
DEINTERLACER

Multi-format Video Deinterlacer
Rev. 1.3

Key Design Features

● Synthesizable, technology independent IP Core for FPGA and 
ASIC

● Supplied as human readable VHDL (or Verilog) source code

● 24-bit RGB video support with option for YCbCr video formats if
required

● Generates clean and progressive video output without combing 
or tearing

● Reduced softening and sawtooth artefacts

● Supports three different de-interlacing modes including: 
Interpolated BOB, ELA (Edge-based Line-Average) and a 
customized version of LCI (Low-Complexity Interpolation)

● Supports all interlaced video formats up to 4096 x 4096 pixels 
in resolution.  Examples include: 480i, 576i, 1080i etc.

● Output is one frame per interlaced field

● Fully pipelined architecture with simple flow-control

● No frame buffer required

● Supports 200MHz+ operation on basic FPGA devices

Applications

● High-quality  video  de-interlacing  without  the  overhead  of  a
frame buffer

● Conversion of 'legacy' SDTV formats to HDTV video formats

● Generating progressive RGB video via inexpensive PAL/NTSC
decoder chips

● Digital TV set-top boxes and home media solutions

Generic Parameters

Generic name Description Type Valid range

deint_mode De-interlacing mode integer 0: BOB
1: ELA
2: LCI
3: MIX (option)

frame_rate Output frame rate integer 0: min
1: max

line_width Width of linestores in 
pixels

integer 24 < pixels < 212

log2_line_width Log2 of linestore width integer log2(line_width)

field_polarity Polarity of the 
'pixin_field' input when
the field is even

std_logic 0: even field 
signified by '0'

1: even field 
signified by '1'

Block Diagram

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

pixels_per_line 
[11:0]

in Number of pixels per input 
line

data

lines_per_field  
[11:0]

in Number of lines per field data

pixin [23:0] in 24-bit RGB pixel in data

pixin_field in Input field number data

pixin_vsync in Vertical sync in
(Coincident with first pixel 
of a new input field)

high

pixin_hsync in Horizontal sync in
(Coincident with first pixel 
of a new input line)

high

pixin_val in Input pixel valid high

pixin_rdy out Ready to accept input pixel
(handshake signal)

high

pixout [23:0] out 24-bit pixel out data

pixout_vsync out Vertical sync out
(Coincident with first pixel 
of a new  output frame)

high

pixout_hsync out Horizontal sync out
(Coincident with first pixel 
of a new output line)

high

pixout_val out Output pixel valid high

Copyright © 2016 www.zipcores.com Download this VHDL Core Page 1 of 6

reset

MULTI-FORMAT 
VIDEO DEINTERLACER

clk

pixin

pixin_vsync

pixin_hsync

pixin_rdy

24

deint_mode

pixin_val

pixin_field

frame_rate

line_width

log2_line_width

LINE 
BUFFER

NxN 
FILTER

BOB

ELA

LCI

pixout

pixout_vsync

pixout_hsync

24

pixout_val

(RGB) (RGB)

pixels_per_line

lines_per_field

field_polarity

12

12

Figure 1: Video deinterlacer architecture

http://www.zipcores.com/multi-format-video-deinterlacer.html


DEINTERLACER

Multi-format Video Deinterlacer
Rev. 1.3

General Description

The  DEINTERLACER  IP  Core  is  a  high  quality  24-bit  RGB  video
deinterlacer  capable  of  generating  progressive  output  video  at  up  to
4096x4096  pixels  in  resolution.   The  design  is  fully  customizable,
supporting any desired interlaced video format.

The deinterlacer allows for three possible filter algorithms - either BOB,
ELA  or  LCI.   All  three  methods  are  'intra-field'  methods  that  perform
spatial filtering within the same field.  For this reason, the output video is
not subject to combing or tearing which is characteristic of a traditional
'weave' approach.

Each  algorithm  has  it  relative  merits  in  terms  of  image  quality  and
hardware complexity.  In particular, the enhanced LCI algorithm provides
excellent all-round performance with reduced image softening and crisp
clean edges. 

Pixels flow into the module in accordance with the valid-ready pipeline
protocol.  The pixel, sync flags and field number are transferred into the
deinterlacer on a rising clock-edge when pixin_val  and pixin_rdy are both
active high.  At the output interface, pixels and syncs are valid on a rising
clock-edge when pixout_val is high.  

The basic architecture of the deinterlacer is shown in Figure 1.  Input lines
are buffered  and organised spatially before being filtered according to the
chosen algorithm.  Each input field is converted to a single output frame
with twice the number of lines per field.

