
VID_OVERLAY

Digital Video Overlay Module
Rev. 1.5

Key Design Features

● Synthesizable, technology independent VHDL IP Core

● Video overlays on 24-bit RGB or YCbCr 4:4:4 video

● Supports all video resolutions up to 216 x 216 pixels

● Supports any number of input video streams or video overlays
(by cascading modules together in series)

● Programmable video-overlay position and size

● Per pixel 8-bit alpha transparency

● Choice of ROP commands including AND, OR and XOR

● Simple input and output interfaces

● No complex programming required

● Easily integrates with all Zipcores Video IP

● Small implementation size

● Supports FPGA clock rates in excess of 250 MHz1

Applications

● Digital TV and home-media solutions

● Broadcast TV and film production

● Digital-video special effects

● Multiple video windows

● Animated video windows

● Picture-in-Picture (PiP) applications

● Instrumentation and monitoring

● Network and Tactical operations centres

● CCTV and security camera systems

1 Xilinx® Virtex 6 FPGA used as a benchmark

Block Diagram

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

vid_over_en in Enable/disable video
overlay
(When disabled, the
background video passes
though unchanged)

high

vid_rop [1:0] in Raster Operation
(Performs bitwise operation
between background video
and overlay video)
0: NOP, 1: AND,
2: OR, 3: XOR

data

vid_top_x [15:0] in Top-left x position of
video-overlay

data

vid_top_y [15:0] in Top-left y-position of
video-overlay

data

pixels_per_line
[15:0]

in Number of pixels per line in
the overlay video

data

lines_per_frame
[15:0]

in Number of lines per frame
in the overlay video

data

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 1 of 6

Figure 1: Digital Video Overlay architecture

http://www.zipcores.com/digital-video-overlay-module.html

VID_OVERLAY

Digital Video Overlay Module
Rev. 1.5

Pin-out Description cont ...

Pin name I/O Description Active state

pixin0 [23:0] in 24-bit RGB source pixel in
(background video)

data

pixin0_vsync in Vertical sync in
(Coincident with first pixel
of frame)

high

pixin0_hsync in Horizontal sync in
(Coincident with first pixel
of line)

high

pixin0_val in Input pixel valid high

pixin0_rdy out Ready to accept input pixel
(handshake signal)

high

pixin1 [23:0] in 24-bit RGB source pixel in
(overlay video)

data

pixin1_alpha[7:0] in Overlay pixel transparency
0: Fully transparent
1: Fully opaque

data

pixin1_vsync in Vertical sync in
(Coincident with first pixel
of frame)

high

pixin1_hsync in Horizontal sync in
(Coincident with first pixel
of line)

high

pixin1_val in Input pixel valid high

pixin1_rdy out Ready to accept input pixel
(handshake signal)

high

pixout [23:0] out 24-bit RGB output pixel data

pixout_vsync out Vertical sync out high

pixout_hsync out Horizontal sync out high

pixout_val out Output pixel valid high

pixout_rdy in Ready to accept output
pixel

high

General Description

VID_OVERLAY is a highly versatile video multiplexer that allows one
video stream to be inserted over another. By cascading a series of video
overlay modules together, any number of video sources may be
multiplexed together. The module supports input video streams of any
resolution or aspect ratio up to 216 x 216 pixels in size. Video overlay
parameters may be changed on a frame-by-frame basis to dynamically
change the size and position of the video overlay.

Pixels and syncs flow in and out of the video overlay module in
accordance with the valid-ready pipeline protocol. Pixels and syncs are
sampled at the module inputs on a rising clock-edge when 'val' is high
and 'rdy' is high. Likewise, pixels and syncs are transferred out of the
module on a rising clock-edge when 'val' is high and 'rdy' is high. The
pipeline protocol allows both input and output interfaces to be stalled
independently.

The dimensions of the output video are controlled entirely by the
background video stream (pixin0) . This means that if the source video
input at stream '0' is 1024x768 pixels then the output video will also be
1024x768 pixels in resolution. The video overlay enters the module via
stream '1' and must be smaller or equal in size to the background video
stream.

In addition, the overlay module supports a number of blending operations
including an 8-bit alpha channel and bitwise AND, OR and XOR functions.
Figure 1 shows the architecture of the digital video overlay module in
more detail.

Input Frame Sync units

Input pixels for both the background video (pixin0) and the overlay video
(pixin1) enter via two separate frame sync modules. The purpose of each
module is to find the first 'vsync' of both streams in order synchronize the
output frame correctly. If the vsync of the background video is found first,
then further pixels in the background image are held off until the the
corresponding vsync in the overlay stream is found. Likewise, if the
overlay vsync is found first then further overlay pixels are held off until the
background vsync is found. Once both vsyncs are found then normal
operation begins with the background video stream controlling the flow of
pixels into the module.

If at any point a system reset occurs, then the module will resynchronize
to the next start of frame for both the background and overlay streams
before normal operation continues.

