
VID_FRAME_BUFFER

Video Frame Buffer IP Core
Rev. 2.0

Key Design Features

● Synthesizable, technology independent IP Core for FPGA,
ASIC or SoC

● Supplied as human readable VHDL (or Verilog) source code

● Output supports full flow control permitting output pixels to be
stalled (or even whole frames if necessary)

● Supports any video resolution1

● Support for RGB or YCbCr pixel formats

● Includes frame skip and frame repeat functionality to
compensate for different input and output frame rates

● Generic 128-bit external memory interface with configurable
burst size

● Linear memory bursts minimise page-breaks in synchronous
memory architectures

● Ideal for interfacing to all types of memory such as SRAM,
SDRAM, DDR, DDR2, DDR3, DDR4 etc.

● Supports 300 MHz+ operation on basic FPGA devices2

Applications

● Buffering video frames in external memory

● Real-time digital video applications

● Video genlock applications

● Adapting to different pixel-clock rates and frame rates

● Essential component in video processing pipelines

Generic Parameters

Generic name Description Type Valid range

bits_per_pixel (bbp) Input video bits
per pixel

integer 16, 24 or 32

mem_start_addr Start address in
memory of frame
buffer
(128-bit aligned)

integer ≥ 0

mem_burst_size Size of memory
read / write burst
(in 128-bit words)

integer ≥ 2

mem_frame_repeat Enable / disable
frame repeat
mode

boolean True/False

1 External memory permitting
2 Xilinx® 7-series used as a benchmark

Block Diagram

Pin-out Description

SYSTEM SIGNALS

Pin name I/O Description Active state

clk in Synchronous system
clock

rising edge

reset in Asynchronous system
reset

low

fb_proc out Frame processed
strobe

high

fb_skip out Frame skip strobe high-pulse

fb_repeat out Frame repeat strobe
(when repeat enabled)

high-pulse

fb_err_ovfl1 out Input FIFO overflow
error

high

fb_err_ovfl2 out Output FIFO overflow
error

high

fb_err_uflow out Output pixel underflow
flag

high

Copyright © 2017 www.zipcores.com Download this IP Core Page 1 of 7

128-bit
Pixel
Pack

128-bit
Pixel

Unpack

Input pixel FIFO

Memory Read/Write
Arbiter

Memory
Write Burst
Controller

Sync
Regeneration

Output
Regs

Output pixel FIFO

Memory
Read Burst
Controller

FRAME
BUFFER

CONTROLLER

pixin

pixin_sof

pixin_val

pixout

pixout_vsync

pixout_hsync

pixout_val

pixout_rdy

m
em

_r
w

m
em

_w
da

ta

m
em

_a
dd

r

m
em

_a
dd

r_
va

l

m
em

_a
dd

r_
rd

y

m
em

_r
da

ta

m
em

_r
da

ta
_v

al

fb_skip

fb_repeat

fb_err_ovfl1

fb_err_ovfl2

bits_per_pixel

pixels_per_line

lines_per_frame

 mem_start_addr

mem_burst_size

mem_frame_repeat

clk

reset

GENERIC MEMORY
INTERFACE

128128

fb_proc

words_per_frame

Input
Regs

Frame
Aligner

16/24/32
etc.

16/24/32
etc.

fb_err_uflow

Diagnostic
flags

Figure 1: Video Frame Buffer architecture

http://www.zipcores.com/video-frame-buffer.html

VID_FRAME_BUFFER

Video Frame Buffer IP Core
Rev. 2.0

INPUT VIDEO INTERFACE

Pin name I/O Description Active state

pixin
[bits_per_pixel - 1:0]

in Input pixel data

pixin_sof in Start of frame flag
(coincident with first
pixel in frame)

high

pixin_val in Input pixel valid high

PROGRAMMABLE INPUT VIDEO PARAMETERS

Pin name I/O Description Active state

pixels_per_line (ppl)
[15:0]

in Number of pixels in
each line of input
video

data

lines_per_frame (lpf)
[15:0]

in Number of lines in
each frame of input
video

data

words_per_frame
[31:0]

in Size of one frame in
128-bit words
(ppl * lpf * bbp) / 128

data

OUTPUT VIDEO INTERFACE

Pin name I/O Description Active state

pixout
[bits_per_pixel - 1:0]