Output Frame rate

When the generic parameter frame_rate is set to '1' then the output frame
rate is equal to the input field rate.  When set to '0', the output frame rate
is half the field rate.  For example, consider an interlaced video input at 50
fields/s.  When the frame rate is set to '1' then the output video will be
generated at 50 frames/s.  Conversely, when the frame rate is set to '0',
then output video will be generated at 25 frames/s.

At half the frame rate, only the even field will generate a complete output
frame, and the odd field will be discarded.  The polarity of the even field is
controlled by the generic parameter frame_polarity.

Pixels per line and lines per field

The input signals pixels_per_line and lines_per_field define the format of
the interlaced video input.  As an example, these values would be set as
'720' and '240' if the input video format was digitized NTSC at 720x480
resolution (480i).  These values may be modified during normal operation
of the deinterlacer.  Any changes must be followed by a system reset.

The width of the linestores must be sufficient to hold a complete line of
interlaced video.  The width should be set to the nearest power of 2.  For
example, if pixels_per_line is set to '720', then line_width should be set to
'1024' and log2_line_width should be set to '10'.

Flow control

Pixels  flow  into  the  deinterlacer  in  accordance  with  the  valid-ready
pipeline  protocol1.   At  the  input  interface,  the  signal  pixin_hsync is
coincident with the first pixel of a new line.  The signals pixin_vsync and
pixin_field are  coincident  with  the  first  pixel  of  a  new field.   All  input
signals are qualified by the pixin_val signal being asserted high.

1 See Zipcores application note: app_note_zc001.pdf for more 
examples of how to use the valid-ready pipeline protocol

In  addition,  the  input  interface  uses  the  handshake  signal  pixin_rdy.
When the module asserts  pixin_rdy low, then all  input signals  must be
stalled until  pixin_rdy is asserted high again.  On the output side, pixels
and syncs are valid when pixout_val is asserted high.

On receipt of the first valid vsync after reset, the deinterlacing operation
begins and output lines are generated in accordance with the chosen filter
algorithm.  The deinterlacer will generate two output lines for every input
line while the input  field is active.  Due to the uneven ratio of  input to
output lines then, on average,  pixin_rdy will have a 50% duty cycle.  In
order  to  maintain  maximum  pixel  throughput  without  stalling,  the
deinterlacer should be clocked at at least double the input pixel rate.  A
typical arrangement is shown in Figure 2 below:

Deinterlacing filter algorithm

The  generic  parameter  deint_mode selects  one  of  three  possible
deinterlacing filter algorithms.  These are BOB, ELA or LCI. The choice of
algorithm will determine the quality of the resulting output video as well as
the size and complexity of the hardware implementation.  The following
table outlines the basic characteristics of each method.  For empirical test
results  for  each mode,  please refer  to the performance section  of  this
document.

Deint_mode Description and  properties

0: BOB Traditional 'bob' approach.  Bilinear interpolation is used
between adjacent lines to give a smooth graduated 
image.  Method works very well with natural images.  
Sawtooth artifacts may be present if the image contains 
sharp lines and edges.  Tends to soften image slightly.

Results in a very small and fast hardware 
implementation suitable for lower-end applications.

1: ELA This method uses a filter window to determine edge-
vectors within a 3x3 block.  Interpolation is performed 
according to the calculated vectors.  Generates crisp 
and sharp output video.  Some minor pixel 
displacements may be evident when edges are 
estimated incorrectly.

Results in a medium hardware implementation size.

2: LCI Most complex algorithm.  Uses a 5x5 filter window and 
calculates more edge-vectors than ELA.  Interpolation is
performed in more directions and with more pixels.  
Offers balanced contrast without too much softening.  
Overall video quality is consistently better than BOB or 
ELA.  

Results in the largest hardware implementation size.

Copyright © 2016 www.zipcores.com Download this VHDL Core Page 2 of 6

pixels in

ASYNC FIFO

clk > 2 x clk

DEINTER- 
LACER

pixels out

Figure 2: Deinterlacer clocking arrangement for maximum efficiency

http://www.zipcores.com/multi-format-video-deinterlacer.html


DEINTERLACER

Multi-format Video Deinterlacer
Rev. 1.3

Figure  3 demonstrates  the effect  of  each algorithm on a simple white
diagonal  line.  Image (a) represents  the original  source image (without
interlacing).  Image (b) is the even field after interlacing.  Images (c), (d)
and (e) represent the result  after deinterlacing the even field using the
three filter algorithms.

