
XY_SCALER

Digital Video Scaler IP Core
Rev. 3.1

Key Design Features

● Synthesizable, technology independent soft IP Core for FPGA,
ASIC and SoC devices

● Supplied as human readable VHDL (or Verilog) source code

● Versatile RGB (or YCbCr 444) video scaler capable of scaling
up or down by any factor

● Fully programmable scale parameters and scaler bypass
function

● Fully programmable RGB channel widths allow support for any
RGB format (or greyscale if only one channel is used)

● Supports all video resolutions up to 216 x 216 pixels

● Fully pipelined architecture with simple data-streaming flow
control

● Features a 5x5-tap polyphase filter in the x and y dimensions
with 16 unique phases

● Example general purpose 'Lanczos2' filter coefficients shipped
with the design. Different coefficient sets available on request

● Output rate is 1 x pixel per clock for scaling factors > 1

● Generates one scaled output frame for every input frame

● No frame buffer required

● Supports 350MHz+ operation on basic FPGA devices1

Applications

● Studio quality dynamic real-time video scaling

● Conversion of all standard and custom video resolutions such
as HD720P to HD1080P, XGA to VGA etc.

● Support for the latest generation video formats with resolutions
of 4K and above

● Video scaling for flat panel displays, portable devices, video
image sensors, consoles, video format converters, set-top
boxes, digital TV etc.

● Picture-in-Picture (PiP) and dynamic zoom applications

Generic Parameters

Generic name Description Type Valid range

dw RGB channel width integer ≥ 2

line_width Width of linestores in
pixels

integer 24 < pixels < 216

log2_line_width Log2 of linestore width integer Log2

(line_width)

1 Xilinx® 7-series used as a benchmark

Block Diagram

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

bypass_en in Bypass the video scaling
function

0: scaled video
1: bypass video

scale_pitch_x [23:0] in 1 / (x scale factor)
(Unsigned number in
[24 12] format)

data

scale_pitch_y [23:0] in 1 / (y scale factor)
(Unsigned number in
[24 12] format)

data

input_ppl [15:0] in Number of pixels per line in
the source video
(Unsigned 16-bit number)

data

input_lpf [15:0] in Number of lines per frame
in the source video
(Unsigned 16-bit number)

data

output_ppl [15:0] in Number of pixels per line in
the scaled output video
(Unsigned 16-bit number)

data

output_lpf [15:0] in Number of lines per frame
in the scaled output video
(Unsigned 16-bit number)

data

Copyright © 2020 www.zipcores.com Download this IP Core Page 1 of 5

reset

clk

pixin

pixin_vsync

pixin_hsync

pixin_rdy

dw*3

sc
al

e_
pi

tc
h_

x

in
pu

t_
pp

l

24

pixin_val

sc
al

e_
pi

tc
h_

y

in
pu

t_
lp

f

lin
e_

w
id

th

lo
g2

_l
in

e_
w

id
th

PIXEL BUFFER

5-TAP
POLYPHASE

FILTER

COEFFICENT
ROM

LINE BUFFER

5-TAP
POLYPHASE

FILTER

COEFFICENT
ROM

HORIZONTAL
SCALER

VERTICAL
SCALER

RGB or YCbCr

pixout

pixout_vsync

pixout_hsync

pixout_rdy

pixout_val

24

ou
tp

ut
_p

pl

16 1616

ou
tp

ut
_l

pf

16

RGB or YCbCr

ta
p0

ta
p1

ta
p2

ta
p3

ta
p4

tap0

tap1

tap2

tap3

tap4

dw*3

bypass_en

Figure 1: Digital video scaler architecture

http://www.zipcores.com/digital-video-scaler.html

XY_SCALER

Digital Video Scaler IP Core
Rev. 3.1

Pin-out Description cont ...

