
DEINTERLACER_MA

Motion-adaptive Video Deinterlacer
Rev. 1.4

Key Design Features

● Synthesizable, technology independent IP Core for FPGA,
ASIC and SoC

● Supplied as human readable VHDL (or Verilog) source code

● Fully asynchronous 24-bit RGB video inputs
(Option to support YCbCr video formats if required)

● 24-bit RGB video outputs synchronized to the system clock

● Generates clean and progressive output video without combing
or tearing

● Excellent vertical resolution and much better than intra-line
interpolation methods

● Supports three different deinterlacing modes including: Classic
weave, inter-line interpolation and interpolation adapted for
motion between fields

● Supports all interlaced video formats such as: 480i, 576i, 1080i
etc. All modes are real-time programmable

● Integrated frame buffer dynamically skips and repeats frames in
order to adapt to the desired input and output frame rates

● Diagnostic flags asserted in the event of an input or output
buffer overflow

● Simple generic memory interface suitable for SDRAM, DDR,
DDR2, DDR3 etc.

● Fully pipelined architecture with simple flow-control. Compatible
with all other Zipcores video IP, AXI4-stream and Avalon-ST

● Supports 200MHz+ operation on basic FPGA platforms

Applications

● Studio-quality video de-interlacing

● Conversion of 'legacy' SDTV formats to HDTV video formats

● Generating progressive RGB video via inexpensive PAL/NTSC
decoder chips

● Digital TV set-top boxes. Industrial imaging. Automotive, home
and personal media solutions

Generic Parameters

Generic name Description Type Valid range

deint_mode Deinterlacing mode
selection

integer 0: WEAVE
1: INTERP
2: MA

line_width Width of linestores in
pixels

integer 24 < pixels < 216

log2_line_width Log2 of linestore width integer log2(line_width)

field_polarity Swaps the polarity of
the input field

boolean True/False

Block Diagram

Generic Parameters cont...

Generic name Description Type Valid range

mem_start_addr0 Start address of
frame buffer 0 in
memory

integer ≥ 0
(128-bit aligned)

mem_start_addr1 Start address of
frame buffer 1 in
memory

integer ≥ 0
(128-bit aligned)

mem_burst_size Size of memory
read/write burst
(in 128-bit words)

integer 2, 4, 8, 16, 32 or
64

mem_frame_repeat Enable/disable frame
repeat mode

boolean True/False

Copyright © 2017 www.zipcores.com Download this IP Core Page 1 of 9

MOTION-ADAPTIVE
VIDEO DEINTERLACER

clk

reset
VIDEO
FRAME
BUFFER

deint_mode

line_width

log2_line_width

pixels_per_line

lines_per_field

p
ix

in

p
ix

in
_

vs
yn

c

p
ix

in
_

va
l

p
ix

in
_

fie
ld

p
ix

in
_

cl
k

24

(R
G

B
)

O
D

D

fie
ld

E
V

E
N

fie

ld

INPUT LINE
BUFFER

WEAVE

INTERP

MA
MA

FILTER

OUTPUT LINE
BUFFER

24

(R
G

B
)

p
ixo

u
t

p
ixo

u
t_

va
l

p
ixo

u
t_

vsyn
c

p
ixo

u
t_

rd
y

p
ixo

u
t_

h
syn

c

mem_rw

mem_wdata

mem_addr

mem_addr_val

mem_addr_rdy

mem_rdata

mem_rdata_val

128

32

128

mem_start_addr0

mem_frame_repeat

mem_burst_size

field_polarity

err_ovfl1

err_ovfl2

mem_start_addr1

words_per_field

16

16

32

Figure 1: Basic video deinterlacer architecture

http://www.zipcores.com/motion-adaptive-video-deinterlacer.html

DEINTERLACER_MA

Motion-adaptive Video Deinterlacer
Rev. 1.4

Pin-out Description

SYSTEM SIGNALS

Pin name I/O Description Active state

clk in Synchronous system clock rising edge

reset in Asynchronous reset low

err_ovfl1 out Input overflow error

(signifies insufficient input
memory B/W)

