
SPI_MASTER

SPI Master Serial Interface Controller
Rev. 1.3

Key Design Features

● Synthesizable, technology independent IP Core for FPGA,
ASIC and SoC

● Supplied as human readable VHDL (or Verilog) source code

● SPI serial-bus compliant

● Supports up to 16 slave devices

● Intuitive command interface featuring a simple valid-ready
handshake protocol

● Input/output FIFOs permit queuing of sequential SPI requests
and corresponding read data

● Architecture allows sustained 8-bit read/write operations

● Configurable serial clock frequency

● Configurable clock polarity setting (CPOL)

● Configurable clock phase setting (CPHA)

● Capable of full-duplex or half-duplex operation

● Data rates of up to 40 Mbps+1

Applications

● Driving SPI slave devices

● Inter-chip board-level communications

● Robust communication at higher data rates than other serial
protocols such as I2C, UART and USB 1.0

Generic Parameters

Generic name Description Type Valid range

t_period Serial clock period (in
system clock cycles)

integer ≥ 5

cpol Clock polarity integer 0, 1
(As per SPI

specification)

cpha Clock phase integer 0, 1
(As per SPI

specification)

wfifo_depth Master instruction
write FIFO depth

integer ≥ 2

wfifo_depth_log2 Master instruction
write FIFO depth log2

integer log2
(wfifo_depth)

rfifo_depth Slave read data FIFO
depth

integer ≥ 2

rfifo_depth_log2 Slave read data FIFO
depth log2

integer log2
(rfifo_depth)

1 Maximum attainable data rate will generally be determined by the
slave SPI device and the physical characteristics of the bus

Block Diagram

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

mast_sel[3:0] in Slave device selection
(0 to 15)

data

mast_inst[1:0] in Master instruction data

mast_data[7:0] in Master data to be
serialized

data

mast_val in Master instruction valid high

mast_rdy out Master ready handshake high

sclk out SPI serial clock rising or falling
edge2

ss[15:0] out SPI slave select
(One hot decode)

low

mosi out SPI Master out / Slave in data

miso in SPI Master in / Slave out data

slv_sel[3:0] out Slave device id data

slv_inst[1:0] out Slave instruction data

slv_data[7:0] out Slave data received from
slave device

data

slv_val out Slave data valid high

slv_rdy in Slave ready handshake high

2 Note that the serial clock characteristics are dependent on the CPOL
and CPHA settings. See the SPI specification for more details

Copyright © 2017 www.zipcores.com Download this VHDL Core Page 1 of 5

F
IF

O
 s

ta
ge

 #
0

mast_val

mast_rdy

clk

reset

mast_data

WRITE FIFO

F
IF

O
 s

ta
ge

 #
1

F
IF

O
 s

ta
ge

 #
n

SPI MASTER
CONTROLLER

sclk

ss[0]

F
IF

O
 s

ta
ge

 #
0

F
IF

O
 s

ta
ge

 #
1

F
IF

O
 s

ta
ge

 #
n

READ FIFO

PAD

PAD

mast_sel

ss[1]
PAD

ss[15]
PAD

mosi
PAD

miso
PAD

mast_inst

slv_val

slv_rdy

slv_data

slv_sel

slv_inst

Figure 1: SPI Master Interface Controller architecture

http://www.zipcores.com/spi-master-serial-interface-controller.html

SPI_MASTER

SPI Master Serial Interface Controller
Rev. 1.3

General Description

The SPI_MASTER IP Core is an SPI compliant serial interface controller
capable of driving up to 16 different slave devices in full-duplex operation.
The controller receives data and instructions via the master instruction
interface. These instructions are then processed by the controller core in
order to generate the appropriate signals on the SPI bus. The serial slave
data on the SPI bus is also captured by the controller and de-serialized
for presentation at the slave read data port.

The SPI master controller is comprised of three main blocks as described
by Figure 1. These blocks are the master instruction write FIFO, the SPI
controller core and the slave read-data output FIFO.

The serial clock-period is determined by the generic parameter t_period.
This parameter specifies the sclk period in system clock cycles. As an
example, if the system clock 'clk' is running at 130 MHz and a serial clock
frequency of 10 MHz is required, a value of t_period = 13 should be
specified. In addition, the generic parameters cpol and cpha permit the
clock polarity and phase characteristics to be specified as per the SPI
specification. The table below shows a brief summary of these settings.