out Output pixel data

pixout_vsync out Vertical sync flag
(coincident with first
pixel in frame)

high

pixout_hsync out Horizontal sync flag
(coincident with first
pixel in line)

high

pixout_val out Output pixel valid high

pixout_rdy in Ready to accept
output pixel
(handshake signal)

high

GENERIC 128-BIT MEMORY INTERFACE

Pin name I/O Description Active state

mem_rw out Memory read / write
flag

0: write
1: read

mem_wdata [127:0] out Memory write data data

mem_addr [31:0] out Memory read / write
address

data

mem_addr_val out Memory request valid high

mem_addr_rdy in Ready to accept
memory request
(handshake signal)

high

mem_rdata [127:0] in Memory read data data

mem_rdata_val in Memory read data
valid

high

General Description

The VID_FRAME_BUFFER (VFB) IP Core is a high-speed multi-format
video frame buffer that samples an input video stream and buffers it in an
external memory. The VFB is capable of very high-speed operation -
achieving over 300 MHz on standard FPGA platforms.

The VFB will automatically adapt to different input and output frame rates.
If the input frame rate is too high, then the VFB will drop or 'skip' an input
frame. Likewise, if the output frame rate is higher than the input frame
rate, then frames will be repeated3. The result is a system that
seamlessly adapts to the different frame rates at the input and output of
the VFB.

The memory port is a generic 128-bit read/write interface that may be
connected to a wide variety of memory types and memory controllers.
Memory read/write requests are sent as a sequential linear burst that is
optimized for transfers over synchronous memory.

By using a series of VFB IP Cores in parallel, multiple video-sources may
be synchronized together. Figure 1. shows the architecture of the Video
Frame Buffer in more detail.

Input video interface

The VFB supports any input pixel format as long as the pixels are aligned
to a 16, 24 or 32-bit word boundary. Input pixels are sampled on the
rising-edge of the system clock when pixin_val is high. The signal
pixin_sof is an active high flag that is coincident with the first pixel of the
input frame.

Note that the input video interface is free running and non-stallable. If the
input frame rate is too high for the available memory bandwidth, then
input frames will be dropped.

Output video interface

Pixels flow out of the VFB in accordance with the valid-ready pipeline
protocol. This protocol is used by all Zipcores video IP, and allows for
simple connectivity between modules.

Output pixels and syncs are transferred out of the VFB on the rising edge
of the system clock when pixin_val and pixin_rdy are both high. In
addition, the output may be stalled, allowing pixels (or even whole frames)
to be held back by asserting pixout_rdy low. In order to identify the
boundary between frames and lines, the sync signals pixout_vsync and
pixout_hsync are provided. The vsync signal is asserted with the first
output pixel of a frame and the hsync signal is asserted with the first
output pixel of a line.

Generic memory interface

The memory interface is a generic single-ported 128-bit read/write type
that may be connected to a wide variety of memories and memory
controllers.

Each memory request is sent using the valid-ready protocol. A request is
transferred on a rising clock edge when mem_addr_val and
mem_addr_rdy are asserted high. If the request is a write then the flag
mem_rw is asserted low. For a memory read, then the mem_rw flag is
asserted high. The mem_addr signal is common to both read and write
requests.

3 Assuming frame-repeat mode is enabled

Copyright © 2017 www.zipcores.com Download this IP Core Page 2 of 7

http://www.zipcores.com/video-frame-buffer.html

VID_FRAME_BUFFER

Video Frame Buffer IP Core
Rev. 2.0

Requests are sent as a sequential linear burst with the number of words
in each burst being controlled by the generic parameter mem_burst_size.

The burst size controls the number of sequential read or write requests.
Setting a larger burst size will increase the number sequential accesses
to memory and potentially lower the number of page-breaks. Conversely,
making the burst size too large may starve the next read or write request
of memory bandwidth. For this reason, care should be taken when
selecting this parameter.

The parameter words_per_frame defines the size of one complete frame
of input video in 128-bit words. The parameter mem_frame_repeat
determines whether video frames should be repeated if the output frame
rate is higher than the input frame rate. Finally, the parameter
mem_start_addr defines where frame-buffer should start in physical
memory. The memory must be large enough to support 4 complete
frames of input video. This is shown in figure 2 as a system memory
map.