high

err_ovfl2 out Output overflow error

(signifies insufficient output
memory B/W)

high

pixels_per_line
[15:0]=

in Number of pixels per input
line

data

lines_per_field
[15:0]

in Number of lines per input
field

data

words_per_field
[31:0]

in Number of 128-bit words
per field

Calculated as
(pixels_per_line *
lines_per_field * 24) /128

(Must be a whole number)

data

ASYNCHRONOUS INPUT VIDEO INTERFACE (INTERLACED)

Pin name I/O Description Active state

pixin_clk in Input pixel clock rising edge

pixin [23:0] in 24-bit RGB pixel in data

pixin_field in Input field number

(Coincident with first pixel
of a new input field)

0: even
1: odd

pixin_vsync in Vertical sync in

(Coincident with first pixel
of a new input field)

high

pixin_val in Input pixel valid high

SYNCHRONOUS OUTPUT VIDEO INTERFACE (PROGRESSIVE)

Pin name I/O Description Active state

pixout [23:0] out 24-bit RGB pixel out data

pixout_vsync out Vertical sync out

(Coincident with first pixel
of a new output frame)

high

pixout_hsync out Horizontal sync out

(Coincident with first pixel
of a new output line)

high

pixout_val out Output pixel valid high

pixout_rdy in Ready to accept output
pixel
(handshake signal)

high

GENERIC 128-BIT MEMORY INTERFACE

Pin name I/O Description Active state

mem_rw out Memory read / write flag 0: write
1: read

mem_wdata [127:0] out Memory write data data

mem_addr [31:0] out Memory read / write
address

(128-bit aligned)

data

mem_addr_val out Memory request valid high

mem_addr_rdy in Ready to accept memory
request

(handshake signal)

high

mem_rdata[127:0] in Memory read data data

mem_rata_val in Memory read data valid data

General Description

The DEINTERLACER_MA IP Core is a studio quality 24-bit RGB video
deinterlacer capable of generating progressive output video at any
resolution up to 216 x 216 pixels. The design is fully programmable and
supports any desired interlaced video format.

The design allows for three possible deinterlacing schemes. These are:
weave, bilinear interpolation or motion-adaptive interpolation. The weave
approach applies no filtering and may be useful to obtain a 'raw'
interlaced format for subsequent processing. The other two methods are
classed as 'inter-field' interpolation methods as spatial filtering is
performed between both odd and even fields to achieve a clean and
progressive output. The relative merits and disadvantages of each
scheme are discussed further into the document.

The deinterlacer core features a fully integrated video frame buffer. This
buffer is completely 'elastic' and will dynamically skip and/or repeat
frames depending on the input and output frame rates. All frame buffer
management is handled internally with the provision of a simple memory
interface for storing odd and even fields off-chip. The memory interface is
128-bits wide and is completely generic1. All memory transfers are
sequential bursts of N x 128-bit words and may be adapted for connection
to a variety of memory types such as SDRAM, DDR2 or DDR3.

The input video interface is asynchronous to the system clock. Input
pixels are sampled on the rising clock-edge of pixin_clk with the signals
pixin_field and pixin_vsync identifying the field number and the first pixel
of each field. All signals are qualified by pixin_val asserted high.

Output pixels are synchronous with the system clock and are generated in
accordance with a simple valid-ready streaming protocol. The output
pixels and sync flags are transferred at the deinterlacer outputs on a
rising clock-edge when pixout_val and pixout_rdy are both active high. If
required, the application circuit may assert pixout_rdy low to stall the flow
of output pixels.

The basic architecture of the motion-adaptive deinterlacer is shown in
Figure 1.

1 Other memory word widths are available on request. We can also
provide physical interfaces with your chosen memory technology.
Please contact Zipcores for more information.

