
LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.4

Key Design Features

● Synthesizable, technology independent VHDL IP Core

● Separate LVDS Transmitter / Receiver (SERDES) pair

● Up to 8 serial LVDS data lanes + LVDS clock

● Fully configurable clocking (duty cycle + skew)

● Generic parallel data width up to 128 bits wide

● Generic parallel-to-serial mux ratio up to 16:1

● Data rates of up to 1 Gbits per lane

● Integrated asynchronous FIFOs with underflow / overflow
detection.

● Bitwise data alignment at the receiver

● No receiver source clock required

● Compatible with a wide range of industry standard protocols
including: Channel-Link®, Camera-Link®, FPD-Link®,
FlatLink®, MIPI etc.

● Robust and simple to implement using cheap twisted pair cable
(e.g. Cat 5E Ethernet)

Applications

● High bandwidth SERDES interfaces

● Serialization of wide buses e.g. 'virtual' ribbon cable

● Direct replacement for many commercial LVDS ICs

● Transport of digital data (e.g. video) over distances of 10m+

Generic Parameters

Generic name Description Type Valid range

dw Parallel data width integer 2 ≤ dw ≤ 128

ratio Parallel-to-serial
multiplexer ratio

integer 2 ≤ ratio ≤ 16

duty Transmitter clock duty
cycle setting

integer 0 < duty < ratio

skew Transmitter clock
skew setting

integer 0 ≤ skew ≤ ratio

lanes Number of serial data
lanes

integer dw / ratio
(8 max)

direction Serialization/De
serialization direction

integer 0: forward
1: backward

polarity Receiver clock
sampling edge

integer 0: -ve edge
1: +ve edge

Block Diagram

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 1 of 6

Figure 1: LVDS (SERDES) Transmitter (a) and Receiver (b)
architectures

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.4

Pin-out Description

LVDS TRANSMITTER

Pin name I/O Description Active state

sys_clk in System clock
(Synchronous with parallel
input data)

rising edge

ser_clk in Serial clock
(sys_clk multiplied by the
mux ratio)

rising edge

reset in Asynchronous reset low

underflow out Error flag: indicates
starvation of data if:
(sys_clk x ratio < ser_clk)

high
(sticky until
reset)

overflow out Error flag: indicates a
surplus of data if:
(sys_clk x ratio > ser_clk)

high
(sticky until
reset)

rst_flags in Reset error flags high

datain [dw-1:0] in Parallel input data data

datain_val in Parallel input data valid high

txN_p (max 8) out Positive Tx strobe serial
data lane 'N'

LVDS

txN_n (max 8) out Negative Tx strobe serial
data lane 'N'

LVDS

tx_clk_p out Positive Tx clock strobe LVDS

tx_clk_n out Negative Tx clock strobe LVDS

LVDS RECEIVER

Pin name I/O Description Active state

sys_clk out System clock
(Synchronous with parallel
output data)

rising edge

reset in Asynchronous reset low

underflow out Error flag: indicates
starvation of data if:
(sys_clk x ratio < ser_clk)

high
(sticky until
reset)

overflow out Error flag: indicates a
surplus of data if:
(sys_clk x ratio > ser_clk)

high
(sticky until
reset)

rst_flags in Reset error flags high

bit_slip in Bit shift strobe
(Causes parallel data
output word to be barrel-
shifted by one bit. Used to
align output data)

rising edge

dataout [dw-1:0] out Parallel output data data

dataout_val out Parallel output data valid high

rxN_p (max 8) in Positive Rx strobe serial
data lane 'N'

LVDS

rxN_n (max 8) in Negative Rx strobe serial
data lane 'N'

LVDS

rx_clk_p in Positive Rx clock strobe LVDS

rx_clk_n in Negative Rx clock strobe LVDS

General Description

The LVDS_SERDES IP Core is a high-speed LVDS Transmitter/Receiver
pair suitable for a wide range of serial interface applications. The design
is comprised of an independent transmitter and receiver that may be used
separately, or together as a single transceiver.

The transceiver can accept parallel data widths of up to 128-bits and
features a user-defined multiplexer ratio. By modifying the generic
parameters, dw, ratio, duty, skew, lanes and direction, the transceiver can
be made compatible with a wide range of third-party LVDS devices such
as those from National Semiconductor®, TI®, Thine® and Maxim®.

In total, the transceiver can support up to 8 serial data lanes - each data
lane typically handling rates of between 500 Mbits/s and 1Gbits/s. The
maximum data rate attained will be dependent on a wide range of factors
such as: cable type, cable length, board layout, and the specification of
the LVDS buffers. As a general rule, data rates of 350 Mbits/s per lane
can be easily achieved on even the most basic FPGA platforms.

In addition to the 8 data lanes, a single clock lane is provided for
synchronizing the data between the transmitter and receiver. Figure 1
shows the basic architecture of the transmitter and receiver pair. The
following sections explain the individual IP Cores in more detail.