System flags and diagnostic signals

The fb_skip flag is an active high strobe that pulses high every time an
input frame is dropped. This signal shows activity when the input frame
rate is higher than the output frame rate. Conversely, the fb_repeat flag
pulses high every time an output frame is repeated. This signal will be
active when the output frame rate is higher than the input frame rate. The
signal fb_proc is pulsed high every time an input frame is processed. A
combination of all three flags may be used to provide real-time
information about the input and output video stream. Figure 3 shows the
relationship between the output frames and frame repeat/skip flags.

In order to maintain a steady video output display, the designer should
aim for a well balanced system where the incidence of frame skip and
frame repeat is reduced. The optimum system is where the input frame
rate and output frame rate are the same or evenly matched.

The most important diagnostic flags to take note of are the signals
fb_err_ovfl1, fb_err_ovfl2 and fb_err_uflow. The signal fb_err_ovfl1
indicates that the input FIFOs have overflowed. An input FIFO overflow
condition occurs when the input pixel rate is too high. The signal
fb_err_ovfl2 indicates that the output read FIFOs have overflowed4.
Finally, the fb_err_uflow flag is asserted high if there is a dropout of valid
output pixels. This is not necessarily an error, but it could indicate a
system with insufficient memory read bandwidth.

The only way to recover from an error condition is to assert a system
reset. On reset, the VFB will resynchronize to the next input frame and
operation will continue as normal.

Practical system considerations

(a) Internally, the VFB is 128-bit word aligned. This means that the size
of a single video frame must be divisible by an integer number of 128-bit
words. In particular, the following calculation must result in a whole
number:

words_per_frame =

(pixels_per_line ∗ lines_per_frame ∗ bits_per_pixel)
128

(b) As the memory interface divides each frame into discrete bursts of
128-bit words, the size of a single video frame must be divisible by the
memory burst size. Likewise, the following calculation must result in a
whole number:

bursts_per_frame = words_per_frame
mem_burst_size

4 See cases (c) and (f) - Practical system considerations

Copyright © 2017 www.zipcores.com Download this IP Core Page 3 of 7

top of memory

0

mem_start_addr

words_per_frame x 4

Extent of
FRAME
BUFFER

Figure 2: System memory map
(128-bit word aligned)

Frame #1 Frame #2 Frame #3 Frame #4 Frame #5 Frame #6

Frame #1 Frame #2 Frame #4 Frame #5

Frame #7

Frame #7

Frame #1 Frame #2 Frame #2 Frame #3 Frame #4 Frame #4 Frame #5

Input frame sequence

Output frame sequence - repeated frames

Output frame sequence - skipped frames

fb_repeat

fb_skip

. . . .

. . . .

Figure 3: Frame repeat and frame skip flags

http://www.zipcores.com/video-frame-buffer.html

VID_FRAME_BUFFER

Video Frame Buffer IP Core
Rev. 2.0

For common video resolutions, the parameters words_per_frame and
mem_burst_size generally come out as integer numbers. However, for
more obscure user-defined video modes, the input video resolution or
burst size may need to be adjusted to give integer values.

(c) There comes a point when the input pixel data rate becomes too high
for the VFB to tolerate and the input pixel FIFOs overflow. When this
happens, even the dropping of individual input frames will not work, as the
instantaneous pixel-rate exceeds the maximum bandwidth available.
Assuming an 'ideal', non-stalling memory interface where the bandwidth is
shared equally between reads and writes, then the minimum system clock
frequency required for a given input pixel clock frequency is given by:

system_clock_frequency ≥

pixel_clock_frequency ∗bits_per_pixel/128∗ 2

As an example, consider a 65 MHz input pixel clock at 24-bits/pixel. The
minimum system clock frequency allowed to avoid internal overflow would
be: 65*(24/128)*2 = 24.375 MHz. In practice, however, a higher system
clock-frequency is often required to compensate for inefficiencies in the
memory interface. For instance, due to page-breaks and auto-refresh etc.