Pin name I/O Description Active state

pixin [dw*3 - 1:0] in RGB pixel in data

pixin_vsync in Vertical sync in
(Coincident with first pixel
of input frame)

high

pixin_hsync in Horizontal sync in
(Coincident with first pixel
of input line)

high

pixin_val in Input pixel valid high

pixin_rdy out Ready to accept input pixel
(Handshake signal)

high

pixout [dw*3 - 1:0] out RGB pixel out data

pixout_vsync out Vertical sync out
(Coincident with first pixel
of output frame)

high

pixout_hsync out Horizontal sync out
(Coincident with first pixel
of output line)

high

pixout_val out Output pixel valid high

pixout_rdy in Ready to accept output
pixel
(Handshake signal)

high

General Description

The XY_SCALER IP Core is a studio quality video scaler capable of
generating interpolated output images from 16 x 16 up to 216 x 216 pixels
in resolution. The architecture permits seamless scaling (either up or
down) depending on the chosen scale factor. Internally, the scaler uses a
24-bit accumulator and a bank of polyphase FIR filters with 16 phases or
interpolation points. All filter coefficients are programmable, allowing the
user to define a wide range of filter characteristics.

Pixels flow into and out of the video scaler in accordance with a simple
valid-ready streaming protocol. Pixels are transferred into the scaler on a
rising clock-edge when pixin_val and pixin_rdy are both active high.
Likewise, pixels are transferred out of the scaler on a rising clock-edge
when pixout_val and pixout_rdy are both active high. As such, the
pipeline protocol allows both input and output interfaces to be stalled
independently.

The scaler is partitioned into a horizontal scaling module in series with a
vertical scaling module as shown by Figure 1.

Scale pitch, pixels per line and lines per frame

The output resolution of the scaled output image is controlled by the
generic parameters scale_pitch_x, scale_pitch_y, input_ppl, input_lpf,
output_ppl and output_lpf. The scale pitch may be calculated using the
following formula:

pitch = (Input resolution
Output resolution

) ∗ 212

As an example, consider the scaling of VGA format video (640x480) to
XGA format video (1024x768). In this case the scale pitch in the x and y
dimensions would be 0.625. As the value must be specified as a 12.12-
bit number the actual scale pitch must be multiplied by 212 giving the
value '2560'.

In addition the user must also specify the exact resolution of the source
input frame and the scaled output frame using the parameters: input_ppl,
input_lpf, output_ppl and output_lpf. The following tables give a list of
generic parameters required for the conversion of some example video
formats.

SCALE UP

Video
IN

Video
OUT

Pitch
X

Pitch
Y

I/P
PPL

I/P
LPF

O/P
PPL

O/P
LPF

VGA
640x480

SVGA
800x600

3277 3277 640 480 800 600

SVGA
800x600

XGA
1024x768

3200 3200 800 600 1024 768

XGA
1024x768

HD1080
1920x1080

2184 2913 1024 768 1920 1080

SXGA
1280x1024

2K
2048x1080

2560 3884 1280 1024 2048 1080

SCALE DOWN

Video
IN

Video
OUT

Pitch
X

Pitch
Y

I/P
PPL

I/P
LPF

O/P
PPL

O/P
LPF

SVGA
800x600

VGA
640x480

5120 5120 800 600 640 480

XGA
1024x768

SVGA
800x600

5243 5243 1024 768 800 600

HD1080
1920x1080

XGA
1024x768

7680 5760 1920 1080 1024 768

2K
2048x1080

SXGA
1280x1024

6554 4320 2048 1080 1280 1024

Flow control

Pixels flow in and out of the video scaler in accordance with the valid-
ready pipeline protocol2. The scaling operation occurs on a line-by-line
basis with the signal pixin_hsync specifying the start of a new line and
pixin_vsync specifying the start of a new frame. All pixels into the scaler
(including pixin_vsync and pixin_hsync) must be qualified by the pixin_val
signal asserted high, otherwise changes to the input signals will be
ignored. Note that the first pixel of a new frame is accompanied by a valid
vsync and hsync. The first pixel in a new line is accompanied by hsync
only.