Copyright © 2017 www.zipcores.com Download this IP Core Page 2 of 9

http://www.zipcores.com/motion-adaptive-video-deinterlacer.html

DEINTERLACER_MA

Motion-adaptive Video Deinterlacer
Rev. 1.4

Pixels per line, lines per field and words_per_field

The programmable parameters pixels_per_line and lines_per_field define
the format of the interlaced video input2. As an example, these values
would be set as '720' and '240' if the input video format was digitized
NTSC at 720 x 480 resolution (480i).

The width of the linestores must be sufficient to hold a complete line of
interlaced video and the width should be set to the nearest power of 2.
For example, if pixels_per_line is set to '720', then line_width should be
set to '1024' and log2_line_width should be set to '10'.

The words_per_field parameter defines the total number of 128-bit words
in a complete field. This must be a whole number. Note that when
changing any of the programmable parameters, the deinterlacer must be
reset for a least one system clock cycle before normal operation resumes.

Memory interface parameters

The memory interface parameters should be set according to the input
video format. These parameters define both the physical memory map of
the frame buffer and the way the frame buffer is accessed by the
deinterlacer core.

Figure 2 shows a memory map and the relationship between the generic
parameters mem_start_addr0, mem_start_addr1 and words_per_field.
The size of physical memory must be large enough to buffer both the odd
and even fields as shown otherwise a memory conflict will occur.

In addition, it is important that the parameter mem_burst_size is set
correctly to ensure that each burst is a whole number of sequential 128-
bit bursts. In particular, the calculation (words_per_field/mem_burst_size)
must result in a whole number.

2 Auto-detect of the interlaced input video format is an optional extra.
Please contact Zipcores for more details.

The following tables list the generic parameters for some common
interlaced video formats.

1080i COMMON INTERLACED FORMATS

Mode Pixels per
line

Lines per
field

Words per
field

Mem burst
size

1920 x 1080i 1920 540 194400 32

1440 x 1080i 1440 540 145800 8

1280 x 1080i 1280 540 129600 64

576i COMMON INTERLACED FORMATS

Mode Pixels per
line

Lines per
field

Words per
field

Mem burst
size

1024 x 576i 1024 288 55296 64

 960 x 576i 960 288 51840 64

 768 x 576i 768 288 41472 64

 720 x 576i 720 288 38880 32

 704 x 576i 704 288 38016 64

 544 x 576i 544 288 29376 64

 480 x 576i 480 288 25920 64

480i COMMON INTERLACED FORMATS

Mode Pixels per
line

Lines per
field

Words per
field

Mem burst
size

 960 x 480i 960 240 43200 64

 864 x 480i 864 240 38880 32

 720 x 480i 720 240 32400 16

 704 x 480i 704 240 31680 64

 640 x 480i 640 240 28800 64

 544 x 480i 544 240 24480 32

 528 x 480i 528 240 23760 16

 480 x 480i 480 240 21600 32

 352 x 480i 352 240 15840 32

As a general rule, choosing the maximum burst size will result in the best
possible synchronous memory performance due to reduced page-break
cost.

Copyright © 2017 www.zipcores.com Download this IP Core Page 3 of 9

top of memory

0

mem_start_addr0

words_per_field
x 4

EVEN fields

ODD fields

mem_start_addr1

words_per_field
x 4

Figure 2: Frame buffer memory map

http://www.zipcores.com/motion-adaptive-video-deinterlacer.html

DEINTERLACER_MA

Motion-adaptive Video Deinterlacer
Rev. 1.4

Deinterlacing modes

The generic parameter deint_mode selects one of three possible
deinterlacing schemes. These are WEAVE, INTERPOLATE or MOTION-
ADAPTIVE. The following table outlines the basic characteristics of each
scheme.

Deint_mode Description and properties

0: WEAVE Classic interleave approach. Odd and even lines are
interleaved sequentially to generate a full frame of
video.

