
IEEE_TO_FIXED

32-bit floating-point to fixed-point converter
Rev. 1.1

Key Design Features

● Synthesizable, technology independent VHDL Core

● 32-bit floating-point input

● Signed fixed-point or integer output

● Configurable word and fraction width up to 32 integer bits and 
23 fraction bits

● IEEE 754 compliant

● High-speed fully pipelined architecture

● 2 clock-cycle latency

Applications

● Floating-point pipelines and arithmetic units

● Floating-point processors

● Interfacing between floating-point and fixed-point number 
systems

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

en in Clock enable high

ieee_in [31:0] in Floating-point input in IEEE 
754 format

data

fixed_out [dw - 1:0] out Signed fixed-point or 
integer output in [dw fw] 
format

data

ofl out Overflow flag high

inf out Infinity flag high

den out Denormalized number flag high

nan out NaN flag high

Generic Parameters

Generic name Description Type Valid range

dw Fixed-point word 
width

integer 2 ≤ dw  ≤ 32

fw Fixed-point 
fraction width

integer 0 ≤ fw  ≤ 23
(fw  < dw)

Block Diagram

General Description

IEEE_TO_FIXED (Figure 1) is a high-speed fully pipelined conversion unit 
that accepts a 32-bit bit floating-point number as input and generates a 
fixed-point representation at the output.  The input number is based on 
the IEEE 754 standard with the bits arranged in the following format:

 

The  real  number  representation  of  the  floating-point  number  may  be 
calculated as:

Value=−1S  ∗ 2E−127∗ 1.M

The fixed-point format is configured using the generic parameters dw and 
fw.  The value dw specifies the width of the output word and fw specifies 
the number of fraction bits.

The output may be specified as either a signed fixed-point number or a 
signed integer.  If a signed integer is preferred, then fw  must be set to 0. 
In all cases dw must be at least 2 bits and fw  must be less than dw.

As an example, to generate a 12-bit fixed-point output with 8 fraction bits 
the generic parameters must be set to: dw = 12, fw = 8.  In this example 
the output word would be arranged as follows:

Copyright © 2011 www.zipcores.com Download this VHDL Core Page 1 of 3

Figure 1: 32-bit Floating-point to Fixed-point  
converter

http://www.zipcores.com/32-bit-floating-point-to-fixed-point-converter.html


IEEE_TO_FIXED

32-bit floating-point to fixed-point converter
Rev. 1.1

Alternatively, consider the case where the output format is an 8-bit signed 
integer.  Setting dw = 8 and fw = 0, the output word would be:

In addition, there are some special cases that need to be observed.  In 
the case of a positive floating-point input being larger than the maximum 
representable  fixed-point  number  then  the  output  will  saturate  to  the 
maximum positive fixed-point number.  Likewise, the output will saturate 
to the maximum allowable negative number if the a negative floating-point 
input is too large.  In both instances of positive and negative overflow,  the 
signal ofl will be asserted with the output value.

If the input floating-point value is a denormalized number, then the fixed-
point output will be 0 and the den flag will be asserted high.  If the input is 
a  NaN  then  the  fixed-point  output  will  be  set  to  0  and  the  nan flag 
asserted.  Finally, the case of the input being positive or negative Infinity 
is treated in the same manner as a positive or negative overflow,  with 
additional inf flag also being asserted.

All values are sampled on the rising clock-edge of  clk when en  is high. 
The function has a 2 clock-cycle latency.

Functional Timing

Figure 2 demonstrates the conversion of two floating-point numbers.  The 
first  number  is  0xC0FE6666  and  the  second  is  0x40F80000  which 
represent  the real  numbers -7.95 and  7.75 respectively.   The generic 
parameters have been set to: dw = 12, fw = 8.  The results are available 
two clock cycles later.

Figure 3 shows a sequence of floating-point exceptions that  cause the 
various flags to be exercised.  The first value of 0xC101999A represents 
the number -8.1.  The largest negative number allowed in [12 8] format is 
-8 so this causes the overflow flag to be asserted.  The next three values 
represent a denormalized number, +Infinity and NaN.

Source File Description

All source files are provided as text files coded in VHDL.  The following 
table gives a brief description of each file.

Source file Description

ieee_to_fixed.vhd Top-level component

ieee_to_fixed_bench.vhd Top-level test bench

Functional Testing

An example  VHDL testbench  is  provided  for  use  in  a  suitable  VHDL 
simulator.  The compilation order of the source code is as follows:

1. ieee_to_fixed.vhd
2. ieee_to_fixed_bench.vhd

The VHDL testbench instantiates the top-level component and  the user 
may modify the generic parameters dw and fw as required

The  simulation  must  be  run  for  at  least  2  ms  during  which  time  the 
'ieee_to_fixed' component will receive  an input stimulus of randomized 
floating-point numbers.

The simulation  generates  two text  files  called:  ieee_to_fixed_in.txt and 
ieee_to_fixed_out.txt.   These  files  respectively  contain  the  input  and 
output values captured during the test.

Synthesis

The source file 'ieee_to_fixed.vhd' is the only file required for synthesis. 
There are no sub-modules in the design.

The VHDL core is designed to be technology independent.  However, as 
a benchmark, synthesis results have been provided for the Xilinx Virtex 5 
and the Altera Stratix III series of FPGA devices.  The lowest and highest 
speed grade devices have been chosen in both cases for comparison. 
Trial synthesis results are shown with the generic parameters set to: dw = 
32, fw = 23.

Resource usage is specified after Place and Route.

Copyright © 2011 www.zipcores.com Download this VHDL Core Page 2 of 3

Figure 2: Floating-point to [12 8] fixed-point conversion

Figure 3: Floating-point to [12 8] fixed-point with flags

http://www.zipcores.com/32-bit-floating-point-to-fixed-point-converter.html

