
INTERLACER

Video Interlacer
Rev. 1.1

Key Design Features

● Synthesizable, technology independent IP Core for FPGA, 
ASIC and SoC

● Supplied as human readable VHDL (or Verilog) source code

● Video interlacer converts any progressive video format to its 
interlaced equivalent – e.g. 1080p to 1080i

● Supports 24-bit RGB or 4:4:4 YCbCr pixels

● Supports all video resolutions up to 216 x 216

● Fully pipelined architecture with simple valid-ready flow control

● Self-flushing design operates like a simple FIFO

● One frame in generates one interlaced field out

● Output rate is one pixel per clock

● Supports 300 MHz+ operation on basic FPGA devices

Applications

● Conversion of all standard and custom video formats such as 
1920x1080p to 1920x1080i, 720x480p to 720x480i etc.

● Video solutions for flat panel displays, portable devices, video 
consoles, video format converters, set-top boxes, digital TV etc.

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

pixels_per_line 
[15:0]

in Number of pixels per input 
line of video

data

lines_per_frame 
[15:0]

in Number of lines per input 
frame of video

data

pixin [23:0] in 24-bit input pixel data

pixin_vsync in Vertical sync in high

pixin_hsync in Horizontal sync in high

pixin_val in Input pixel valid high

pixin_rdy out Ready to accept input  
pixel (handshake signal)

high

pixout [23:0] out 24-bit output pixel data

pixout_field out Output field number 0: odd, 1: even

pixout_vsync out Vertical sync out high

pixout_hsync out Horizontal sync out high

pixout_val out Output pixel valid high

pixout_rdy in Ready to accept output 
pixel (handshake signal)

high

Block Diagram

General Description

The INTERLACER IP Core (Figure 1) is a fully pipelined video interlacer
solution  that  converts  any  progressive  video  format  into  its  interlaced
equivalent.  The format of the input video is defined by the parameters
pixels_per_line and  lines_per_frame.   These values specify the size of
one input frame of video in pixels and lines.  Each interlaced output field
will have half the number of lines as an input frame.

The input  and  output  interfaces  are  streaming interfaces  that  follow a
simple valid-ready pipeline protocol1.  Input pixels and syncs are sampled
on the  rising  edge of  clk when  pixin_val  and  pixin_rdy are both  high.
Likewise, output pixels and syncs are sampled on the rising edge of  clk
when pixout_val  and pixout_rdy are high.  The interfaces are compatible
with all Zipcores video IP Cores and allow for easy connectivity between
modules.

The  input  sync  signals  vsync and  hsync are  sideband  flags  that  are
coincident  with  the  first  pixel  of  a  frame  and  the  first  pixel  of  a  line
respectively.  The output sync signals are coincident with the first pixel of
an output field.  Note that the output interface has an additional field flag
that identifies whether the field is odd or even.  This field flag is held high
or low for the duration of the output field.

Note that  if  no flow control  is  required in the design and the output  is
guaranteed to accept pixels without  stalling,  then the signal pixout_rdy
may be tied high and the signal pixin_rdy may be ignored.

1 Please see Zipcores application note: app_note_zc001.pdf for more 
examples of how to use the valid-ready pipeline protocol

Copyright © 2019 www.zipcores.com Download this IP Core Page 1 of 3

reset

clk

pixin

pixin_vsync

pixin_hsync

pixin_rdy

24

pixin_val

LINE 
COUNTER

PIXEL 
COUNTER

RGB or YCbCr

24
pixout

pixout_vsync

pixout_hsync

pixout_rdy

pixout_val

RGB or YCbCr

pi
xe

ls
_p

er
_l

in
e

lin
es

_p
er

_f
ra

m
e

16 16

pixout_field

FLOW 
CONTROL 

AND 
MULTIPLEXING

Figure 1: Video interlacer architecture

http://www.zipcores.com/video-interlacer.html


INTERLACER

Video Interlacer
Rev. 1.1

Functional Timing

Figure 2 shows the signalling at the input to the interlacer at the start of a
new frame.  The first line of a new frame begins with  pixin_vsync  and
pixin_hsync asserted  high  together  with  the  first  pixel.   Note  that  the
signals  pixin, pixin_vsync and  pixin_hsync are only  valid  if  pixin_val is
also asserted high.

In  addition,  the  diagram  shows  what  happens  when  pixin_rdy is  de-
asserted.  In this case, the pipeline is stalled and the upstream interface
must hold-off before further pixels are processed.

Figure 3 shows the signalling at the beginning of a new line only.  The first
pixel  of  a  new  line  is  specified  with  pixin_vsync asserted  low  and
pixin_hsync asserted high.  This time, there is no pipeline stalling shown.

Finally, figure 4 shows the signalling at the output of the interlacer.  The
output uses exactly the same protocol as the input with the exception of
the additional pixout_field flag.  The pixout_field flag indicates whether the
output field is odd or even.

In this particular  example,  it  shows  pixout_val de-asserted for  1 clock-
cycle, in which case, the output pixel should be ignored.  Remember that
transfers at the interface are only permitted when valid and ready are both
simultaneously high.

Source File Description

All source files are provided as text files coded in VHDL.  The following
table gives a brief description of each file.

Source file Description

video_in.txt Text-based source video file

video_file_reader.vhd Reads text-based source video file

interlacer.vhd Interlacer top-level component

interlacer_bench.vhd Top-level test bench

Functional Testing

An  example  VHDL testbench  is  provided  for  use  in  a  suitable  VHDL
simulator.  The compilation order of the source code is as follows:

1. video_file_reader.vhd
2. interlacer.vhd
3. interlacer_bench.vhd

The VHDL testbench instantiates the INTERLACER component with the
parameters set up for a 720 x 480 source image.

The source video for the simulation is generated by the video file-reader
component.  This component reads a text-based file which contains the
RGB pixel data.  The text file is called video_in.txt and should be placed
in the top-level simulation directory.

The file  video_in.txt follows a simple format which defines the state of
signals:  pixin_val,  pixin_vsync,  pixin_hsync and pixin on a clock-by-clock
basis.  An example file might be the following:

1  1  1  00 11 22  # pixel 0 line 0 (start of frame)
1  0  0  33 44 55  # pixel 1
0  0  0  00 00 00  # don't care!
1  0  0  66 77 88  # pixel 2
.
.
1  0  1  00 11 22 # pixel 0 line 1 etc..

Copyright © 2019 www.zipcores.com Download this IP Core Page 2 of 3

Pixel 0

clk

pixin

Pipeline stall

Pixel 1 Pixel 2 Pixel 3 Pixel 4

pixin_val

pixin_hsync

pixin_rdy

Start of new frame

pixin_vsync

Figure 2: First pixel of an new input frame (and line) – also showing an
example of a pipeline stall for one clock cycle

Pixel 0

clk

pixin Pixel 1 Pixel 2 Pixel 4 Pixel 5

pixin_val

pixin_hsync

pixin_rdy

Start of new line

pixin_vsync

Pixel 2

Figure 3: First pixel of a new input line

Pixel 0

clk

pixout

Pixel invalid - ignore

Pixel 1 Pixel 4

pixout_val

pixout_vsync

pixout_rdy

Start of new output field

Pixel 2 Pixel 3

pixout_hsync

pixout_field

Figure 4: First pixel of a new output field – also showing invalid output
pixel for one clock cycle

http://www.zipcores.com/video-interlacer.html

