
IEEE_DIV

32-bit Floating-point Divider IP Core
Rev. 1.2

Key Design Features

● Synthesizable, technology independent IP Core for FPGA,
ASIC and SoC

● Supplied as human readable VHDL (or Verilog) source code

● 32-bit floating-point arithmetic

● IEEE 754 compliant1

● High-speed fully pipelined architecture

● Variable latency from 2 to 49 clock cycles

Applications

● Floating-point pipelines and arithmetic units

● Floating-point processors

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

en in Clock enable high

v1 [31:0] in Input operand 1 in IEEE
754 format

data

v2 [31:0] in Input operand 2 in IEEE
754 format

data

vout [31:0] out Output result in IEEE 754
format

data

reg_stages in Generic parameter fixes
latency at compile time

N/A

Functional Specification

Operand v1 Operand v2 Result

Standard IEEE Standard IEEE v1 / v2

If |v1 / v2| > MaxFloat then result is:
[sign(v1) xor sign(v2)] Inf
If |v1 / v2| ≤ MinFloat then result is:
[sign(v1) xor sign(v2)] 0

NaN Anything NaN

Anything NaN NaN

+/- Inf +/- Inf NaN

+/- 0 +/- 0 NaN

+/- Inf Standard IEEE [sign(v1) xor sign (v2)] Inf

Standard IEEE +/- Inf [sign(v1) xor sign (v2)] 0

+/- 0 Standard IEEE [sign(v1) xor sign (v2)] 0

Standard IEEE +/- 0 [sign(v1) xor sign (v2)] Inf

1 Some minor features diverge from the IEEE 754 specification

Block Diagram

General Description

The IEEE_DIV IP Core (Figure 1) is a high-speed fully pipelined 32-bit bit
floating-point divider based on the IEEE 754 standard. The arrangement
of the 32-bit floating-point number is summarized below:

All input and output values comply with the IEEE 754 specification. The
real number representation is calculated according to the formula:

Value=−1(S) ∗2(E−127)∗ 1.M

The divider is fully compliant with the IEEE 754 standard with the
exception that denormalized (subnormal) numbers are treated as zero
throughout the implementation. The maximum floating-point value that
may be represented in hex is 0x7F7FFFFF or 0xFF7FFFFF (+/-
MaxFloat). Likewise, the minimum floating-point value that may be
represented is 0x00800000 or 0x80800000 (+/- MinFloat). This means
that a real number lies in the range:

2−126 ≤ Value ≤ 21272−2−23

Other points to note are that a NaN is always generated as the value
0xFFC00000. By default, the divider uses round towards zero, although
other rounding methods are available on request.

All values are sampled on the rising clock-edge of clk when en is high.
The latency of the divider pipeline is generic and may be fixed during
synthesis.

Copyright © 2018 www.zipcores.com Download this IP Core Page 1 of 2

vout

v1

clk

en

v2

÷
VOUT = V1 / V2

Figure 1: 32-bit Floating-point Divider

Exponent
 (8-bits)

LSB
 Sign
(1-bit)

Mantissa
 (23-bits)

MSB

http://www.zipcores.com/32-bit-floating-point-divider.html
http://www.zipcores.com/32-bit-floating-point-divider.html
http://www.zipcores.com/32-bit-floating-point-divider.html

IEEE_DIV

32-bit Floating-point Divider IP Core
Rev. 1.2

Integer values of between 2 and 49 clock cycles are possible, with the
overall latency given by:

Latency = (48 / reg _ stages) + 1

Functional Timing

Figure 2 demonstrates the division: 0x3FA00000 / 0x40333333 (or 1.25 /
2.8 = 0.44643 in real numbers). In this particular case, the generic
parameter reg_stages has been set to 24 giving a result with a latency of
3 clock cycles (48/24+1).

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

ieee_div_shiftsub.vhd Pipelined divider shift-subtract
module

ieee_div_pipe.vhd Pipelined divider module

ieee_div.vhd Top-level component

ieee_div_bench.vhd Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. ieee_div_shiftsub.vhd
2. ieee_div_pipe.vhd
3. ieee_div.vhd
4. ieee_div_bench.vhd

The simulation must be run for at least 2 ms during which time an input
stimulus of randomized floating-point numbers will generated at the
divider input.

The simulation generates two text files called: ieee_div_in.txt and
ieee_div_out.txt. These files respectively capture the input and output
floating-point numbers during the course of the test.

Synthesis and Implementation

The source files required for synthesis and the design hierarchy is shown
below:

• ieee_div.vhd
◦ ieee_div_pipe.vhd
◦ ieee_div_shiftsub.vhd

The VHDL core is designed to be technology independent. However, as a
benchmark, synthesis results have been provided for the Xilinx® 7-series
FPGAs. Synthesis results for other FPGAs and technologies can be
provided on request.

By adding more pipeline stages (reducing the value of the reg_stage
generic) will result in faster implementations. Conversely, reducing the
number of pipeline stages will generally result in a smaller but slower
design. Generally, using around 13-17 pipeline stages will give the
optimal results.

Trial synthesis results are shown with a setting of reg_stages = 1
(maximum pipelining). Resource usage is specified after Place and
Route.

XILINX® 7-SERIES FPGAS

Resource type Artix-7 Kintex-7 Virtex-7

Slice Register 2352 2352 2351

Slice LUTs 1489 1489 1442

Block RAM 0 0 0

DSP48 0 0 0

Occupied Slices 451 451 449

Clock freq. (approx) 250 MHz 300 MHz 350 MHz

Revision History

Revision Change description Date

1.0 Initial revision 30/04/2008

1.1 Added reg_stages generic to allow flexible
pipeline depths. Updated synthesis results.

16/09/2011

1.2 Cosmetic changes to the source code
Updated results for Xilinx® 7-series

02/07/2018

Copyright © 2018 www.zipcores.com Download this IP Core Page 2 of 2

clk

v1

en

vout

0x3FA00000

v2 0x40333333

0x3EE49249

Figure 2: Division of two floating-point numbers with the
pipeline latency fixed at 3 clock cycles

http://www.zipcores.com/32-bit-floating-point-divider.html
http://www.zipcores.com/32-bit-floating-point-divider.html
http://www.zipcores.com/32-bit-floating-point-divider.html