On receipt of the first vsync, the scaling operation begins and output
pixels are generated in accordance with the chosen scale parameters.
Generally, for scale-down (decimation) operations, the input interface will
not stall. Conversely, for scale-up (interpolation) the number of output
pixels will be greater than the number of input pixels. This will result in
the occasional stalling of the input due to the change in ratio.

2 See Zipcores application note: app_note_zc001.pdf for more
examples of how to use the valid-ready pipeline/streaming protocol

Copyright © 2020 www.zipcores.com Download this IP Core Page 2 of 5

http://www.zipcores.com/digital-video-scaler.html

XY_SCALER

Digital Video Scaler IP Core
Rev. 3.1

Loading of scale parameters and bypass mode

The scale parameters are fully programmable and allow the input video to
be scaled differently on a frame-by-frame basis. With careful design, the
architecture also permits different video sources to be multiplexed into the
same scaler with different scaling parameters.

Parameters are updated continuously on every rising clock edge and
must remain stable during the scaling operation. When programming new
scale parameters (e.g. due to a change of video mode) it is necessary to
assert the system reset signal for at least one clock cycle to avoid any
possible corruption in the output video. This is often convenient to do
during the vertical blanking period of an input video frame when there are
no active pixels. After reset the scaler will lock to the next clean input
frame before the scaling operation continues.

The video scaling function may be bypassed completely by asserting the
bypass_en signal high. In bypass mode then the video input is passed
directly to the video output to give exact 1:1 video in/out. Switching in and
out of bypass mode must be done in the same manner as switching
scaling parameters. That is, a system reset must be performed when
there are no active pixels being processed by the scaler to avoid
corruption of the output video.

Scaling algorithm

The scaler uses a 5-tap polyphase filter with 16 phases in both the x and
y dimensions. By default, both the x and y filter kernels use a coefficient
set sampled from the Lanczos2 function (Figure 2).

Figure 3, below shows how the phase changes relative to the pixel taps
during the scaling operation. Depending on the fractional part of the
accumulator, different weights are given to the pixel taps when generating
the interpolated output pixels.

Different filter kernels can generate slightly different results. Example
scripts are provided to generate: Lanczos2, Lanczos3, Hamming and
Kaiser coefficient sets. Alternatively, the user may choose to generate
their own coefficient sets3.

Functional Timing

Figure 4 shows the signalling at the input to the scaler at the start of a
new frame. The first line of a new frame begins with pixin_vsync and
pixin_hsync asserted high together with the first pixel. Note that the
signals pixin, pixin_vsync and pixin_hsync are only valid if pixin_val is
also asserted high. In addition, the diagram shows what happens when
pixin_rdy is de-asserted. In this case, the pipeline is stalled and the
upstream interface must hold-off before further pixels are processed.

Figure 5 shows the signalling at the output of the scaler. The output uses
exactly the same protocol as the input. Each new output line begins with
pixout_hsync and pixout_val asserted high. In this particular example, it
shows pixout_val de-asserted for 1 clock-cycle, in which case, the output
pixel should be ignored. Remember that transfers at a valid-ready
interface are only permitted when valid and ready are both simultaneously
high.

3 See Zipcores application note: app_note_zc003.pdf for examples of
how to generate different coefficient sets

Copyright © 2020 www.zipcores.com Download this IP Core Page 3 of 5

Figure 2: Lanczos2 windowed-sinc function - filter tap positioning

tap0 tap1 tap2 tap3 tap4

1.0

0 1 2-1-2

Figure 3: The 16-phases of the 5-tap filter

tap0 tap1 tap2 tap3 tap4

1.0

2-2
......