Gives excellent results for static images with the best
possible vertical resolution. Moving video exhibits
tearing or combing between fields.

This mode is useful if raw interlaced video is required for
subsequent processing or if the output video is static or
slow moving e.g. electronic billboards, menus, etc.

Results in the smallest hardware implementation size.

1: INTERP This method uses bi-linear filtering between odd and
even fields to generate a smooth interpolated image.

It does tend to soften the image a little but the incidence
of combing or tearing between fields is much less
noticeable.

Results in a medium size hardware implementation that
is slightly larger than the weave approach.

2: MA Most complex algorithm. Uses a 5x5 filter window to
calculate motion vectors between odd and even lines.
The spacial filtering is modified depending on the
calculated vectors.

Generates the best image quality with crisp, sharp
edges and negligible combing artifacts.

Results in the largest hardware implementation size.

Figure 3 demonstrates the visual effect of each deinterlacing mode on a
moving ball in a video snapshot. Image (a) represents the original
interlaced source image. Image (b) is the same image after inter-field
interpolation. Image (c) shows the result after full motion-adaptive
interpolation.

The most marked difference can be observed between the white spots on
the ball. In the weave case, the characteristic combing is quite prominent.
However, in the motion-adaptive case, the edges of each spot are quite
well defined. The bilinear interpolated case gives a result somewhere
between the two extremes.

Copyright © 2017 www.zipcores.com Download this IP Core Page 4 of 9

(a)

(b)

(c)

Figure 3: Visual effect of different deinterlacing
modes: (a) Weave, (b) Interpolate &

(c) Motion-adaptive

http://www.zipcores.com/motion-adaptive-video-deinterlacer.html

DEINTERLACER_MA

Motion-adaptive Video Deinterlacer
Rev. 1.4

Buffer overflow conditions

If the input pixel data rate becomes too high for the internal frame buffer
to tolerate, the input pixel FIFOs will overflow and the signal err_ovfl1 will
be asserted high. This happens when the instantaneous pixel-rate
exceeds the maximum write bandwidth available. To prevent this
condition, it is recommended that the system clock frequency (clk) is
greater than the input pixel clock frequency (pixin_clk).

Likewise, if the output FIFOs overflow, the signal err_ovfl2 will be
asserted high. The output FIFOs have enough buffering to accommodate
four 'in-flight' read memory bursts for a maximum burst size of 64. For this
reason, the memory read latency must not exceed 256 system clock
cycles. If a very high memory read latency is expected, then please
contact Zipcores and the amount of internal buffering can be adjusted
accordingly.

Note that if an overflow condition occurs, the only way to recover is to
assert a system reset. After reset, the system will re-sync to the incoming
video stream and normal operation will resume.

Functional Timing

Asynchronous input video interface

Figure 4 shows the signalling at the input to the deinterlacer at the start of
a new field. The first line of a new field begins with pixin_vsync asserted
high together with the first pixel. When pixin_val is de-asserted then input
pixel is ignored. The signal pixin_field is a flag that identifies whether the
input field is odd or even. This flag is only sampled at the start of a new
field when pixin_vsync and pixin_val are high.

(Note: The polarity of the pixin_field flag can be changed using the
field_polarity generic. This means that an ODD field can be interchanged
for an EVEN field and vice-versa depending on the True/False setting. If
the field polarity is set incorrectly then it will result in a poor quality
image).

Synchronous output video interface

Output pixels and syncs are transferred out of the deinterlacer on the
rising clock-edge of clk when pixin_val and pixin_rdy are both high. If
pixin_rdy is held low, then the output is stalled and the internal frame-
buffer will buffer input pixels (or whole frames) until pixin_rdy is asserted
high again.

Figure 5 shows the output video timing at the start of a new output frame.
Both pixin_vsync and pixin_hsync are asserted high with the first pixel of
a new frame.