CPOL CPHA Description

0 0 Serial clock default state logic '0'
Data sampled on rising-edge of serial clock
Data changes on falling-edge of serial clock

0 1 Serial clock default state logic '0'
Data sampled on falling-edge of serial clock
Data changes on rising-edge of serial clock

1 0 Serial clock default state logic '1'
Data sampled on falling-edge of serial clock
Data changes on rising-edge of serial clock

1 1 Serial clock default state logic '1'
Data sampled on rising-edge of serial clock
Data changes on falling-edge of serial clock

Master Write FIFO

Instructions to the SPI master controller are sent via an input FIFO whose
depth is determined by the generic parameter wfifo_depth. The write
FIFO interface operates in accordance with a simple valid/ready pipeline
protocol meaning that instructions and data are written to the FIFO on the
rising edge of clk when mast_val is high and mast_rdy is high3

The write FIFO may be used to 'queue up' a sequence of commands and
data while current commands are being processed on the bus. As soon
as the write FIFO becomes full then the FIFO will disable the mast_rdy
signal signifying that further requests are not possible.

Likewise, the mast_rdy signal will also be disabled if the slave read-data
FIFO becomes full. In both situations, no further commands will be
accepted by the SPI controller until the FIFOs have emptied.

The instructions to the SPI controller are very intuitive and follow the
exact sequence of commands that the user wishes to appear on the SPI
bus. The following table outlines the set of commands accepted by the
controller via the master write FIFO.

3 See Zipcores application note: app_note_zc001.pdf for more
examples of the valid/ready protocol and it's implementation

MASTER INSTRUCTION INPUT FORMAT

mast_inst[3:0] mast_data[7:0] Description

“00” [7:0]: Write data SPI WRITE

Write 8-bits serially on the SPI
bus. Ignore the read data bits

(Half-duplex operation)

“01” [7:0]: 'X' Don't care SPI READ

Read 8-bits serially on the SPI
bus. Write data is don't care.

(Half-duplex operation)

“10” [7:0]: Write data SPI READ/WRITE

Read and write 8-bits serially
on the SPI bus.

(Full-duplex operation)

“11” [7:0]: Don't care NULL

Dummy instruction.

(May be used to force the
slave select signal inactive
between sequential SPI
transfers)

As an example, to write two consecutive bytes followed by two
consecutive reads from the same slave device with the slave select signal
forced inactive-high in between, the instructions “00”, “00”, “11”, “01”, “01”
would be sent.

Of course, the exact sequence of instructions required will depend on the
functionality of the slave device that is to be accessed. For this reason,
there is no restriction in the ordering of instructions that may be sent to to
the SPI master controller.

SPI Master Controller Core

The master controller is a state-machine that accepts instructions from
the write FIFO and generates the appropriate signals on the SPI bus.
Immediately after an asynchronous reset of the core, the state machine
starts in the reset state with the slave select lines 'ss' inactive high. On
receipt of the first valid instruction, the state machine will take control of
the bus and drive the sclk, ss and mosi lines in response to the received
instructions and data. If the instruction is a read operation, the controller
will also sample the input serial data on the miso pin.

The default state of the serial clock and the edges in which the serial data
are sampled and changed is dependent on the cpol and cpha settings as
described earlier.

Slave Read FIFO

For every master instruction received by the controller, the controller also
sends a copy of the original instruction plus the slave read data (if
applicable) to the slave read FIFO. In the case that the originating
instruction was a slave write then the slave read data contains a copy of
the original master data. The following table gives a brief summary of the
instruction format.

Copyright © 2017 www.zipcores.com Download this VHDL Core Page 2 of 5

http://www.zipcores.com/spi-master-serial-interface-controller.html

SPI_MASTER

SPI Master Serial Interface Controller
Rev. 1.3

SLAVE INSTRUCTION OUTPUT FORMAT

slv_inst[3:0] slv_data[7:0] Description

“00” [7:0]: (same as
original master data)

SPI WRITE

“01” [7:0]: (slave read
data)

SPI READ

“10” [7:0]: (slave read
data)

SPI READ/WRITE

“11” [7:1]: slave address
[0]: r/w flag

ADDR

Note that the slv_inst outputs are identical to the mast_inst inputs. The
exception is the NULL instruction where nothing is logged in the slave
read FIFO.

Functional Timing

Figure 2 shows a simple series of instructions sent to the controller. The
sequence is: WRITE, READ, WRITE and READ/WRITE. Note that the
FIFO is full after the third instruction and mast_rdy is de-asserted for one
clock cycle. In the following cycle, mast_rdy goes high and the final
instruction is transferred.