Functional Timing

Figure 4 shows the signalling at the input to the deinterlacer at the start of
a new field.   The first  line of  a new field begins with  pixin_vsync  and
pixin_hsync asserted  high  together  with  the  first  pixel.   Note  that  the
signals  pixin, pixin_vsync and  pixin_hsync are only valid  if  pixin_val is
also asserted high.  In addition, the diagram shows what happens when
pixin_rdy is  de-asserted.   In  this  case,  the  pipeline  is  stalled  and  the
upstream interface must hold-off before further pixels are processed.

The signal  pixin_field is a flag which identifies whether the input field is
odd or even.  This flag is only sampled at the start of a new field when
pixin_vsync and pixin_val are high. 

Figure 5 shows the signalling at the output of the deinterlacer.  The output
uses exactly the same protocol as the input with the exception that there
is no 'ready' handshake signal.  Note also that there is no 'field' flag as the
output video is fully progressive.  The timing diagram shows the output
timing for a complete line.  Outputs are only valid if pixout_val is asserted
high.

Source File Description

All source files are provided as text files coded in VHDL.  The following
table gives a brief description of each file.

Source file Description

video_in.txt Text-based source video file

deint_file_reader.vhd Reads text-based source video file

deint_buffer.vhd Input line buffer

deint_buffer_even.vhd Input line buffer (one field only)

deint_filter_bob.vhd Interpolation filter BOB

deint_filter_ela.vhd Interpolation filter ELA

deint_filter_lci.vhd Interpolation filter LCI

ram_dp_w_r.vhd Dual port RAM component

deinterlacer.vhd Top-level component

deinterlacer_bench.vhd Top-level test bench

Copyright © 2016 www.zipcores.com Download this VHDL Core Page 3 of 6

Figure 3: Visual effect of each filter algorithm: (a) Original
image, (b) Interlaced field, (c) BOB, (d) ELA, (e) LCI

Pixel 0

clk

pixin

Pipeline stall

Pixel 1 Pixel 2 Pixel 3 Pixel 4

pixin_val

pixin_field

pixin_rdy

Start of new field

pixin_hsync

pixin_vsync

Figure 4: Deinterlacer input timing at the start of a new field

Pixel 0

clk

pixout Pixel 1 Pixel 718

pixout_val

Start of new output frame and output line

pixout_hsync

pixout_vsync

Pixel 719

Figure 5: Output timing for the first line of a new frame

http://www.zipcores.com/multi-format-video-deinterlacer.html


DEINTERLACER

Multi-format Video Deinterlacer
Rev. 1.3

Functional Testing

An  example  VHDL testbench  is  provided  for  use  in  a  suitable  VHDL
simulator.  The compilation order of the source code is as follows:

1. deint_file_reader.vhd
2. deint_buffer.vhd
3. deint_buffer_even.vhd
4. deint_filter_bob.vhd
5. deint_filter_ela.vhd
6. deint_filter_lci.vhd
7. ram_dp_r_w.vhd
8. deinterlacer.vhd
9. deinterlacer_bench.vhd

The  VHDL testbench  instantiates  the  deinterlacer  component  and  the
user may modify the generic parameters in accordance with the desired
interlaced video format and the desired filter algorithm.  In the example
provided, the input format has been set to 480i and the algorithm set to
'LCI'.

The  source  video  for  the  simulation  is  read  by  the  'deint_file_reader'
component.  This component reads a text-based file which contains the
RGB pixel data and sync information.  The text file is called  video_in.txt
and should be placed in the top-level simulation directory.

The file  video_in.txt follows a simple format which defines the state of
signals:  pixin_val,  pixin_field,  pixin_vsync,  pixin_hsync and  pixin  on  a
clock-by-clock basis.  An example file might be the following:

1  0  1  1  00 11 22  # pixel 0, line 0, start of  field 0
1  0  0  0  33 44 55  # pixel 1
1  0  0  0  66 77 88  # pixel 2
.
.
1  0  0  1  00 11 22  # pixel 0, line 1, field 0
1  0  0  0  33 44 55  # pixel 1
1  0  0  0  66 77 88  # pixel 2
.
.
1  1  1  1  00 11 22  # pixel 0, line 0, start of  field 1
1  1  0  0  33 44 55  # pixel 1
1  1  0  0  66 77 88  # pixel 2
.
.
1  1  0  1  00 11 22  # pixel 0, line 1, field 1
1  1  0  0  33 44 55  # pixel 1
1  1  0  0  66 77 88  # pixel 2
.
.
etc..

In this example, the first line of of the  video_in.txt file asserts the input
signals pixin_val = 1, pixin_field = 0, pixin_vsync = 1, pixin_hsync = 1 and
pixin = 0x001122.

