
SPI_SLAVE

SPI Slave Serial Interface Controller
Rev. 1.3

Key Design Features

● Synthesizable, technology independent IP Core for FPGA,
ASIC and SoC

● Supplied as human readable VHDL (or Verilog) source code

● SPITM serial-bus compliant (including Motorola and TI modes)

● Simple programming makes use of a single control register and
a single address register

● Architecture allows sustained 8-bit read/write operations

● User-defined number of 8-bit read-write configuration registers
and 8-bit read-only status registers (up to 256 of each type)

● User-defined preset default values for all configuration registers

● Configurable clock polarity setting (CPOL)

● Configurable clock phase setting (CPHA)

● SPI bus signals are treated asynchronously in relation to the
system clock

● Support of system clock to SPI clock ratios of 6:1 (or higher)

● Typical data rates of 50 Mbps+ on basic FPGA devices1

Applications

● SPI slave communications

● Inter-chip board-level communications

● Robust communication at higher data rates than other serial
protocols such as I2C, UART and USB 1.X

Generic Parameters

Generic name Description Type Valid range

num_config Number of
Configuration registers

integer 2 ≤ regs ≤ 256
(power of 2)

num_config_log2 Log2 number of
Configuration registers

integer Log2
(num_config)

num_status Number of
Status registers

integer 2 ≤ regs ≤ 256
(power of 2)

num_status_log2 Log2 number of
Status registers

integer Log2
(num_status)

cpol Clock polarity integer 0, 1

cpha Clock phase integer 0, 1

1 Maximum attainable data rate will be determined by the choice of
device and the and the physical characteristics of the bus

Block Diagram

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

sclk in SPITM Serial clock rising or falling
edge2

ss in SPITM Serial select low

mosi in SPITM
Master out / Slave in

data

miso tristate
out

SPITM

Master in / Slave out
data

co_flag out Control register write pulse high

ad_flag out Address register write pulse high

wr_flag out Config register write pulse high

rd_flag out Config register read pulse high

ro_flag out Status register read pulse high

control_reg [7:0] out Internal control register data

address_reg [7:0] out Internal address register data

config_reg
[num_config*8-1:0]

out Configuration register
output bits

data

status_reg
[num_status*8-1:0]

in External status register
input bits

data

2 Note that the serial clock characteristics are dependent on the CPOL
and CPHA settings. See the SPITM specification for more details

Copyright © 2021 www.zipcores.com Download this IP Core Page 1 of 5

clk

reset
CONFIG

REGISTERS
(Read/write)

SPI SLAVE
CONTROLLER

sclk

miso

PAD

PAD

Config reg #0

Config reg #1

Config reg #2

Config reg #n

config_reg

STATUS
REGISTERS
(Read only)

Status reg #0

Status reg #1

Status reg #2

Status reg #n

status_reg

READ
MUX

ss

PAD

mosi

PAD

Control reg

Address reg

8

8

8

8

oe

address_reg

control_regflags

sel

 (256 max)

 (256 max)

Figure 1: SPI Slave Interface Controller architecture

http://www.zipcores.com/spi-slave-serial-interface-controller.html
http://www.zipcores.com/spi-slave-serial-interface-controller.html
http://www.zipcores.com/spi-slave-serial-interface-controller.html

SPI_SLAVE

SPI Slave Serial Interface Controller
Rev. 1.3

General Description

The SPI_SLAVE IP Core is an SPITM compliant slave interface controller.
The controller decodes the bus signals and de-serializes them into a
series of 8-bit bytes. Communication with the slave controller is achieved
by programming a single control register and a single address register.
The control register defines whether the transfer is a read or write and
also the type of register to be accessed (config or status). The address
register provides an index into the chosen register bank.

Both the config registers and the status registers are directly connected to
the external ports of the controller. The config registers provide general
purpose read/write bits for the control of an external device. The status
registers are read only and allow the state of external pins to be
monitored via the SPI interface.

All inputs to the slave interface controller are driven by the bus Master
with the exception of miso which is a tristate output. The signal miso is
normally in the high-impedance state unless a read operation is in active
progress. The SPI slave controller is comprised of three main blocks as
described by Figure 1. These blocks are the SPI Slave Controller core,
the Configuration register bank and the Status register bank.

