

DATA SHEET

SKY66121-11: 169 to 170 MHz Transmit / Receive Front-End Module

Applications

- Automated meter reading
- Advanced metering infrastructure
- ISM systems

Features

- Transmit output power: >+30 dBm
- High efficiency PA
- Receive loss with filter: 0.9 dB
- Sleep mode current: < 1 μ A
- Integrated control logic
- Small footprint MCM (16-pin, 4 x 4 mm) package (MSL3, 260 °C per JEDEC J-STD-020)

Skyworks GreenTM products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*TM, document number SQ04–0074.

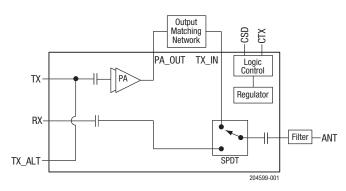
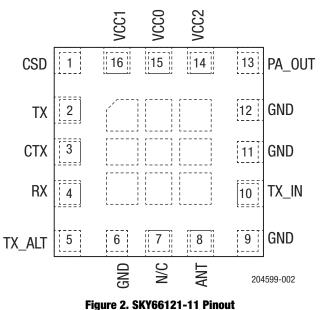


Figure 1. SKY66121-11 FEM Block Diagram

Description


The SKY66121-11 is a high-performance, transmit / receive (Tx / Rx) front-end module (FEM). The device includes a power amplifier (PA) capable of more than +30 dBm of transmit output power (Vcc = 3.6 V).

All functionality can be controlled by a two-wire interface. The FEM can be placed in a deep "sleep" mode, drawing less than 1 μA of current.

The receive chain consists of a low-loss single-pole, double-throw (SPDT) switch. Three separate Vcc pins enable maximum RF isolation.

The SKY66121-11 is packaged in a 16-pin, 4 x 4 mm Multi-Chip Module (MCM), which allows for a highly manufacturable low-cost solution.

A functional block diagram of the SKY66121-11 is shown in Figure 1. The 16-pin MCM package and pinout are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

(Top View)

Table 1. SKY66121-11 Signal Descriptions

Pin	Name	Description	Pin	Name	Description
1	CSD	Control, shutdown/sleep, active low	9	GND	Ground
2	ТХ	Transmit RF input	10	TX_IN	Transmit input. Externally filtered signal
3	СТХ	Control, transmit modes	11	GND	Ground
4	RX	Receive RF output	12	GND	Ground
5	TX_ALT	Alternative transmit RF input	13	PA_OUT	PA output
6	GND	Ground	14	VCC2	Supply for second stage of PA
7	N/C	No connection	15	VCCO	Supply for logic, regulator, bias
8	ANT	Antenna I/O	16	VCC1	Supply for first stage of PA

Technical Description

The SKY66121-11 consists of a complete Tx/Rx chain with Tx/Rx switches contained in the module. An SPDT switch selects between receive and transmit paths. The module has a shutdown mode to minimize power consumption.

Two digital input control pins (CSD and CTX) are used to select between shutdown or Tx/Rx, respectively.

The transmit path contains a PA optimized for saturated performance. The PA can be passed through an external impedance matching network and harmonic filter before being fed through the SPDT switch. External inductors for each of the two PA stages provide maximum application flexibility.

Electrical and Mechanical Specifications

The absolute maximum ratings of the SKY66121-11 are provided in Table 2. The recommended operating conditions are specified in Table 3 and electrical specifications are provided in Tables 4 through 7.

The state of the SKY66121-11 is determined by the logic provided in Table 8. Typical performance characteristics are shown in Figures 3 through 10.

Table 2. SKY66121-11 Absolute Maximum Ratings¹

Parameter	Symbol	Minimum	Maximum	Units
Supply voltage (Pins: VCC0, VCC1, VCC2)	Vcc	-0.3	+4.4	V
Digital input voltage (Pins: CSD and CTX)	VCTL	-0.5	Vcc	V
Receive RF input power, receive mode (Pin: ANT)	PIN_ANT		+15	dBm
Transmit RF input power, transmit mode (Pin: TX)	Pin_tx		-2	dBm
Output power	Роит		+31	dBm
Voltage standing wave ratio	VSWR		10:1	
Operating temperature	Тс	-40	+85	°C
Storage temperature	Тѕтс	-55	+150	°C

1 Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

ESD HANDLING: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

Table 3. SKY66121-11 Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Мах	Units
Operating frequency range	f	169		170	MHz
Supply voltage (Pins: VCC0, VCC1, VCC2)	Vcc	2.0	3.6	4.0	V
Receive RF input power, receive mode (Pin: RX)	Pin_rx			+15	dBm
Transmit RF input power, transmit mode (Pin: TX)	Pin_tx		-6		dBm