Figure 6 demonstrates the timing at the start of a new line. A new line
begins with pixin_hsync coincident with the first pixel. The signal
pixin_vsync is held low.

Copyright © 2017 www.zipcores.com Download this IP Core Page 5 of 9

Pixel N

pixin_clk

pixin Pixel 0 Pixel 2 Pixel 3

pixin_val

Previous Field
(Even)

pixin_vsync

Pixel 1Pixel N-1

Current Field
(Odd)

Invalid pixel - ignored

pixin_field

Figure 4: Input video interface timing

pixout_hsync

Pixel Npixout Pixel 0 Pixel 2 Pixel 3

Previous Frame

pixout_vsync

Pixel 1Pixel N-1

Current Frame
Invalid pixel - ignored

clk

pixout_val

pixout_rdy

Pixel 2

Pixel stalled

Figure 5: Output video interface timing - start of new output frame

pixout_hsync

Pixel Npixout Pixel 0 Pixel 2 Pixel 3

Previous Line

pixout_vsync

Pixel 1Pixel N-1

Current Line
Invalid pixel - ignored

clk

pixout_val

pixout_rdy

Pixel 2

Pixel stalled

Figure 6: Output video timing - start of new output line

http://www.zipcores.com/motion-adaptive-video-deinterlacer.html

DEINTERLACER_MA

Motion-adaptive Video Deinterlacer
Rev. 1.4

Generic 128-bit memory interface

Figure 7 shows a series of write bursts to memory. In this particular
example, the parameter mem_burst_size has been set to 4. Each
memory burst is a block write of 4 words3. The addresses are guaranteed
to be sequential within a burst. Between bursts, the mem_addr_valid
signal is de-asserted for one cycle.

3 A larger burst size is advised for synchronous memory types to
reduce page-breaks. A burst size of 4 is shown for illustration only.

The timing is very similar for a read burst. Figure 8 shows single read
burst and corresponding read data returned from memory.

The memory interface is also compatible with many third party tools.
Examples include those provided by Xilinx® (ISE/Vivado) and Altera®
memory interface generator IP (Quartus).

Copyright © 2017 www.zipcores.com Download this IP Core Page 6 of 9

W
rit

e
bu

rs
t

#1

m
em

_w
da

ta
W

or
d

0

W
rit

e
bu

rs
t

#0

W
or

d
1

cl
k

m
em

_a
dd

r_
rd

y

W
or

d
2

R
eq

ue
st

 s
ta

lle
d

m
em

_r
w

W
or

d
3

W
or

d
4

W
or

d
5

W
or

d
6

W
or

d
7

m
em

_a
dd

r_
va

l

m
em

_a
dd

r
A

dd
r

0
A

dd
r

1
A

dd
r

2
A

dd
r

3
A

dd
r

4
A

dd
r

5
A

dd
r

6
A

dd
r

7

Figure 7: Memory write burst timing
(burst size of 4)

R
e

a
d

 b
u

rs
t

cl
k

m
e

m
_

a
d

d
r_

rd
y

m
e

m
_

rw

m
e

m
_

a
d

d
r_

va
l

m
e

m
_

a
d

d
r

m
e

m
_

rd
a

ta
W

o
rd

 0
W

o
rd

 1
W

o
rd

 2
W

o
rd

 3

A
d

d
r

0
A

d
d

r
1

A
d

d
r

2
A

d
d

r
3

m
e

m
_

a
d

d
r_

va
l

M
e

m
o

ry
 r

e
a

d

L
a

te
n

cy

Figure 8: Memory read burst timing
(burst size of 4)