LVDS Transmitter

The transmitter is responsible for serializing the parallel input data into
separate data lanes. The input data is partitioned into 'N' groups, where
the width of each group is defined by the generic parameter ratio. As an
example, consider a parallel data width of 21-bits and a mux ratio of 7.
The resulting architecture would have 3 data lanes in an arrangement like
that shown in Figure 2 below:

The output order of the bits within each multiplexer is controlled by the
generic parameter direction. With direction set to '1' then the serial bits
are multiplexed in the order 0, 1, 2, … etc. When direction is '0' then the
order is reversed. The direction parameter is provided for compatibility
with various third party SERDES solutions.

The transmitter requires two separate clocks for correct operation. The
signal sys_clk is a system clock that is synchronous with the input data.
The signal ser_clk is the serial clock. The system clock and serial clock
do not need to be phase-aligned, but the serial clock must be an exact
integer multiple of the system clock with the relationship:

ser_clk = sys_clk ∗ ratio

After system reset, transmission of data begins on a rising clock-edge of
sys_clk when datain_val is asserted high. The serialization process then
begins with parallel data words being read on consecutive system clock
cycles.

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 2 of 6

Figure 2: Multiplexer arrangement for a data width of 21-bits
and a ratio of 7

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.4

During operation, the asynchronous FIFO detects the data rate into and
out of the transmitter. If at any point the FIFO overflows or is starved of
data, then the respective error flags overflow or underflow are asserted.
These flags may also be asserted if the relationship between the system
clock and serial clock is not maintained.

Note also that asserting the bit-slip command may cause the error flags to
be asserted. For this reason, the flags should only be observed during
normal operation when any data-alignment process has been completed.
Once set, these flags remain high until a specific reset using the rst_flags
signal. A system reset will also reset these flags, but any data alignment
at the receiver may be lost.

LVDS Transmitter clocking

The LVDS transmitter clock configuration is specified using the generic
parameters 'duty' and 'skew'. The parameter duty specifies the number of
serial clock cycles that the transmitter clock is in the active low state. An
example of this is shown in figure 3 below. The skew parameter permits
the user to skew the transmitter clock (in cycles) relative to the LVDS
data. By adjusting these parameters, the IP Core may be used to
duplicate the clocking behaviour of most commercial LVDS ICs.

LVDS Receiver

The receiver performs the reciprocal operation to the transmitter and is
responsible for de-serialization of the serial input data. Clock recovery
and serial clock generation is performed by an internal PLL. The point at
which the data is sampled (point within the data 'eye') may be controlled
by the generic parameter polarity.

Setting polarity to '0' results in the data being sampled on a falling clock-
edge close to the centre of the eye. Setting polarity to '1' results in data
being sampled on a rising clock edge. The best setting will depend on the
relative skew between the serial clock and data lanes.

After system reset, the de-serialization process begins with parallel data
words being output on consecutive cycles of the system clock. Data is
valid from the point at which the signal dataout_val is asserted high.

As with the transmitter, the asynchronous FIFO monitors the data rate
into and out of the receiver. If at any point, the clocks become out of
sync, then the respective error flags overflow or underflow are asserted.

Data alignment at the Receiver

For most situations it's not always practical to perfectly align the parallel
data at the transmitter with the parallel data at the receiver. This is
because after reset, the input serial data bits could be at any point within
an N-bit word. In order to correct this, the receiver employs a bit_slip
signal that allows the output data word to be barrel-shifted by one bit.
The bit slip signal is active on a rising-edge.

For instance, consider the case where the 32-bit pattern '0x44440000' is
transmitted with a 4:1 mux ratio. At the receiver end, the 32-bit output
word is observed as 0x2222000. In order to align the word correctly, the
bit_slip signal must be toggled until the the correct output is observed.

This is shown graphically in Figure 4 below:

Data alignment at the receiver can normally be done quite simply by using
a state machine that monitors the receiver output for a special character
or pattern. For example, with digital video, this could be a Start of Active
Video (SAV) code or an End of Active Video (EAV) code - or some
combination of the two.

The state machine would monitor the output for these codes and
periodically assert bit_slip until the codes are detected and the output
data is properly aligned.

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 3 of 6

Figure 4: Receiver 'bit_slip' function

Figure 3: Transmitter clock specification showing a duty cycle setting of 3
serial clock cycles

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.4

Functional Timing

Figure 5 shows the serialization of a 32-bit data word with a mux ratio of
4:1. In this example, all 8 serial data lanes are being used. Note that the
frequency of the serial clock is exactly 4 times the frequency of the
system clock. The de-serialization process at the receiver has exactly the
same timing relationship - but performs the inverse operation.

Source File Description

All source files are provided as text files coded in VHDL.