Input Video Multiplexer

The video multiplexer is responsible for controlling the flow of pixels into
the video overlay module. It's main function is to detect whether the
current pixel to be displayed lies within the overlay region defined by the
parameters vid_top_x, vid_top_y, pixels_per_line and lines_per_frame. If
the current pixel lies outside the overlay region, the input pixel from the
background video passes though unchanged. If the pixel lies inside the
overlay region, then pixels are processed in the pixel blending unit.

The video overlay position and size may be updated as and when
required. If these parameters are not static, then it is desirable that these
parameters be updated simultaneously and once per frame. To be extra
sure the reset signal maybe toggled for at least one clock cycle after
changing parameters. This will flush all pixels from the pipeline and
cause the input streams to re-sync.

Figure 2 shows the relationship between the background video display
area and the defined video overlay window. It is important that the
overlay parameters exactly match the size of the video overlay. In
addition, the whole video overlay window must lie within the dimensions
of the background video - otherwise image corruption will result.

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 2 of 6

Figure 2: Video overlay window positioning and size

http://www.zipcores.com/digital-video-overlay-module.html

VID_OVERLAY

Digital Video Overlay Module
Rev. 1.5

Pixel blending unit

The pixel blending unit generates the output pixel to be displayed. The
appearance of the pixel depends on whether the pixel lies inside the video
overlay window and also the chosen blending parameters. Figure 3
demonstrates the action of the blender graphically.

Image (a) shows the background video without overlay. This represents
the output video when the signal vid_over_en is set to logic '0'. In this
state, the video overlay is ignored and only the background video is
displayed.

Image (b) shows normal overlay operation without blending. In this case,
the signal vid_over_en is set to '1', the transparency is fixed and set to
'0xFF' and the ROP command is set to '0'.

Image (c) shows the same overlay with the transparency set to 50% or
'0x7F'. Again, the ROP command is set to '0'.

Image (d) demonstrates per-pixel alpha-blending. The alpha value may
be changed on a per-pixel basis. In this example, the transparency has
been increased from left to right resulting in a graduated effect.

Images (e), (f) and (g) demonstrate the bitwise AND, OR and XOR
operations between the background and overlay video streams. Logical
operations are performed independently on the Red, Green and Blue
channels for each pixel. The table below summaries the basic blending
commands.

Overlay
enable
(1-bit)

Alpha
(8-bits)

ROP
command
(2-bits)

Operation

0x0 0xXX 0xX Overlay disabled

0x1 0x7F
0x55

0x0
0x0

50% transparency
66% transparency
etc ..

0x1 0xXX 0x1 Bitwise AND

0x1 0xXX 0x2 Bitwise OR

0x1 0xXX 0x3 Bitwise XOR

Alpha-blending is useful if the user wishes to 'fade-in' or 'fade-out' the
overlay video in the main display. Arbitrary parts of the overlay video may
also be bought into and out of view by controlling the alpha value on a
per-pixel basis.

Likewise, the bitwise ROP commands are useful for various special
effects such as the generation of sprites, masks and chroma-keying.

Functional Timing

All RGB input and output pixels are sampled according to the valid-ready
pipeline protocol2. Figure 4 shows the signalling at the pixin0 input (the
background video source) at the start of a new frame.

The first line of a new frame begins with pixin0_vsync and pixin0_hsync
asserted high together with the first pixel. It is important to note that input
pixels and syncs are only sampled on a rising clock-edge when pixin0_val
and pixin0_rdy are both high. If this protocol is not observed, then pixels
will be lost and the resulting output video will be corrupted.

2 See application note: app_note_zc001.pdf on the Zipcores website for
more examples of the valid-ready pipeline protocol

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 3 of 6

Figure 3: (a) Overlay disabled, (b) No blending (c) 50% alpha,
(d) Graduated alpha, (e) Bitwise AND,

(f) Bitwise OR, (g) Bitwise XOR

http://www.zipcores.com/digital-video-overlay-module.html

VID_OVERLAY

Digital Video Overlay Module
Rev. 1.5

As an example, the waveform shows what happens when pixin0_rdy is
de-asserted. In this case, the pipeline is stalled and the upstream
interface must hold-off before further pixels are sampled.

Figure 4 timing waveforms are equally valid for the pixin1 (overlay video)
interface. Exactly the same valid-ready signalling is used. However, as
the video overlay will generally be smaller in size than the background
video, then it will be expected that the pixin1 interface will be stalled for a
greater proportion of the time (signified by pixin1_rdy being de-asserted).
The pixin1 interface also differs in that it supports an 8-bit alpha channel
pixin1_alpha which specifies the transparency of the overlaid pixel.

Figure 5 shows the signalling at the output of the video overlay module.
The output uses exactly the same protocol as the input. Each new output
line begins with pixout_hsync and pixout_val asserted high. In this
particular example, it shows pixout_val de-asserted for 1 clock-cycle, in
which case, the output pixel should be ignored. Remember that transfers
at a valid-ready interface are only permitted when valid and ready are
both simultaneously high.

All other parameters used by the video overlay module - including the
video window position, size and ROP command are sampled continuously
on the rising edge of the system clock. In the following clock cycle, these
parameters will be active and be ready for use.