SPI Slave Controller Core

The slave controller core is a state-machine that continually monitors the
state of the SPI signals. An SPI transfer begins with the high-to-low
transition of the slave select signal ss. Once ss is driven low, the
controller will sample the next 16-bits from the master at the mosi input.
Bits are sampled on either the rising or falling edge of sclk depending on
the clock configuration settings cpol and cpha.

The first 8-bits in the transfer are written to the internal control register
and the next 8-bits are written to the internal address register. Figure 2
shows the programming of the control and address registers in more
detail.

Every SPI transfer must begin with a write to the control register and the
address register. The R/W flag in the control register determines whether
the operation is a read or a write. The C/S flag determines whether a

configuration register or a status register is to be accessed. The INC flag
(when set) turns off the address pointer auto-increment function. Bits U4
to U0 are user defined flags that may be programmed as required. The
address register contains the address of the first register to be accessed
in the chosen register bank. Once the control and address registers have
been written, the next 8 serial clocks are used to synchronize a write to a
configuration register or a read from a configuration/status register.

Normally after each 8-bit read or write, the internal address register is
incremented by 1 and the master may write or read a further 8-bits. This
means that successive back-to-back reads or writes will be performed on
the next register in the chosen register bank. Once the maximum
address has been reached, the address pointer will wrap around back to
0. Note that the address auto-increment function may be disabled by
setting the INC flag in the control register to '1'.

Any number of sequential register read or write operations may be
performed (to the same register bank). The SPI bus transfer will
terminate immediately as soon as ss is driven high. If the user wishes to
read and write different register banks, the current SPI transfer must be
terminated before the next bank is accessed.

The controller state machine generates a series of output flags whenever
an 8-bit read or write to one of the internal registers is performed. These
flags take the form of a single pulse that lasts for one system clock cycle.
The strobes may be used as interrupt or valid flags to indicate that the
contents of one of the registers has changed.

Clock Polarity and Phase settings

The generic settings cpol and cpha determine how the serial data is
sampled and changed with respect to the serial clock. These settings are
defined in the standard SPITM specification. The table below shows a brief
summary of these settings.

CPOL CPHA Description

0 0 Serial clock default state logic '0'
Data sampled on rising-edge of serial clock
Data changed on falling-edge of serial clock

0 1 Serial clock default state logic '0'
Data sampled on falling-edge of serial clock
Data changed on rising-edge of serial clock

1 0 Serial clock default state logic '1'
Data sampled on falling-edge of serial clock
Data changed on rising-edge of serial clock

1 1 Serial clock default state logic '1'
Data sampled on rising-edge of serial clock
Data changed on falling-edge of serial clock

Configuration Register bank

The configuration registers are organized as a bank of 8-bit general
purpose read/write registers that may be accessed via the SPI slave
interface. The config registers are designed to be used for the general
configuration of devices external to the controller.

The contents of these registers are made available at the output port
config_reg. This port contains the contents of all the config register bits
concatenated together. This means that bits 7..0 represent the contents
of config reg #0, bits 15..8 the contents of config reg #1 etc.

The total number of config registers is defined by the generic parameter
num_config. The total number of configuration registers must be a power
of 2 for the register addressing to work correctly. All config regsiters may
be given a user-defined default value which is present after system reset.

Copyright © 2021 www.zipcores.com Download this IP Core Page 2 of 5

U4 U3 U2 U1 U0 INC C/S R/W

CONTROL REGISTER

MSB LSB

7 6 5 4 3 2 1 0

Bit 0 - Read/Write flag 0 = Write, 1 = Read
Bit 1 - Config/Status register select 0 = Config, 1 = Status
Bit 2 - Address auto-increment 0 = Auto, 1 = No auto
Bit 7:3 - User defined control flags

A7 A6 A5 A4 A3 A2 A1 A0

ADDRESS REGISTER

MSB LSB

7 6 5 4 3 2 1 0

Bit 7:0 - Address of register to access

Figure 2: Control and Address register definitions

http://www.zipcores.com/spi-slave-serial-interface-controller.html
http://www.zipcores.com/spi-slave-serial-interface-controller.html
http://www.zipcores.com/spi-slave-serial-interface-controller.html

SPI_SLAVE

SPI Slave Serial Interface Controller
Rev. 1.3

Status Register bank

The status registers follow exactly the same structure as the configuration
registers. The difference is that these registers are read only. Any
attempt to write these registers will have no effect other than to perform a
dummy transfer on the SPI bus. The status registers are designed to be
used for snooping the state of control signals in an external device.

