

Key Design Features

- Synthesizable, technology independent VHDL IP Core
- Function φ = atan2 (y,x)
- Inputs as 12-bit signed numbers
- Output phase as a 19-bit signed
- Output range $-\pi \le \phi \le \pi$
- Option for scaled output phase in range $-1 \le \varphi \le 1$
- Accurate to within 0.00008 radians
- High-speed fully pipelined architecture
- Small implementation size
- 7 clock-cycle latency

Applications

- Fixed-point mathematics
- Precision phase measurements in digital communications and digital signal processing
- Digital Phase-locked Loops (PLLs)
- More accurate, smaller, lower latency and faster than a CORDIC solution of similar specification

Pin-out Description

Pin name	I/O	Description	Active state
clk	in	Synchronous clock	rising edge
en	in	Clock enable	high
x_in [11:0]	in	Input value	data
y_in [11:0]	in	Input value data	
phi_out [18:0]	out	Output phase angle in radians	data

Functional Specification

Value	Туре	Valid range
x_in [11:0]	12-bit signed number	[-2048, 2047]
y_in [11:0]	12-bit signed number	[-2048, 2047]
phi_out [18:0]	19-bit signed fraction in [19 16] format	[-π, π]
		Accurate to within 0.00008 radians

Block Diagram

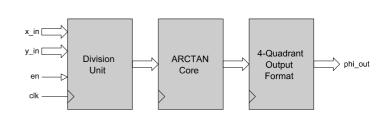


Figure 1: 4-quadrant Arctan core architecture

General Description

ATAN2_XY (Figure 1) calculates the 4-quadrant inverse tangent in the range - π to π . It has a fully pipelined architecture and uses fixed-point mathematics throughout. Input values are accepted as 12-bit signed numbers in the range -2048 to 2047. The calculated output phase (in radians) is a 19-bit signed value with 1 sign bit, 2 integer bits and 16 fractional bits. As an example, the output phase angle 0x18000 would represent 1.5 radians and the value 0x68000 would represent the value -1.5 radians. Internally, the arctan core function uses a 2nd order polynomial of the form:

$$y = ax^2 + bx + c$$

The coefficients a, b and c dynamically change with respect to the input value in order to generate a more accurate approximation. The output result is accurate to within 0.00008 radians. Values are sampled on the rising clock-edge of *clk* when *en* is high. The function has a 7 clock-cycle latency in normal operation and 9 clock-cycles when the scaled phase output is selected.

Scaled phase output option

By default, the output phase angle is computed in radians in the range -Pi to Pi. This is specified by setting the generic parameter *scale_output* = *false*. Alternatively, by setting the generic parameter: *scale_output* = *true*, the output phase angle is generated in the range -1 to 1. The two options are described graphically in Figure 2 below.

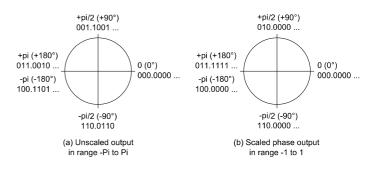


Figure 2: Output phase angle options: (a) scale_output = false, (b) scale_output = true

Functional Timing

Figure 3 demonstrates a series of computations of φ = atan2 (y,x). Samples are processed on the rising edge of *clk* when *en* is high. The function has a 7 cycle latency as shown by the timing between edges 'A' and 'B' in the waveform.

In the example, the first calculation is φ = atan2(0x02C,0x07E), the next calculation is φ = atan2(0xEB7, 0x98D). The results are respectively 0x05601 and 0x50E1B. Converting the numbers to decimals and decimal fractions the calculations are equivalent to:

$$\varphi = atan2 (44, 126) = 0.335953$$

and ..

$$\varphi = atan2 (-329, -1651) = -2.944901$$

Note that the clock-enable is held low for one clock cycle during the second sample during which the whole pipeline is stalled.

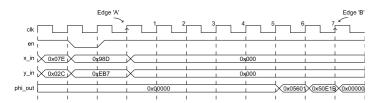


Figure 3: Timing waveform for the atan2_xy function

Source File Description

All source files are provided as text files coded in VHDL. The following table gives a brief description of each file.

Source file	Description
lut_reciprocal.vhd	Reciprocal unit
lut_divide.vhd	Division unit
atan2_scale.vhd	Phase scaling unit
atan2_x.vhd	Arctan core function
atan2_xy.vhd	Top-level block
atan2_xy_bench.vhd	Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL simulator. The compilation order of the source code is as follows:

- 1. lut_reciprocal.vhd
- 2. lut_divide.vhd
- 3. atan2_scale.vhd
- 4. atan2_x.vhd
- 5. atan2_xy.vhd
- 6. atan2_xy_bench.vhd

The simulation must be run for at least 2 ms during which time a randomized 2×12 -bit input stimulus will be generated at the input to the arctan core. The test terminates automatically.

The simulation generates two text files called $atan2_xy_in.txt$ and $atan2_xy_out.txt$. These files contain the input and output samples captured during the course of the test and may be used to verify the correct operation of the core.

Performance

Quadrature samples were generated in the range $-\pi$ to π in order to check the accuracy and linearity of the phase output. Quadrature samples were generated according to the formulas:

$$x = G * \cos(\varphi)$$

$$y = G * \sin(\varphi)$$

Where ϕ is a phase angle in the range $[-\pi,\,\pi]$ and G is a scale factor. The generated x, y samples were used as an input stimulus to the ATAN2_XY core and the output samples were captured during the simulation.

Figure 4 shows the resulting plot of (ideal) input phase vs. output phase in radians. The overall accuracy was measured at 0.00008 radians. This compares with a theoretical best case of 0.000015 radians for a 16-bit fractional output.

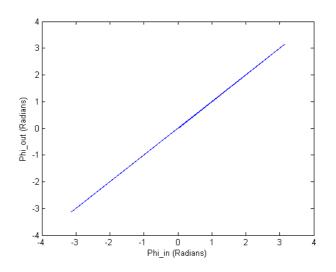


Figure 4: Plot of Input phase vs. output phase showing good linear relationship