface allows the programming of I2C
peripherals using a serial terminal program (e.g.TeraTerm,
HyperTerminal, PuTTY, YAT etc.)

Applications

● Convenient method for translating commands between UART
and I2C devices and peripherals

● Essential tool for the remote debug of I2C devices using an
external PC, micro-processor or mico-controller

Generic Parameters

Generic name Description Type Valid range

baudrate UART baud rate in bits
per second

integer 9600 to
921600
(custom rates
also supported)

sclkfreq System clock
frequency in Hz

integer Ratio (sclkfreq /
baudrate)
< 65536

databits Number of data bits integer Set to 8 only

stopbits Number of stop bits integer 1,2

parity Enable parity bit after
data payload in
bitstream

integer 0: none
1: even
2: odd
3: mark
4: space

timeout UART timeout in
system clock cycles
(must be greater than
the time taken to send
32 bits at the current
baud rate)

integer ≥ 2

(but much
larger in
practice)

device_id I2C slave device ID integer ≥ 2

t_period SCL clock period (as
number of system
clock cycles)

integer ≥ 2

t_data_su SDA setup/hold time
(as number of system
clock cycles)

integer ≥ 4

Block Diagram

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

rx_in in Serial bits in UART serial
data

tx_out out Serial bits out UART serial
data

scl i/o I2C bi-directional SCL
clock pin

As per I2C
specification

sda i/o I2C bi-directional SDA
data pin

As per I2C
specification

General Description

The BRIDGE_UART_I2C IP Core (Figure 1) provides a simple and
convenient way to interface a standard UART bus to a standard I2C bus.
The circuit operates as a completely transparent ‘bridge’ between the two
buses and allows I2C peripherals to be programmed using a set of basic
commands over a (UART) serial interface.

Both the UART and I2C transceivers may be configured individually to
support a wide range of standard and custom settings. The bridge circuit
is technology independent and may be implemented as a custom ASIC,
or using a standard FPGA or SoC.

Copyright © 2019 www.zipcores.com Download this IP Core Page 1 of 4

I2C
CONTROLLER

scl

sda

PAD

PAD

Tristate
buffers

UART
CONTROLLER

FIFO
buffer

FIFO
buffer

FIFO
buffer

FIFO
buffer

Write
command

I/F

Read
data
I/F

rx_in

PAD

PAD

tx_out

baudrate
sclkfreq
stopbits
parity
timeout

device_id
t_period
t_data_su

UART setup I2C setup

Full-duplex
drivers

clk

reset

Figure 1: UART-to-I2C bridge architecture

https://www.zipcores.com/uart-to-i2c-bridge-controller.html

BRIDGE_UART_I2C

UART to I2C Bridge Controller
Rev. 1.1

In particular, the IP Core is ideal for the remote programming of I2C
peripherals using a remote PC or micro-controller. This is especially
useful during the debug stages of a project when the I2C registers of a
device may be written and read with the help of a simple terminal
program.

UART Command Interface

The UART command interface consists of 4 consecutive bytes that are
used to initiate a read or a write on the I2C bus. Typically, this is used to
read or write a register accessed via I2C.

An I2C write is initiated by the following command:

0xFF 0x55 0xADDR 0xDATA

(Where 0xADDR is the register address to be accessed and 0xDATA is
the byte of data to be written). Figure 2 shows the corresponding
command that is generated on the I2C bus:

Similarly, an I2C read is initiated by the following command:

0xFF 0xAA 0xADDR 0xXX

(Where 0xADDR is the register address to be accessed and the value of
byte 0xXX is don’t care). Figure 3 below shows the command that is
generated on the I2C bus:

Note that the I2C slave address device_id must be set correctly in the
generic parameters so that the correct I2C slave device is accessed on
the bus.

Another important consideration is to make sure that the UART and I2C
generics are set correctly for the desired data rates. In addition, the
UART timeout setting should be set appropriately for the given baud rate.
For instance, if the baud rate is set to 9600 with 1 stop bit and no parity,
then a four byte UART command should take: 10 x 4 / 9600 = approx 4.2
ms. As such, the timeout should be set to greater than 4.2 ms with some
margin to compensate for a slow terminal.

Functional Timing

Both the UART and I2C buses implement standard timing waveforms as
described in the UART and I2C specifications. The timing diagram below
gives an example for the command: 0xFF 0x55 0x82 0x6F with the baud
rate set to 115200 and the I2C clock set to 100kHz.