Table 4. SKY66121-11 DC Electrical Specifications¹ (Vcc = +3.6 V, Tc = +25 °C, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Receive current (Pins: VCC0, VCC1, VCC2)	IQ_RX	Rx mode, $P_{IN} = -20 \text{ dBm}^2$		680		μA
Transmit quiescent current (Pins: VCC0, VCC1, VCC2)	Ια_τχ	Tx mode		65		mA
		Tx mode:				
Transmit operating current (Pins: VCC0, VCC1, VCC2)	IOP_TX	Vcc = 3.6 V, $Pout = +30.0 dBm$		600		mA
		$Vcc = 3.0 V$, $Pout = +28.0 dBm^3$		470		mA
Shutdown current (Pins: VCC0, VCC1, VCC2) ⁴	ISD	In sleep mode (see Table 8)		0.02	1.0	μA

¹ Performance is guaranteed only under the conditions listed in this table.

² Does not include control pin currents. See Table 7 for more information.

³ Not production tested.

 4 All controls must be <0.1 V to achieve the specified sleep current.

Table 5. SKY66121-11 Receive Mode Electrical Specifications¹

(Vcc = +3.6 V, Tc = +25 °C, f = 169 to 170 MHz, Characteristic Source and Load Impedance = 50 Ω, CW Input, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units		
Receive Mode: ANT to RX Output Path ²								
Insertion loss ³	IL			0.9		dB		
1 dB input compression point ⁴	IP1dB		+15			dBm		
Third order input intercept point ⁴	IIP3		+29			dBm		
Input return loss ⁴	S11		10	17		dB		
Transition time ^{4,5}	TON_RX	Final mode is RX (see Table 8)		1		μs		

¹ Performance is guaranteed only under the conditions listed in this table.

² Mode configured according to logic shown in Table 8.

³ Insertion loss includes the filter loss at the antenna port. See Figure 3.

⁴ Not production tested.

⁵ Elapsed time is from sleep mode to the final mode indicated in Table 8. A final mode is considered achieved when its corresponding Pour is at least 90% of its final value.

Table 6. SKY66121-11 Transmit Mode Electrical Specifications^{1,2}

(Vcc = +3.6 V, PiN = -6 dBm, Tc = +25 °C, f = 169 to 170 MHz, Characteristic Source and Load Impedance = 50 Ω , CW Input, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units		
Transmit Mode: TX to PA_OUT \rightarrow TX_IN to ANT Path ³								
Transmit output power	Роит	$Vcc = 3.6 V$ $Vcc = 3.0 V^{4}$	+29.0 +27.0	+30.0 +28.0		dBm dBm		
2 nd harmonic ^{4,5}	2fo				-36	dBm		
3 rd to 10 th harmonics ^{4,5}	3fo 4fo 5fo 6fo 7fo 8fo 9fo 10fo				-54 -54 -54 -54 -54 -54 -54 -54	dBm dBm dBm dBm dBm dBm dBm		
Input return loss ⁴	S11	Pin = -30 dBm	10	14		dB		
Output return loss ^{3,4}	IS22I	PiN = -30 dBm	8	15		dB		
Non-harmonic spurious power ^{4,5,6}	PSPUR	VSWR = 6:1, all phases			-40	dBm		
Power-on time ^{4,7}	Ton_tx	Final mode = transmit (see Table 8)		1.2		μs		
Receive isolation ⁸	ISRXTXI			10		dB		

¹ Performance is guaranteed only under the conditions listed in this table.

² Mode configured according to logic shown in Table 8.

³ External output matching network and filter located between PA_OUT and TX_IN (pins 13 and 10, respectively).

⁴ Not production tested.

⁵ Final performance dependent on external filter. The 2nd to 10th harmonics are fully characterized but are not production tested.

⁶ Measurement performed with spectrum analyzer (RBW = 100 kHz for frequencies < 1 GHz and RBW = 1 MHz for frequencies between 1 GHz and 10 GHz.

⁷ Elapsed time is from sleep mode to the final mode indicated in Table 8. A final mode is considered achieved when its corresponding PouT is at least 90% of its final value.

⁸ TX-RX isolation includes the gain on the PA.