Source file Description

pipeline_reg.vhd Pipeline register

fifo_async.vhd Asynchronous FIFO

lvds_obuf.vhd Differential output buffer

lvds_oclk.vhd Differential output clock generator

lvds_ibuf.vhd Differential input buffer

lvds_iclk.vhd Differential input clock buffer

lvds_pll.vhd PLL for de-skew and serial clock gen

lvds_flow_error.vhd Overflow / underflow error detector

lvds_deserializer.vhd Instantiates N x 1:N deserializer

lvds_deserializer_n.vhd 1:N deserializer

lvds_serializer.vhd Instantiates N x N:1 serializer

lvds_serializer_n.vhd N:1 serializer

lvds_tx.vhd Top-level LVDS transmitter component

lvds_rx.vhd Top-level LVDS receiver component

lvds_serdes_bench.vhd Top-level test bench

[Note: The components lvds_obuf.vhd, lvds_ibuf.vhd, lvds_oclk.vhd,
lvds_iclk.vhd and lvds_pll.vhd are technology-specific components.
These components must be changed for equivalent parts for correct
implementation. Please contact Zipcores if further assistance is needed]

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. pipeline_reg.vhd
2. fifo_async.vhd
3. lvds_ibuf.vhd
4. lvds_iclk.vhd
5. lvds_obuf.vhd
6. lvds_oclk.vhd
7. lvds_pll.vhd
8. lvds_flow_error.vhd
9. lvds_serializer_n.vhd
10. lvds_serializer.vhd
11. lvds_tx.vhd
12. lvds_deserializer_n.vhd
13. lvds_deserializer.vhd
14. lvds_rx.vhd
15. lvds_serdes_bench.vhd

The VHDL testbench instantiates the transmitter and receiver top-level
components in a loop-back configuration so that the output of the
transmitter feeds directly to the input of the receiver.

The generic parameters dw, ratio,, duty, skew, lanes, direction and
polarity have been set to 32, 4, 2, 0, 8, 1 and 1 respectively for the test.
The user is free to modify these parameters as required to suit their
specific test environment.

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 4 of 6

Figure 5: Example functional timing for the serialization of a 32-bit data
word with a mux ratio of 4:1 and all 8 serial data lanes being utilized. The

direction is set to '1'.

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

LVDS_SERDES

High-speed LVDS (SERDES) Transceiver
Rev. 1.4

The simulation must be run for at least 1 ms during which time the LVDS
transmitter is fed a random sequence of 32-bit words. Two output text
files are generated during the course of the simulation. These files are
'lvds_in.txt' and 'lvds_out.txt' and contain a list of data words captured at
the inputs and outputs of the transmitter and receiver. The equivalence of
these files proves the correct operation of the test.

Note that at the start of the test, the 'bit_slip' signal is toggled various
times in order to align the data correctly at the receiver. If the generic
settings are changed, then the user may have to modify the number of bit-
slip operations accordingly.

Development Board Testing

The LVDS (SERDES) IP Core was tested in a live demo using the
Zipcores HD-video development board. The devboard is based on a
Xilinx® Spartan6 FPGA and features a number of general purpose LVDS
I/O pins.

An LVDS serial link was used to transmit a high-resolution (1280x800) 24-
bit RGB video signal to a Sharp® LQ101K1LY04 LCD display. The
connections were set up for the Thine® THC63LVDF84B LVDS receiver
IC. Figure 6 and 7 show photos of the general demo setup.

Synthesis

The files required for synthesis and the design hierarchy is shown below:

● lvds_tx.vhd
○ lvds_serializer.vhd

■ lvds_serializer_n.vhd
■ lvds_flow_error.vhd
■ fifo_async.vhd

● pipeline_reg.vhd
○ lvds_obuf.vhd
○ lvds_oclk.vhd

● lvds_rx.vhd
○ lvds_deserializer.vhd

■ lvds_deserializer_n.vhd
■ lvds_flow_error.vhd
■ fifo_async.vhd

● pipeline_reg.vhd
○ lvds_pll.vhd
○ lvds_ibuf.vhd
○ lvds_iclk.vhd

The VHDL IP Core is technology independent with the exception of the
differential LVDS I/O buffers and PLL which must be specific to the FPGA
or ASIC process being used. As a benchmark, a Xilinx® Spartan6 FPGA
was used to implement the LVDS transmitter and receiver IP cores.

Trial synthesis results are shown with the generic parameters set as
follows: dw = 56, ratio = 7, duty = 3, skew = 2, lanes = 8, direction = 1,
polarity = 1.

The resource usage is specified after Place and Route.

SPARTAN 6 - LVDS_TX

Resource type Quantity used

Slice register 129

Slice LUT 91

Block RAM 0

DSP48 0

Occupied slices 49

Clock frequency (approx) 500 MHz

SPARTAN 6 - LVDS_RX

Resource type Quantity used

Slice Register 325

Slice LUT 174

Block RAM 0

DSP48 0

Occupied slices 102

Clock frequency (approx) 500 MHz

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 5 of 6

Figure 6: LVDS demo setup

Figure 7: LVDS demo showing Sharp LCD 1280x800
test pattern display

http://www.zipcores.com/high-speed-lvds-serdes-transceiver.html