(d) In order to minimize the performance bottleneck at the memory
interface, the external memory should be clocked at the system clock
frequency or better.

memory_clock_frequency ≥ system_clock_frequency

(e) The external memory should be large enough to accommodate up to
4 frames of video. The size in 128-bit words is given by:

memory_size (128-bit) ≥

pixels_per_line ∗ lines_per_frame ∗ bits_per_pixel ∗ 4
128

For example, consider an XGA (1024x768) input source at 16-bits/pixel.
In this case, a minimum memory size of: 1024x768x16x4/128 = 384k x
128-bit would be required. A 1M x 128-bit memory or greater would be a
good choice in this instance.

(f) The internal FIFOs have enough buffering to accommodate 7 'in-flight'
read memory bursts for a maximum burst size of 64. For this reason, the
memory read latency must not exceed 448 system clock cycles. If a very
high memory read latency is expected, then please contact Zipcores and
the amount of internal buffering can be adjusted accordingly.

Functional Timing

Input video interface

Figure 4 shows the signalling at the input to the VFB. The input pixel and
the sof flag are sampled on the rising edge of clk when pixin_val is high.
When pixin_val is de-asserted then the input pixel is ignored.

Output video interface

Output pixels and syncs are transferred out of the VFB on the rising clock-
edge of clk when pixin_val and pixin_rdy are both high. If pixin_rdy is
held low, then the output is stalled and the frame-buffer will buffer input
pixels (or whole frames) until pixin_rdy is asserted high again. Figure 5
shows the output video timing at the start of a new output frame. Both
pixin_vsync and pixin_hsync are asserted high with the first pixel of a new
frame.

Figure 6 demonstrates the timing at the start of a new line. A new line
begins with pixin_hsync coincident with the first pixel. The signal
pixin_vsync is held low.

Copyright © 2017 www.zipcores.com Download this IP Core Page 4 of 7

Pixel N

clk

 pixin Pixel 0 Pixel 2 Pixel 3

pixin_val

Previous Frame

pixin_sof

Pixel 1Pixel N-1

Current Frame

Invalid pixel - ignored

Figure 4: Input video interface timing

pixout_hsync

Pixel Npixout Pixel 0 Pixel 2 Pixel 4

Previous Frame

pixout_vsync

Pixel 1Pixel N-1

Current Frame
Invalid pixel - ignored

clk

pixout_val

pixout_rdy

Pixel 3

Pixel stalled

Figure 5: Output video interface timing – start of new output frame

http://www.zipcores.com/video-frame-buffer.html

VID_FRAME_BUFFER

Video Frame Buffer IP Core
Rev. 2.0

Generic 128-bit memory interface

Figure 7 shows a series of write bursts to memory. In this particular
example, the parameter mem_burst_size has been set to 45. Each
memory burst is a block write of 4 words. The addresses are guaranteed
to be sequential within a burst. Between bursts, the mem_addr_valid
signal is de-asserted for one cycle.

At any point during the write transfer, the handshake signal
mem_addr_rdy may be asserted low. In the low state, the memory
request is stalled until mem_addr_rdy is asserted high again.

The timing is very similar for a read burst. Figure 8 shows a single read
burst and corresponding read data returned from memory.

5 A larger burst size is advised for synchronous memory types to
reduce page-breaks. A burst size of 4 is shown for example only.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