Phase 0 function position

Phase 1 function position Phase 15 function position

Figure 4: First line of a new input frame - also showing pipeline stall

Pixel 0

clk

pixin

Pipeline stall

Pixel 1 Pixel 2 Pixel 3 Pixel 4

pixin_val

pixin_hsync

pixin_rdy

Start of new frame

pixin_vsync

Figure 5: First line of a new output frame – also showing invalid output
pixel

Pixel 0

clk

pixout

Pixel invalid - ignore

Pixel 1 Pixel 4

pixout_val

pixout_vsync

pixout_rdy

Start of new output frame

Pixel 2 Pixel 3

pixout_hsync

http://www.zipcores.com/digital-video-scaler.html

XY_SCALER

Digital Video Scaler IP Core
Rev. 3.1

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

video_in.txt Text-based source video file

video_file_reader.vhd Reads text-based source video file

pipeline_reg.vhd Pipelined register element

pipeline_shovel.vhd Pipelined 'shovel' register

ram_dp_w_r.vhd Dual port RAM component

fifo_sync.vhd Synchronous FIFO

x_buffer.vhd Pixel input buffer/shift register

x_filter_pack.vhd Package containing x-filter coefficients

x_filter_polyphase.vhd Horizontal scaler output pixel filter

x_scaler.vhd Horizontal scaler component

y_buffer.vhd Line buffer

y_filter_pack.vhd Package containing y-filter coefficients

y_filter_polyphase.vhd Vertical scaler output pixel filter

y_scaler.vhd Vertical scaler component

xy_reg.vhd Video scaler input registers

xy_scaler.vhd Video scaler top-level component

xy_scaler_bench.vhd Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. video_file_reader.vhd
2. pipeline_reg.vhd
3. pipeline_shovel.vhd
4. ram_dp_w_r.vhd
5. fifo_sync.vhd
6. x_buffer.vhd
7. x_filter_pack.vhd
8. x_filter_polyphase.vhd
9. x_scaler.vhd
10. y_buffer.vhd
11. y_filter_pack.vhd
12. y_filter_polyphase.vhd
13. y_scaler.vhd
14. xy_reg.vhd
15. xy_scaler.vhd
16. xy_scaler_bench.vhd

The VHDL testbench instantiates the XY_SCALER component and the
user may modify the generic parameters in order to generate the desired
scaled output image.

The source video for the simulation is generated by the video file-reader
component. This component reads a text-based file which contains the
RGB pixel data. The text file is called video_in.txt and should be placed
in the top-level simulation directory.

The file video_in.txt follows a simple format which defines the state of
signals: pixin_val, pixin_vsync, pixin_hsync and pixin on a clock-by-clock
basis. An example file might be the following:

1 1 1 00 11 22 # pixel 0 line 0 (start of frame)
1 0 0 33 44 55 # pixel 1
0 0 0 00 00 00 # don't care!
1 0 0 66 77 88 # pixel 2
.
.
1 0 1 00 11 22 # pixel 0 line 1 etc..

In this example, the first line of of the video_in.txt file asserts the input
signals pixin_val = 1, pixin_vsync = 1, pixin_hsync = 1 and pixin =
0x001122.

The simulation must be run for at least 10 ms during which time an output
text file called video_out.txt will be generated4. This file contains a
sequential list of 24-bit output pixels in the same format as video_in.txt.
The example provided scales a 768x576 source test pattern by a factor of
0.833 in the x and y dimensions to give a VGA output image of 640x480
pixels. Figure 6 shows the resulting image from the test.

Performance

The Digital Video Scaler was tested with a large number of scale factors
to verify correct operation and to observe the quality of the output video.
The true definition and quality is difficult to show within the limitations of
this document, however, example images can be provided on request.

The video scaler was also verified using the Zipcores ZIP-HDV-001
development board featuring a Xilinx Spartan6 FPGA. The photo in
Figure 7 demonstrates the scale down of a PAL source image to a small
custom video window of 500x400 pixels on an SXGA (1280x1024)
background.

4 Simple PERL scripts for generating and processing input and output
text files are provided with the IP Core package

Copyright © 2020 www.zipcores.com Download this IP Core Page 4 of 5

Figure 6: Output frame from the hardware simulation example
(Scale-down of 768x576 to 640x480)

http://www.zipcores.com/digital-video-scaler.html