http://www.zipcores.com/motion-adaptive-video-deinterlacer.html

DEINTERLACER_MA

Motion-adaptive Video Deinterlacer
Rev. 1.4

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

video_in.txt Text-based source video file

deint_file_reader_ma.vhd Reads text-based source video file

mem_model_pack.vhd Memory model functions

ram_model.vhd Single port memory model

mem_model_1Mx128bit.vhd Large 1Mx128 memory model

pipeline_reg.vhd Pipeline register element

pipeline_shovel.vhd Pipeline register 'shovel' element

fifo_sync_bit.vhd Generic 1-bit FIFO

fifo_sync_ram.vhd Generic RAM-based FIFO

fifo_sync_reg.vhd RAM-based FIFO internal register

vid_in_reg.vhd Video input register

vid_out_reg.vhd Video output register

vid_async_fifo.vhd Asynchronous pixel FIFO

vid_sync_fifo.vhd Synchronous pixel FIFO

vid_sync_fifo_reg.vhd Sync FIFO internal register

ram_dp_w_r.vhd Dual port RAM component

vid_align_frame.vhd Aligns pixels to the start of frame

vid_pack128.vhd Pixel packer

pack_16_to_32.vhd 16-bit to 32-bit packer

pack_24_to_32.vhd 24-bit to 32-bit packer

pack_32_to_32.vhd 32-bit to 32-bit packer

pack_32_to_128.vhd 32-bit to 128-bit packer

vid_frame_fifo.vhd Main frame-FIFO controller

vid_mem_write.vhd Memory write burst controller

vid_mem_read.vhd Memory read burst controller

vid_mem_arb.vhd Memory R/W arbiter

vid_unpack128.vhd Pixel unpacker

unpack_32_to_16.vhd 32-bit to 16-bit unpacker

unpack_32_to_24.vhd 32-bit to 24-bit unpacker

unpack_32_to_32.vhd 32-bit to 32-bit unpacker

unpack_128_to_32.vhd 128-bit to 32-bit unpacker

vid_sync_regen.vhd Video sync generator

vid_frame_buffer.vhd Video frame buffer

vid_mem_arb_dual.vhd Memory R/W arbiter (even/odd fields)

deint_field_mux.vhd Input field multiplexer

deint_line_buffer.vhd Line buffer for even/odd fields

deint_filter_ma.vhd Deinterlacer pixel filter

deinterlacer_ma.vhd Top-level deinterlacer component

deinterlacer_ma_bench.vhd Top-level test bench component

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is the same as for
the source file description in the previous section.

The VHDL testbench instantiates the deinterlacer component and the
user may modify the generic parameters in accordance with the desired
interlaced video format and the desired filtering scheme. In the example
provided, the input format has been set to 720x480i and the deinterlacing
mode set to '2' for full motion-adaptive.

The component 'deint_file_reader_ma.vhd' reads the input source video
for the simulation. This component reads a text-based file which contains
the RGB pixel data and sync information. The text file is called
video_in.txt and should be placed in the top-level simulation directory.

The file video_in.txt follows a simple format which defines the state of
signals: pixin_val, pixin_field, pixin_vsync and pixin on a clock-by-clock
basis. An example file might be the following:

1 0 1 00 11 22 # pixel 0, line 0, start of field 0
1 0 0 33 44 55 # pixel 1
1 0 0 66 77 88 # pixel 2
1 0 0 99 00 11 # pixel 3
.
.
1 1 1 00 11 22 # pixel 0, line 0, start of field 1
1 1 0 33 44 55 # pixel 1
1 1 0 66 77 88 # pixel 2
1 1 0 99 00 11 # pixel 3
.
.
etc..

In this example, the first line of of the video_in.txt file asserts the input
signals pixin_val = 1, pixin_field = 0, pixin_vsync = 1 and pixin =
0x001122.

The simulation must be run for at least 50 ms during which time an output
text file called video_out.txt will be generated. This file contains a
sequential list of 24-bit output pixels. Figure 9 shows the resulting output
frame generated by the test.