Table 7. SKY66121-11 Electrical Specifications: Control Logic Characteristics¹ (Tc = +25 °C, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
Control voltage: ²						
High	Vih		1.6	Vcc	Vcc	V
Low	VIL		0	0	0.7	V
Input current: ³						
High:	Ін					
CSD				36		μA
CTX				72		μA
Low:	lı.					
CSD				0		μA
CTX				0		μΑ

¹ Performance is guaranteed only under the conditions listed in this table. Control logic input signals are CSD and CTX.

² Not production tested.

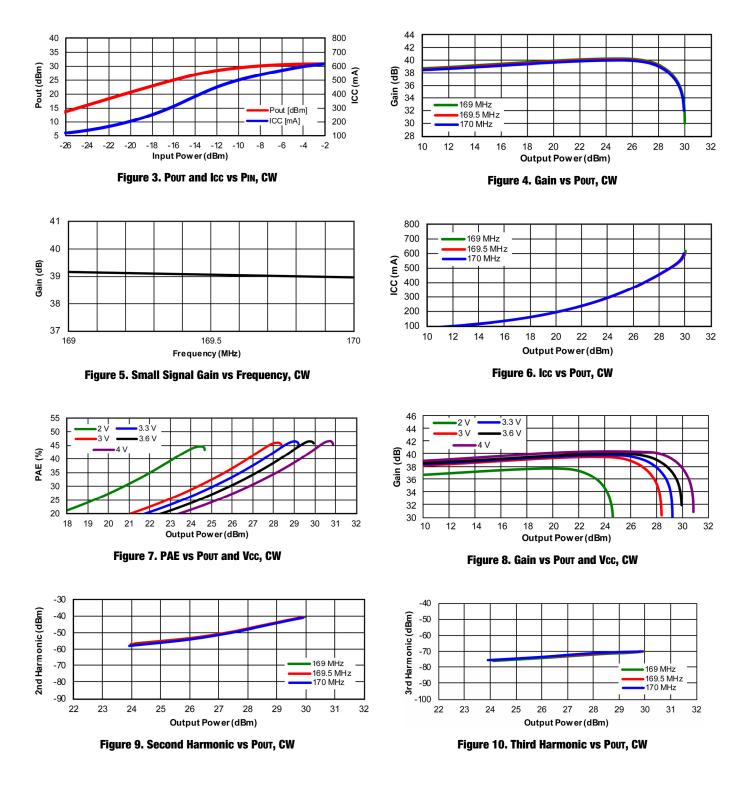

 $^3~$ The CSD and CTX control pins have 100 k Ω and 50 k Ω pull-down resistors, respectively.

Table 8. SKY66121-11 Mode Control Logic¹

Mode	RF Signal Path (Pin → Pin)	CSD (Pin 1)	CTX (Pin 3)	
Sleep	(Note 2)	0	Х	
Receive	$ANT \rightarrow RX$	1	0	
Transmit	TX \rightarrow PA_OUT and TX_IN \rightarrow ANT	1	1	

¹ "1" = 1.6 to Vcc, "0" = 0 to 0.7 V, "X" = don't care.

² All I/O are disconnected from internal components.

Typical Performance Characteristics (VCC = 3.6 V, f = 169 MHz Signal, Unless Otherwise Noted)

Evaluation Board Description

The SKY66121-11 Evaluation Board is used to test the performance of the SKY66121-11 FEM.

An Evaluation Board schematic diagram is provided in Figure 11. A photograph of the Evaluation Board is shown in Figure 12.