Note: when the signal vid_over_en is set to '0' then the overlay video is
disabled. In this state, only the background video pixels are processed.
The pixin1 ports are effectively ignored with the signal pixin1_rdy held
low.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

video_in_bgnd.txt Background video source text file

video_in_over.txt Overlay video source text file

char_file_reader.vhd Character buffer input file reader

pipeline_reg.vhd Pipeline register component

pipeline_shovel.vhd Pipeline 'shovel' register component

vid_sync_sof.vhd Start of frame synchronizer

vid_overlay_reader.vhd Source video file reader

vid_overlay.vhd Top-level component

vid_overlay_bench.vhd Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. pipeline_reg.vhd
2. pipeline_shovel.vhd
3. vid_sync_sof.vhd
4. vid_blend.vhd
5. vid_overlay.vhd
6. vid_overlay_reader.vhd
7. vid_overlay_bench.vhd

The VHDL testbench instantiates the VID_OVERLAY component and the
user may modify the generic parameters as required. In the example
testbench provided, a 640x480 (VGA) image is used as the background
source video and a 320x240 Zipcores testcard is used as the video
overlay.

The source video for the simulation is generated by the video file-reader
component. There are two instantiations of this component - one for the
background video and one for the overlay video. The simulation requires
two text files to be placed in the top-level simulation directory. These files
are called video_in_bgnd.txt and video_in_over.txt and they contain the
source pixels and syncs for the test. Both files follow a simple format
which define the state of signals: pixin_val, pixin_vsync, pixin_hsync,
pixin and pixin_alpha on a clock-by-clock basis.

An example file might be the following:

1 1 1 00 11 22 00 # pixel 0 line 0 (start of frame)
1 0 0 33 44 55 10 # pixel 1 line 0
0 0 0 00 00 00 00 # don't care!
1 0 0 66 77 88 20 # pixel 2 line 0
.
.
1 0 1 00 11 22 30 # pixel 0 line 1 (start of line)
1 0 0 33 44 55 40 # pixel 1 line 1 etc ..

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 4 of 6

Figure 4: First line of a new frame

Figure 5: Video overlay output showing invalid pixel

http://www.zipcores.com/digital-video-overlay-module.html

VID_OVERLAY

Digital Video Overlay Module
Rev. 1.5

In this example, the first line of of the file asserts the input signals
pixin_val = 1, pixin_vsync = 1, pixin_hsync = 1, pixin = 0x001122 and
pixin_alpha = 0x00.

The simulation must be run for at least 10 ms during which time an output
text file called video_out.txt will be generated. This file contains a
sequential list of 24-bit output pixels in the same format as the input video
text files.

The resulting output video from the test is the same as that for Figure
4(d). The output demonstrates a video overlay with a graduated alpha
channel positioned (64,64) pixels from the top-left corner of the
background video.

Example Video-overlay outputs

Figure 6 is the output of six video-overlay modules cascaded in series -
each module configured to display a separate overlay. The result is a
multi-tiled display - each one with a separate video source. In this
particular example, alpha blending support has been disabled.

The next example (Figure 7) demonstrates the versatility of the video
overlay module. In this particular instance, five separate video sources
have been multiplexed together. The logo in the top-right corner is alpha
blended, as is the bottom section containing the text. Notice that any
size of video overlay is supported in any position relative to the main
background image. If desired, the position and size of the video overlays
may be changed on a frame-by-frame basis for a fully dynamic display.

Synthesis

The files required for synthesis and the design hierarchy is shown below:

● vid_overlay.vhd
○ vid_blend.vhd

■ pipeline_reg.vhd
○ vid_sync_sof.vhd

■ pipeline_reg.vhd
○ pipeline_reg.vhd
○ pipeline_shovel.vhd

The VHDL core is designed to be technology independent. However, as
a benchmark, synthesis results have been provided for the Xilinx® Virtex6
and Spartan6 FPGA devices. Synthesis results for other FPGAs and
technologies can be provided on request.

Note that the generic parameter use_alpha will effect the number of
hardware multipliers used in the design. If use_alpha is set to 'false' then
the alpha blending hardware is disabled - resulting in a saving in multiplier
resources.

If any of the dynamic parameters such as the ROP command or overlay
position are fixed, then these signals should be tied to a constant value at
the top-level to allow internal optimizations to be made during synthesis.

Trial synthesis results are shown in the following tables. The generic
parameter use_alpha has been set to true.

Resource usage is specified after Place and Route.

VIRTEX 6

Resource type Quantity used

Slice register 932

Slice LUT 1156

Block RAM 3

DSP48 12

Occupied Slices 401

Clock frequency (approx) 250 MHz

SPARTAN 6

Resource type Quantity used

Slice register 492

Slice LUT 313

Block RAM 0

DSP48 6

Occupied Slices 159

Clock frequency (approx) 170 MHz

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 5 of 6

Figure 6: Multi-tiled display

Figure 7: Multi-format display

http://www.zipcores.com/digital-video-overlay-module.html