The simulation must be run for at least 10 ms during which time an output
text  file  called  video_out.txt will  be  generated.   This  file  contains  a
sequential list of 24-bit output pixels.  Figure 6 shows the resulting output
frame generated by the test.

Performance

The  deinterlacer  core  was  tested  using  a  varied  selection  of  source
images to enable the Peak Signal-to-Noise Ratio (PSNR) to be measured
under  different  scenarios.   Each source image  was  720x576 pixels  in
resolution.   The even lines  were  sampled  from each  source image to
emulate a single field of a standard PAL 576i video signal.

The source video was passed through the deinterlacer hardware and the
PSNR was calculated using the original  source image as a reference.
The PSNR measurements in dBs for each test image are shown in the
table below.

PSNR (dB) for various test images

Image ID BOB ELA LCI Best

Angelina (a) 38.8 36.5 38.2 BOB

Blackbird (b) 30.5 29.5 30.7 LCI

Chumps (c) 44.3 43.7 43.6 BOB

Circuit (d) 26.9 28.2 28.7 LCI

Fruit (e) 31.5 29.7 31.4 BOB

Grass (f) 33.7 33.6 34.7 LCI

Keyboard (g) 30.4 30.3 30.6 LCI

Leaves (h) 33.9 33.1 34.1 LCI

Lines (i) 26.4 30.7 28.6 ELA

Spokes (j) 27.0 26.4 27.3 LCI

Text (k) 25.7 25.6 26.0 LCI

Watch (l) 29.2 29.6 29.9 LCI

Average 31.5 31.4 32.0 LCI

Figure 7 shows  the original source images used during the tests.  The
LCI  algorithm was  found to  perform best  overall.   The BOB and ELA
algorithms had similar average results.

Copyright © 2016 www.zipcores.com Download this VHDL Core Page 4 of 6

Figure 6: Output frame from testbench example

http://www.zipcores.com/multi-format-video-deinterlacer.html


DEINTERLACER

Multi-format Video Deinterlacer
Rev. 1.3

Development Board Testing

The  deinterlacer  core  was  fully  tested  using  a  live  PAL  (576i)  video
source  to  review  the  subjective  image  quality  for  each  of  the  filter
algorithms.   The  basic  setup  included  a  Sony  'Handycam',  a  video
decoder IC, a Spartan-6 FPGA to implement the deinterlacer IP Core and
a  video  DAC  connected  to  a  flat-panel  display.   Figure  8  shows  a
simplified block diagram of the development system.

Figure 9 is a photo of the basic hardware arrangement with the camera
focussed on the edge of the oscilloscope.  Different live video streams
were used to review the subjective image quality.

It  was found that  BOB gave a good all  round performance for  natural
video sequences.  It did tend to soften the image more than ELA or LCI.
For static images, BOB showed a minor vibration or perturbation between
adjacent lines.  

ELA gave a clean sharp image,  but  it  did tend to increase the image
contrast somewhat.   Minor pixel displacements (especially around curved
surfaces) were sometimes observed under close examination.

The LCI algorithm was found to give the most visually pleasing result for
the  widest  range  of  video sources.   The output  video  exhibited  clean
edges and excellent all round performance.

Synthesis

The files required for synthesis and the design hierarchy is shown below:

● deinterlacer.vhd
○ deint_buffer.vhd
○ deint_buffer_even.vhd
○ deint_filter_bob.vhd
○ deint_filter_ela.vhd
○ deint_filter_lci.vhd

The IP Core is designed to be technology independent.  However, as a
benchmark, synthesis results have been provided for the Xilinx® 7-series
FPGAs.   Synthesis  results  for  other  FPGAs  and  technologies  can  be
provided on request.

Choosing  the  BOB  algorithm  results  in  the  smallest  and  fastest
implementation.  The LCI algorithm results in a design roughly double in
size.  Careful attention must be made to the width of the line stores as this
will effect the amount of RAM resource used.

Copyright © 2016 www.zipcores.com Download this VHDL Core Page 5 of 6

Figure 9: Photo of the deinterlacer bench setup

Figure 7: Source images used for PSNR measurements

SONY 
'Handycam'

Maxim 
MAX9526 
PAL/NSTC 

Video 
Decoder

BT.656

PALXILINX Spartan-6 FPGA

Deinterlacer 
IP Core 

576i > 576p

Chrontel 
CH7301C 

DAC24-bit RGB 
+ 

SYNCs

LCD 
Flat Panel 

Display

BT. 
656 
DEC

VID 
TIMING 

GEN

Figure 8: Development system hardware setup

http://www.zipcores.com/multi-format-video-deinterlacer.html

