
PIPE_MULT

Pipelined Multiplier with generic width and depth
Rev. 1.3

Key Design Features

● Synthesizable, technology independent VHDL IP Core

● Function y = a * b

● Input values as signed or unsigned numbers

● Output values as signed or unsigned numbers

● Configurable data with and pipeline depth

● Supports both LUT-based or hard multiplier blocks

● Includes a classic shift-add multiplier for larger width
implementations

● High-speed fully pipelined architecture

Applications

● Fixed-point mathematics

● Fundamental building block in all digital processing functions

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

en in Clock enable high

a_in [dw - 1:0] in Input value #1 data

b_in [dw - 1:0] in Input value #2 data

product [dw*2 - 1:0] out Output product data

Generic Parameters

Generic name Description Type Valid range

dw Input data width integer ≥ 1

levels Number of pipeline
stages

integer ≥ 1

style Multiplier style
(compiler hint)

string Altera®:
dsp, logic

Xilinx®:
auto, block, lut
pipe_lut, etc.

use_signed Use signed or
unsigned arithmetic

boolean TRUE/FALSE

Block Diagram

General Description

PIPE_MULT (Figure 1) is a general purpose multiplier with a configurable
data width and configurable number of pipeline stages. Input values are
accepted as either signed or unsigned numbers depending on the generic
setting use_signed. Likewise, output values are either signed or unsigned
depending on the same setting.

The number of pipeline stages may be programmed using the generic
parameter levels. By changing this value, a multiplier may be generated
which trades off latency against maximum attainable clock frequency.

In addition, the pipelined multiplier component also includes a compiler
hint generic setting. By modifying this setting, the compiler can be
instructed to infer LUT-based or hard multiplier/DSP resources.

Values are sampled on the rising clock-edge of clk when en is high. The
function has a clock-cycle latency which is equal to the number of pipeline
levels.

Functional Timing

Figure 2 demonstrates the computation of: a_in * b_in, where a = 0xA92F
(-22225 in decimal) and b = 0x712C (28972 in decimal). In this example,
the parameters have been set to dw = 16, levels = 3, use_signed = true.
The result, 0xD99ED314 (-643902700) has a latency of 3 clock cycles.

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 1 of 3

Figure 2: Calculation of a * b

Figure 1: Pipelined multiplier architecture (conceptual model)

http://www.zipcores.com/pipelined-multiplier-with-generic-width-and-depth.html

PIPE_MULT

Pipelined Multiplier with generic width and depth
Rev. 1.3

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

pipe_mult_reg.vhd Pipeline register block

pipe_mult_classic.vhd Classic pipelined multiplier
(More suited to large width LUT-
based implementations)

pipe_mult_classic_unsigned.vhd Classic pipelined multiplier
(Unsigned version)

pipe_mult.vhd Top-level block

pipe_mult_bench.vhd Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. pipe_mult_reg.vhd
2. pipe_mult.vhd
3. pipe_mult_bench.vhd

The VHDL testbench instantiates the multiplier component and the user
may modify the generic parameters as required. The simulation must be
run for at least 2 ms during which time the multiplier will be driven with a
randomized sequence input values. The test terminates automatically.

The simulation generates two text files called: pipe_mult_in.txt and
pipe_mult_out.txt. These files respectively contain the input and output
data samples captured at the interfaces during the test.

Figure 3 shows the results of the multiplier used to implement the function
f(x) = x2. Results are shown for the first 1000 samples.

Synthesis

The source files required for synthesis and the design hierarchy is shown
below:

● pipe_mult.vhd
○ pipe_mult_reg.vhd

The VHDL core is designed to be technology independent. However, as a
benchmark, synthesis results have been provided for the Xilinx® Virtex 6
and Spartan 6 FPGA devices. Synthesis results for other FPGAs and
technologies can be provided on request.

Synthesis results are shown with the generic parameters set to: dw = 32,
levels = 5, style = auto, use_signed = true.

Note that increasing the number of pipeline levels will increase the
maximum attainable clock frequency (up to a point) for a given multiplier
data width.

Two additional 'Classic' implementations of the pipelined multiplier are
also provided with the source code In some instances these may give
better results than the standard 'pipe_mult.vhd' component. These files
are called: 'pipe_mult_classic.vhd' and 'pipe_mult_classic_unsigned.vhd'.

These versions of the multiplier have a fixed latency of 4 and 3 cycles
respectively. They are coded as a series of partial products, shifts and
adds and are generally more suited to LUT-based or very wide multiplier
implementations.

Resource usage is specified after Place and Route.

VIRTEX 6

Resource type Quantity used

Slice register 49

Slice LUT 17

Block RAM 0

DSP48 4

Occupied slices 10

Clock frequency (approx) 650 MHz

SPARTAN 6

Resource type Quantity used

Slice register 49

Slice LUT 22

Block RAM 0

DSP48 4

Occupied slices 9

Clock frequency (approx) 200 MHz

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 2 of 3

Figure 3: Plot of test results for function: f(x) = x2

http://www.zipcores.com/pipelined-multiplier-with-generic-width-and-depth.html