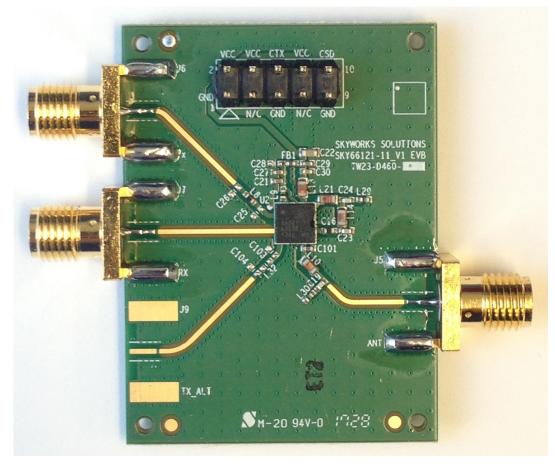


Figure 12. SKY66121-11 Evaluation Board

Package Dimensions

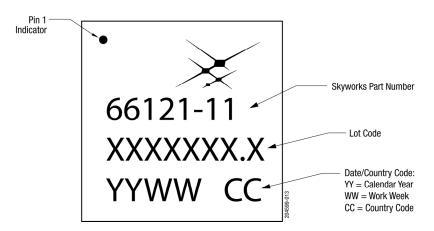
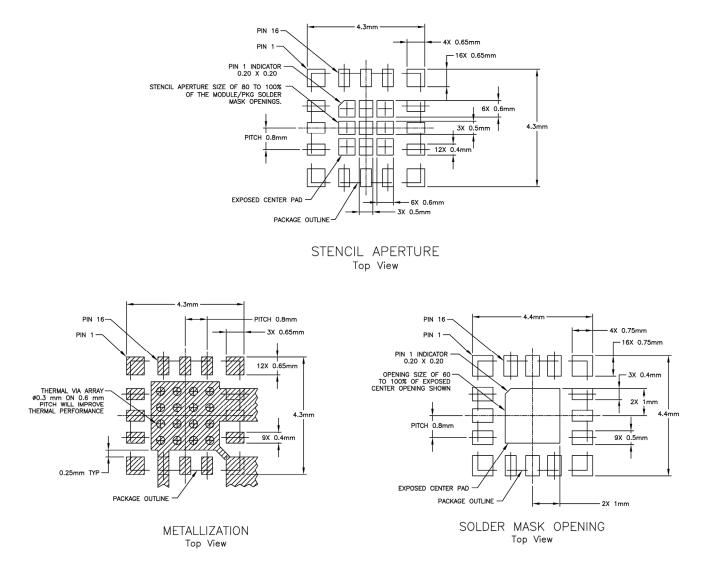
The typical part marking for the SKY66121-11 is shown in Figure 13. The PCB layout footprint for the SKY66121-11 is provided in Figure 14. Figure 15 shows the package dimensions, and Figure 16 provides the tape and reel dimensions.

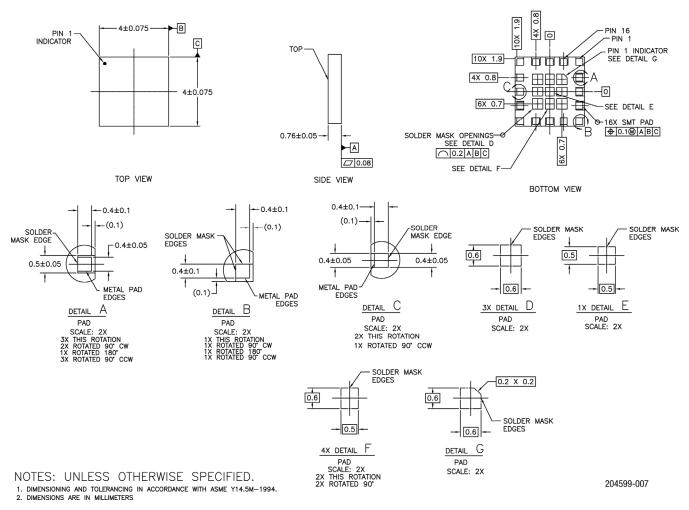
Package and Handling Information

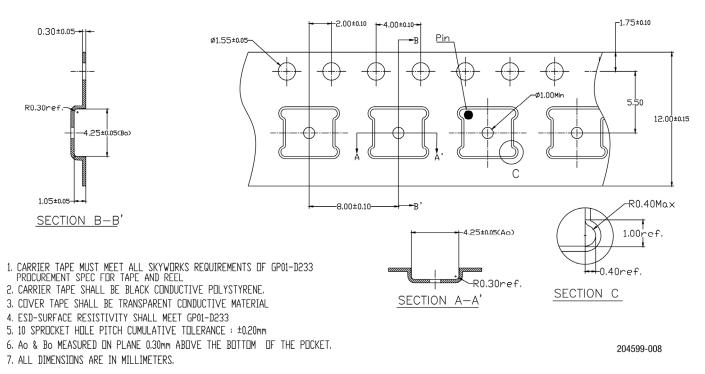
Since the device package is sensitive to moisture absorption, it is baked and vacuum packed before shipping. Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY66121-11 is rated to Moisture Sensitivity Level 3 (MSL3) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *PCB Design and SMT Assembly/Rework Guidelines for MCM-L Packages*, document number 101752.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format. The reel quantity is 3 Ku.


Figure 13. Typical Part Marking


NOTE: THERMAL VIAS SHOULD BE RESIN FILLED AND CAPPED IN ACCORDANCE WITH IPC-4761 TYPE VII VIAS. 30-35UM Cu THICKNESS IS RECOMMENDED.

204599-014

Figure 14. PCB Layout Footprint for the SKY66121-11