video_in.txt Text-based source video file

video_src_reader.vhd Reads text-based source video file

mem_model_pack.vhd Memory model functions

ram_model.vhd Single port memory model

mem_model_1Mx128bit.vhd Large 1Mx128 memory model

pipeline_reg.vhd Pipeline register element

vid_in_reg.vhd Video input register

vid_out_reg.vhd Video output register

vid_sync_fifo.vhd Synchronous pixel FIFO

vid_sync_fifo_reg.vhd Sync FIFO internal register

ram_dp_w_r.vhd Dual port RAM component

vid_align_frame.vhd Aligns pixels to the start of frame

vid_pack128.vhd Pixel packer

pack_16_to_32.vhd 16-bit to 32-bit packer

pack_24_to_32.vhd 24-bit to 32-bit packer

pack_32_to_32.vhd 32-bit to 32-bit packer

pack_32_to_128.vhd 32-bit to 128-bit packer

vid_frame_fifo.vhd Main frame-FIFO controller

vid_mem_write.vhd Memory write burst controller

vid_mem_read.vhd Memory read burst controller

vid_mem_arb.vhd Memory R/W arbiter

vid_unpack128.vhd Pixel unpacker

unpack_32_to_16.vhd 32-bit to 16-bit unpacker

unpack_32_to_24.vhd 32-bit to 24-bit unpacker

unpack_32_to_32.vhd 32-bit to 32-bit unpacker

unpack_128_to_32.vhd 128-bit to 32-bit unpacker

vid_sync_regen.vhd Video sync generator

vid_uflow_check.vhd Pixel underflow checker

vid_frame_buffer.vhd Top-level component

vid_frame_buffer_bench.vhd Top-level test bench

Copyright © 2017 www.zipcores.com Download this IP Core Page 5 of 7

pixout_hsync

Pixel Npixout Pixel 0 Pixel 2 Pixel 4

Previous Line

pixout_vsync

Pixel 1Pixel N-1

Current Line
Invalid pixel - ignored

clk

pixout_val

pixout_rdy

Pixel 3

Pixel stalled

Figure 6: Output video interface timing - start of new output line

Write burst #1

mem_wdata Word 0

Write burst #0

Word 1

clk

mem_addr_rdy

Word 2

Request stalled

mem_rw

Word 3 Word 4 Word 5 Word 6 Word 7

mem_addr_val

mem_addr Addr 0 Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 Addr 7

Figure 7: Memory write burst timing (burst size of 4)

Read burst

clk

mem_addr_rdy

mem_rw

mem_addr_val

mem_addr

mem_rdata Word 0 Word 1 Word 2 Word 3

Addr 0 Addr 1 Addr 2 Addr 3

mem_addr_val

Memory read
Latency

Figure 8: Memory read burst timing (burst size of 4)

http://www.zipcores.com/video-frame-buffer.html

VID_FRAME_BUFFER

Video Frame Buffer IP Core
Rev. 2.0

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is the same order as
described in the source file description above.

The VHDL testbench instantiates the VID_FRAME_BUFFER component
and the user may modify the generic parameters in order to set up the
desired test conditions.

The source video for the simulation is generated by the video source-
reader component. This component reads a text-based file which
contains the RGB pixel data. The text file is called video_in.txt and should
be placed in the top-level simulation directory.

The file video_in.txt follows a simple format which defines the state of
signals: pixin_val, pixin_sof, and pixin on a clock-by-clock basis. An
example file for a 24-bit/pixel input source might be the following:

1 1 000000 # pixel 0, frame 0
1 0 111111 # pixel 1, frame 0
0 0 000000 # don't care!
1 0 222222 # pixel 2, frame 0
1 0 333333 # pixel 3, frame 0
.
.
1 1 000000 # pixel 0 frame 1
1 0 111111 # pixel 1 frame 1 etc.

In this example, the first line of the video_in.txt file asserts the input
signals pixin_val = 1, pixin_sof = 1, and pixin = 0x000000, the second line
asserts the input signals pixin_val = 1, pixin_sof = 0, and pixin = 0x111111
etc.

The simulation must be run for at least 30 ms during which time an output
text file called video_out.txt will be generated. This file contains a
sequential list of output pixels in a similar format. Each line defines the
state of the signals: pixout_val, pixout_vsync, pixout_hsync and pixout.
An example output file might be:

1 1 1 000000 # pixel 0, frame 0, line 0
1 0 0 111111 # pixel 1, frame 0, line 0
1 0 0 222222 # pixel 2, frame 0, line 0
1 0 0 333333 # pixel 3, frame 0, line 0
1 0 0 444444 # pixel 4, frame 0, line 0
1 0 0 555555 # pixel 5, frame 0, line 0
1 0 0 666666 # pixel 6, frame 0, line 0
1 0 0 777777 # pixel 7, frame 0, line 0
1 0 1 000000 # pixel 0, frame 0, line 1
1 0 0 111111 # pixel 1, frame 0, line 1
.
.
1 1 1 000000 # pixel 0, frame 1, line 0
1 0 0 000000 # pixel 1, frame 1, line 0 etc.

In the example test provided, a series of 8 frames of QVGA (320x240) as
24-bit RGB video are buffered in the VFB. Each video frame is numbered
1 to 4 in sequence to ensure that the frame output order is correct. The
results of the simulation are shown in Figure 9.

Copyright © 2017 www.zipcores.com Download this IP Core Page 6 of 7

Figure 9: VFB
simulation output - 8
frames in sequence

http://www.zipcores.com/video-frame-buffer.html