Copyright © 2019 www.zipcores.com Download this IP Core Page 2 of 4

START
I2C DEVICE ID

+ R/W = 0
SLAVE

ACK
WRITE

REG ADDRESS
SLAVE

ACK
STOP

Example: With the I2C 'device_id' generic set to 0x40, the UART command: 0xFF 0xAA 0x3A 0x00
will generate the following sequence on the I2C bus:

<START> <0x40> <ACK> <0x3A> <ACK> <STOP>
<START> <0x41> <ACK> <0xREAD DATA> <NACK> <STOP>

START
I2C DEVICE ID

+ R/W = 1
SLAVE

ACK
READ

REG DATA
MASTER

NACK
STOP

Figure 3: I2C read command sequence

START
I2C DEVICE ID

+ R/W = 0
SLAVE

ACK
WRITE

REG ADDRESS
SLAVE

ACK
WRITE

REG DATA
SLAVE

ACK
STOP

Example: With the I2C 'device_id' generic set to 0x40, the UART command: 0xFF 0x55 0x3A 0x72
will generate the following sequence on the I2C bus:

<START> <0x40> <ACK> <0x3A> <ACK> <0x72> <ACK> <STOP>

Figure 2: I2C write command sequence
rx

_i
n

tx
_o

ut sc
l

sd
a

START

1

START

0
1

0
1

1
0

0

STOP

1
1

1
1

1
1

1
1

STOP

0

START

1
0

0
0

0
0

1

STOP

1

START

1
1

1
0

1
1

0
STOP

0x
F

F
0x

55
0x

82
0x

6F

START

0
1

0
0

0
0

0
1

ACK

1
0

0
0

0
0

1
0

ACK

0
1

1
0

1
1

1
1

ACK

STOP

0x
40

0x
82

0x
6F

U
A

R
T

I2
C

https://www.zipcores.com/uart-to-i2c-bridge-controller.html

BRIDGE_UART_I2C

UART to I2C Bridge Controller
Rev. 1.1

Source File Description

All source files are provided as text files coded in VHDL (or Verilog on
request). The following table gives a brief description of each file.

Source file Description

uart_fifo.vhd UART transmit and receive FIFOs

uart_tx.vhd UART Transmitter

uart_rx.vhd UART Receiver

uart_cont.vhd UART controller FSM

uart_packet_decode.vhd UART data packet decoder

i2c_iobuf.vhd Bi-directional tristate buffer

i2c_delay.vhd Adds setup delay to the SDA line

i2c_fifo.vhd I2C transmit and receive FIFOs

i2c_master_cont.vhd I2C controller FSM

i2c_master.vhd I2C controller top-level

i2c_packet_decode.vhd I2C data packet decoder

i2c_slave_dummy.vhd I2C dummy slave device for testing

bridge_uart_i2c.vhd Top-level bridge component

bridge_uart_i2c_bench.vhd Top-level bridge test bench

Functional Testing

An example VHDL test bench is provided for use in a suitable hardware
simulator such as Modelsim® from Mentor Graphics. The test bench
instantiates the top-level BRIDGE_UART_I2C IP Core and drives the
UART serial inputs with a sequence of 4 x write commands and 4 x read
commands.

In the example provided, the generic settings have been set such that the
baud rate is 115200 and the I2C clock rate is 100 kHz. Data bits are fixed
at 8 with 1 stop bit and no parity.

For the purposes of simulation, the bridge is connected to a dummy I2C
slave device. The slave device drives random bits back to the master.

In the default setup, the simulation should be run for around 100 ms.
During the simulation, the UART transmit bytes and UART receive bytes
are captured in the text files: uart_tx_out.txt and uart_rx_out.txt.

Development Board Testing

The UART-to-I2C bridge controller was tested using a Xilinx® Artix-7
AC701 development board running at a system clock frequency of 100
MHz. The AC701 features a single 6-pin PMODTM header which was
used to connect the external UART and I2C buses.

The UART Rx/Tx lines were connected to the host PC serial port via an
RS-232 adapter. This was to ensure that the UART lines were at the
correct 3.3V levels. The I2C bus was connected to the PICkit Serial I2C
demo board from Microchip®. Figure 4 shows the basic bench setup in
more detail.

Once the kit was set up as described and the bitfile programmed on the
AC701 board, the serial terminal application was started on the host PC.
In this example the YAT terminal application was chosen for its ease of
use and wide range of features.

The command interface was then used to program the Microchip PICkit
board over the I2C bus, using it to illuminate various user LEDs. Figure 5
shows the YAT terminal application in action with various reads and writes
shown in the terminal window.

Copyright © 2019 www.zipcores.com Download this IP Core Page 3 of 4

Figure 5: YAT terminal program set up for serial comms

6-pin (PMOD™)
standard

0.100" pitch header

Connector J48
Xilinx® AC701

RX
TX

SCL
SDA
GND
3.3V

Microchip®
PICkit serial

I2C demo board

GND
U

se
r

LE
D

s

RS-232
to 3.3V

GND

TX
RX

PC serial port

Figure 4: Bench setup for testing the UART-to-I2C bridge controller on
the AC701 development board

https://www.zipcores.com/uart-to-i2c-bridge-controller.html