Copyright © 2017 www.zipcores.com Download this IP Core Page 7 of 9

Figure 9: Output frame from test bench example

http://www.zipcores.com/motion-adaptive-video-deinterlacer.html

DEINTERLACER_MA

Motion-adaptive Video Deinterlacer
Rev. 1.4

Development Board Testing

The deinterlacer IP core was fully tested using a live PAL (576i) and
NTSC (480i) video source to review the subjective image quality for the
different deinterlacing schemes. The hardware setup included the
Zipcores HD-Video development board4 with a Samsung DVD player
providing the CVBS video source. The deinterlacer IP Core was
implemented using the Sparan6 FPGA on the devboard together with
some basic IP for decoding the BT.656 stream and generating the correct
video output timing for the progressive output video. Figure 10 shows a
basic block diagram of the hardware setup.

Figure 11 is a photo of the hardware arrangement showing the Zipcores
development board with CVBS video input and the LCD display. Different
live video streams were used to review the subjective image quality.

4 See: http://www.zipcores.com/hd-video-development-board.html

As expected, it was found that the weave approach gave the best
possible vertical resolution for static and slow-moving video sequences.

Bilinear interpolation gave good all round performance with no significant
combing artefacts. The resultant image did appear a little 'softer' in the
vertical dimension compared to weave.

Overall, the best performance was given by the motion-adaptive
approach. No combing or tearing was evident in a range of fast moving
sequences. Edge definition and contrast were much improved over the
simple bilinear case.

All three schemes exhibited good stability with no 'bob' or vibration
evident between adjacent interlaced lines.

Synthesis and Implementation

The files required for synthesis and the design hierarchy is shown below:

● deinterlacer_ma.vhd
○ deint_field_mux.vhd
○ deint_line_buffer.vhd
○ deint_filter_ma.vhd
○ fifo_sync_ram.vhd

■ ram_dp_w_r.vhd
■ fifo_sync_reg.vhd

○ vid_mem_arb_dual.vhd
■ pipeline_shovel.vhd
■ fifo_sync_bit.vhd

○ vid_frame_buffer.vhd
■ vid_in_reg.vhd
■ vid_async_fifo.vhd
■ vid_align_frame.vhd
■ vid_pack128.vhd

● pack_16_to_32.vhd
● pack_24_to_32.vhd
● pack_32_to_32.vhd
● pack_32_to_128.vhd

■ vid_sync_fifo.vhd
● ram_dp_w_r.vhd
● vid_sync_fifo_reg.vhd

■ vid_frame_fifo.vhd
● vid_mem_write.vhd
● vid_mem_read.vhd

■ vid_mem_arb.vhd
● pipeline_reg.vhd

■ vid_sync_fifo.vhd
● ram_dp_w_r.vhd
● vid_sync_fifo_reg.vhd

■ vid_unpack128.vhd
● unpack_32_to_16.vhd
● unpack_32_to_24.vhd
● unpack_32_to_32.vhd
● unpack_128_to_32.vhd

■ vid_sync_regen.vhd
■ vid_out_reg.vhd

● pipeline_reg.vhd

The VHDL IP core is designed to be technology independent. However,
as a benchmark, synthesis results have been provided for the Xilinx® 7-
series FPGAs. Synthesis results for other FPGAs and technologies can
be provided on request. Note that choosing the WEAVE deinterlacing
mode results in the smallest and fastest implementation. The MA mode
results in the largest implementation size. Careful attention must be
made to the width of the linestores as this will effect the amount of RAM
resource used.

Copyright © 2017 www.zipcores.com Download this IP Core Page 8 of 9

Samsung DVD Player

PAL/NTSC CVBS

Zipcores HD-Video development board

Deinterlacer
IP Core

B
T.

65
6

D
ec

od
er

IP

 C
or

e

T
im

in
g

G
en

er
at

or

IP
 C

or
e

24-bit RGB + Syncs LCD
Flat Panel

Display

01:44

Progressive video
(e.g. 720x576p50 or 720x480p60)

Figure 10: Block diagram of the test setup

Figure 11: Photo of the test setup

http://www.zipcores.com/motion-adaptive-video-deinterlacer.html