Figure 3 demonstrates the series of responses on the slave port for the
same set of instructions.

Finally, Figure 4 demonstrates the corresponding SPI bus signals that are
generated in response to the sequence of instructions described above.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

spi_fifo.vhd Input/output FIFOs

spi_master_cont.vhd SPI master controller

spi_master.vhd Top-level block

spi_master_bench.vhd Top-level test bench

Functional Testing

An example VHDL test bench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. spi_fifo.vhd
2. spi_master_cont.vhd
3. spi_mast.vhd
4. spi_master_bench.vhd

The VHDL test bench instantiates the spi_master component in a
loopback configuration – meaning that the SPI mosi pin is fed back to the
SPI miso pin. In addition, the user may modify the generic parameters on
the SPI master component in order to select the desired clock
relationships (CPOL/CPHA) and the desired serial clock frequency.

Copyright © 2017 www.zipcores.com Download this VHDL Core Page 3 of 5

clk

mast_inst 0x0

Data Transfer

mast_data 0x55 0x0F

0x1 0x0 0x2

mast_val

mast_rdy

mast_sel 0x04 0x05

0xF0

Figure 2: Master instruction interface timing

clk

0x0

Data Transfer

slv_data 0x55 0x47 0x0F 0x19

0x1 0x0 0x2

slv_val

slv_rdy

slv_inst

0x05slv_sel 0x04

Figure 3: Slave instruction interface timing

SCLK

1 2 3 4 5 6 7 8

MOSI

SS[15:0]

MISO

D7 D6 D5 D4 D3 D2 D1 D0

9 10 11 12 13 14 15 16

SCLK

17 18 19 20 21 22 23 24

MOSI

SS[15:0]

MISO

D7 D6 D5 D4 D3 D2 D1 D0

25 26 27 28 29 30 31 32

D7 D6 D5 D4 D3 D2 D1 D0

Write = 0x55 Read = 0x47

Write = 0x0F

0xFFFB

Don't
care

D7 D6 D5 D4 D3 D2 D1 D0

Don't
care

0xFFFA 0xFFFF

Write = 0xF0 / Read = 0x19

Don't
care

Figure 4: SPI bus signalling

http://www.zipcores.com/spi-master-serial-interface-controller.html

SPI_MASTER

SPI Master Serial Interface Controller
Rev. 1.3

In the default set up, the simulation must be run for around 100 ms during
which time a random sequence of instructions will be sent to the master
controller.

The simulation generates two text files: spi_master_in.txt and
spi_master_out.txt. These files contain, respectively, the input and output
data captured at the master instruction and slave data ports during the
course of the test. The contents of these two files may be compared to
verify the operation of the SPI master controller.

Development Board Testing

The SPI Master Interface Controller was implemented on a Xilinx®
Spartan-6 FPGA running at a system clock frequency of 120 MHz. The
SPI slave device was a Microchip® 12-bit serial SPI DAC part number
MCP4822 running with a serial clock frequency of 20 MHz.

In all examples, the SPI mode was specified as mode 0,0 (CPOL = 0,
CPHA = 0) meaning that data is sampled on the rising edge of the clock
and changed on the falling edge. The default state of the clock is logic '0'.

Figure 5 below shows the relationship between the slave select signal
and the serial clock running at 20 MHz. The top trace is sclk and the
bottom trace is ss[0]. Notice that the slave select signal has a setup/hold
time of at least 1/2 serial clock before and after the serial clock is enabled
and disabled. This ensures compatibility with slower SPI slave devices.

The next figure demonstrates the corresponding 2-byte write at 20 MHz of
the value 0xBF7D. The top trace is the serial clock sclk and the bottom
trace is the serial data out mosi.

Finally, Figure 7 shows detail of the output sine waves generated by the
MCP4822 DAC component. A perfect 3.33 kHz sine wave was generated
on each DAC output channel. The SPI writes were set up so that a
sample was sent to each DAC channel in turn (A,B,A,B etc.) every 20 th

SPI clock (16 clocks then 4 wait clocks). This effectively meant that the
DAC update rate was 1 MHz (or 500 kHz per channel).

Copyright © 2017 www.zipcores.com Download this VHDL Core Page 4 of 5

Figure 5: SPI serial clock/slave select relationship

Figure 6: 16-bit SPI write detail at 20 MHz

Figure 7: DAC A and B output signals from the MCP4822 - both sinusoids
at 3.33 kHz

http://www.zipcores.com/spi-master-serial-interface-controller.html