The port status_reg contains the contents of all the status register bits
concatenated together. This means that bits 7..0 represent the contents
of status reg #0, bits 15..8 the contents of status reg #1 etc.

The total number of status registers is defined by the generic parameter
num_status. The total number of status registers must be a power of 2
for the register addressing to work correctly.

Functional Timing

The following timing diagrams demonstrate the SPI protocol for reading
and writing registers in the various register banks. All the examples show
SPI mode 0,0 operation – meaning that data is sampled on the rising
edge of the serial clock and data changes on the falling edge. The default
state of the clock is logic '0'.

Figure 3 shows a write to two consecutive config registers at addresses
0x02 and 0x03. In this particular example the user-defined control flags
have also been set in the control register. Auto-increment is set to '0' so
that successive writes increment the value in the address pointer.

Figure 4 shows the corresponding config register read operation after the
previous write example.

Figure 5 demonstrates a sequential read from registers 0x01 and 0x02 in
the status register bank.

Copyright © 2021 www.zipcores.com Download this IP Core Page 3 of 5

SCLK

1 2 3 4 5 6 7 8

MOSI

SS

MISO

U4 U3 U2 U1 U0 INC C/S R/W

9 10 11 12 13 14 15 16

A7 A6 A5 A4 A3 A2 A1 A0

High-Impedance 'Z'

SCLK

17 18 19 20 21 22 23 24

MOSI

SS

MISO

D7 D6 D5 D4 D3 D2 D1 D0

25 26 27 28 29 30 31 32

High-Impedance 'Z'

D7 D6 D5 D4 D3 D2 D1 D0

Control Register = 0x58 Address Register = 0x02

Config register write = 0x55 at addr 0x02 Config register write = 0xAA at addr 0x03

 Continued
below ...

Figure 3: Config register write example

SCLK

1 2 3 4 5 6 7 8

MOSI

SS

MISO

U4 U3 U2 U1 U0 INC C/S R/W

9 10 11 12 13 14 15 16

A7 A6 A5 A4 A3 A2 A1 A0

High-Impedance 'Z'

SCLK

17 18 19 20 21 22 23 24

MOSI

SS

MISO

D7 D6 D5 D4 D3 D2 D1 D0

25 26 27 28 29 30 31 32

D7 D6 D5 D4 D3 D2 D1 D0

Control Register = 0x59 Address Register = 0x02

Config register read = 0x55 at addr 0x02 Config register read = 0xAA at addr 0x03

 Continued
below ...

Don't Care

Figure 4: Config register read example

SCLK

1 2 3 4 5 6 7 8

MOSI

SS

MISO

U4 U3 U2 U1 U0 INC C/S R/W

9 10 11 12 13 14 15 16

A7 A6 A5 A4 A3 A2 A1 A0

High-Impedance 'Z'

SCLK

17 18 19 20 21 22 23 24

MOSI

SS

MISO

D7 D6 D5 D4 D3 D2 D1 D0

25 26 27 28 29 30 31 32

D7 D6 D5 D4 D3 D2 D1 D0

Control Register = 0x03 Address Register = 0x01

Status register read = 0x0F at addr 0x01 Status register read = 0x33 at addr 0x02

 Continued
below ...

Don't Care

Figure 5: Status register read example

http://www.zipcores.com/spi-slave-serial-interface-controller.html
http://www.zipcores.com/spi-slave-serial-interface-controller.html
http://www.zipcores.com/spi-slave-serial-interface-controller.html

SPI_SLAVE

SPI Slave Serial Interface Controller
Rev. 1.3

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

spi_slave_stim.txt Input stimulus text file

spi_slave_pack.vhd Package for defining default values

spi_obuf.vhd Tristate output buffer

spi_config_reg.vhd Configuration register bank

spi_status_reg.vhd Status register bank

spi_slave_cont.vhd Main SPI slave controller

spi_slave_file_reader.vhd Reads the SPI bus signals from a text file

spi_slave.vhd Top-level block

spi_slave_bench.vhd Top-level test bench

Functional Testing

An example VHDL test bench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. spi_slave_pack.vhd
2. spi_obuf.vhd
3. spi_config_reg.vhd
4. spi_status_reg.vhd
5. spi_slave_cont.vhd
6. spi_slave.vhd
7. spi_slave_file_reader.vhd
8. spi_slave_bench.vhd

The VHDL test bench instantiates the SPI_SLAVE component together
with a file-reader module that reads the SPI bus signals from a text file.
The SPI serial clock characteristics may be modified by changing the
generic parameters cpol and cpha. In addition, the number of
configuration and status registers may be changed with the parameters
num_config and num_status. The testbench provided sets up the slave
controller with 4 config regs and 4 status regs. By default, the SPI mode
is set to 0,0 (i.e. cpol = 0, cpha = 0).

The input stimulus text file is called spi_slave_stim.txt and should be put
in the current top-level VHDL simulation directory. This text file contains
SPI commands that emulates the action of the SPI master on the bus. As
an example, in order to send the byte 0x55 to the slave controller (in SPI
mode 0,0) the text file would read:

0 0 0 # SS = 0, SCLK = 0, MOSI = 0
0 1 0 # SS = 0, SCLK = 1, MOSI = 0
0 0 1 # SS = 0, SCLK = 0, MOSI = 1
0 1 1 # SS = 0, SCLK = 1, MOSI = 1
0 0 0 # SS = 0, SCLK = 0, MOSI = 0
0 1 0 # SS = 0, SCLK = 1, MOSI = 0
0 0 1 # SS = 0, SCLK = 0, MOSI = 1
0 1 1 # SS = 0, SCLK = 1, MOSI = 1
0 0 0 # SS = 0, SCLK = 0, MOSI = 0
0 1 0 # SS = 0, SCLK = 1, MOSI = 0
0 0 1 # SS = 0, SCLK = 0, MOSI = 1
0 1 1 # SS = 0, SCLK = 1, MOSI = 1
0 0 0 # SS = 0, SCLK = 0, MOSI = 0
0 1 0 # SS = 0, SCLK = 1, MOSI = 0
0 0 1 # SS = 0, SCLK = 0, MOSI = 1
0 1 1 # SS = 0, SCLK = 1, MOSI = 1

In the text file, the SPI bus signalling is split into 2 phases on 2
consecutive lines. Each line is comprised of three bits in the format 'A B
C' where 'A' specifies the state of the SS line, 'B' is the state of the SCLK
line and 'C' is the state of the MOSI line. The values 'A', 'B' and 'C' can
either be specified as '0' or '1'.

In the default set up, the simulation must be run for around 1 ms during
which time the file-reader module will drive the SPI bus with the input
stimulus. In this particular example, the test bench performs a sequential
write and read of the 4 config and status registers.

The simulation generates the text file spi_slave_out.txt which contains a
snapshot of the 8-bit read/write data captured at the SPI interface during
the course of the test. The contents of this file may be examined to verify
the operation of the SPI slave controller.

Development Board Testing

The SPI Slave Serial Interface Controller was implemented on the
Digilent® Arty-A7 development board featuring an Xilinx® Artix-7 35T
FPGA. The system clock frequency was set to 100 MHz.

In order to test the SPI Slave, a corresponding SPI Master device was
implemented using the PICkit Serial Analyzer from Microchip®. The
PICkit Analyzer was connected to a host PC with a user interface
program. In this way, various SPI read and write commands could be
sent to the SPI Slave to confirm correct operation. Figure 6 below shows
the general bench setup for testing.

Various tests were performed to ensure correct operation of the SPI Slave
IP Core in various different configurations. These included different
numbers of configuration and status registers, different clock polarities
and different clock frequencies. In all cases the SPI Slave was found to
working correctly.

Copyright © 2021 www.zipcores.com Download this IP Core Page 4 of 5

Figure 6: Bench setup for testing the SPI Slave IP Core

http://www.zipcores.com/spi-slave-serial-interface-controller.html
http://www.zipcores.com/spi-slave-serial-interface-controller.html
http://www.zipcores.com/spi-slave-serial-interface-controller.html

