

DATA SHEET

SKY66289-11: 750 to 850 MHz High-Efficiency 4 W Power Amplifier

Applications

- FDD and TDD 2G/3G/4G LTE systems
- 3GPP Bands 20, 28, and 68 small-cell base stations
- Driver amplifier for micro base stations and macro base stations
- Active antenna array and massive MIMO

Features

- High efficiency: PAE = 35.5% @ +28 dBm
- High linearity: +28 dBm with < -50 dBc linearized ACLR (20 MHz LTE, 8.5 dB PAR signal)
- High gain: 36.5 dB
- Excellent input and output return loss: to 50 Ω system
- Integrated active bias: performance compensated over temp
- Integrated enable ON / OFF function: PAEN = 1.7 to 2.5 V
- Single supply voltage: 5.0 V
- Pin-to-pin compatible PA family supporting all 3GPP bands
- Compact (16-pin, $5 \times 5 \times 1.3$ mm) package (MSL3, 260 °C per JEDEC J-STD-020)

Skyworks Green[™] products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green[™]*, document number SQ04–0074.

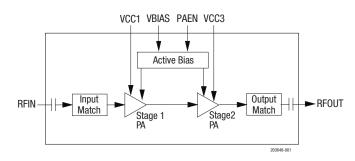
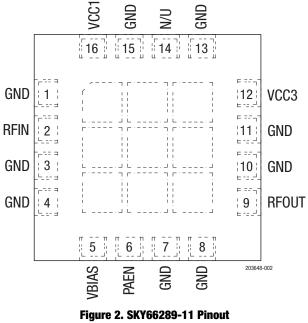


Figure 1. SKY66289-11 Block Diagram

Description


The SKY66289-11 is a high-efficiency fully input / output matched power amplifier (PA) with high gain and linearity. The compact 5×5 mm PA is designed for FDD and TDD 2G/3G/4G LTE small cell base stations operating in two frequency ranges: 791 to 821 and 750 to 850 MHz. The active biasing circuitry is integrated to compensate PA performance over temperature, voltage, and process variation.

The SKY66289-11 is part of high efficiency, pin-to-pin compatible PA family supporting all 3GPP bands.

A block diagram of the SKY66289-11 is shown in Figure 1. The device package and pinout for the 16-pin device are shown in Figure 2. Table 1 lists the pin-to-pin compatible parts in the PA family. Signal pin assignments and functional pin descriptions are described in Table 2.

Table 1. Pin-to-Pin Compatible PA Family

Part Number	Frequency (MHz)	3GPP Band
SKY66296-11	700 to 800	Bands 12, 13, 14, 17, 29, and 44
SKY66289-11	750 to 850	Bands 20, 28, and 68
SKY66295-11	800 to 900	Bands 5, 18, 19, 26, and 27
SKY66298-11	900 to 990	Band 8
SKY66291-11	1805 to 1880	Bands 3 and 9
SKY66299-11	1900 to 2000	Bands 2, 25, 33, 36, and 37
SKY66294-11	2000 to 2300	Bands 1, 4, 10, and 23
SKY66292-11	2300 to 2400	Bands 30 and 40
SKY66293-21	3400 to 3800	CBRS, Bands 22, 42, 43, and 48
SKY66288-11	5150 to 5925	Band 46, LAA/LTE-U

(Top View)

Table 2. SKY66289-11 Signal Descriptions¹

Pin	Name	Description	Pin	Name	Description
1	GND	Ground	9	RFOUT	RF output port
2	RFIN	RF input port	10	GND	Ground
3	GND	Ground	11	GND	Ground
4	GND	Ground	12	VCC3	Stage 3 collector voltage
5	VBIAS	Bias voltage	13	GND	Ground
6	PAEN	PA enable	14	N/U	Not used
7	GND	Ground	15	GND	Ground
8	GND	Ground	16	VCC1	Stage 1 collector voltage

¹ The center ground pad must have a low inductance and low thermal resistance connection to the application's printed circuit board ground plane.

Technical Description

The matching circuits are contained within the device. An on-chip active bias circuit is included within the device for both input and output stages, which provides excellent gain tracking over temperature and voltage variations.

The SKY66289-11 is internally matched for maximum output power and efficiency. The input and output stages are independently supplied using the VCC1 and VCC3 supply lines (pins 16 and 12, respectively). The DC control voltage that sets the bias is supplied by the VBIAS signal (pin 5).

Electrical and Mechanical Specifications

The absolute maximum ratings of the SKY66289-11 are provided in Table 3. Recommended operating conditions are specified in Table 4 and electrical specifications are provided in Tables 5 and 6.

Typical performance characteristics are shown in Figures 3 through 19.

Parameter	Symbol	Minimum	Maximum	Units
RF input power (CW) @ 50 Ω load	Pin		+10	dBm
Supply voltage (VCC1, VCC3, VBIAS)	Vcc		5.5	V
PA enable	Ven		3	V
Operating temperature	Тс	-40	+100	٥°
Storage temperature	Tstg	-55	+125	°C
Junction temperature	TJ		+150	٥°
Power dissipation	PD		1.5	W
Device thermal resistance	өлс		27.5	°C/W
Electrostatic discharge:				
Charged Device Model (CDM) Human Body Model (HBM)			500 1000	V V

Table 3. SKY66289-11 Absolute Maximum Ratings¹

Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

ESD HANDLING: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

Table 4. SKY66289-11 Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Мах	Units
Supply voltage (VCC1, VCC3, VBIAS)	VCC1, VCC3, VBIAS	4.75	5	5.25	V
PA enable:	PAEN				
ON OFF		1.7	2.0 0	2.5 0.5	V V
PA enable current	IEN		1	12	μA
Operating frequency	f	753		821	MHz
Operating temperature	Тс	-40	+25	+85	°C

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Frequency	f		791		821	MHz
Small signal gain	S21	Pin = -30 dBm	34	36.1		dB
Gain @ +28 dBm	S21 @+28 dBm	CW, Pout=+28dBm	35	36.5		dB
Input return loss	S11	PIN = -20 dBm	12	18		dB
Output return loss	IS22I	PIN = -20 dBm	10	15		dB
Reverse isolation ²	IS12I	Pin = -30 dBm		55		dB
ACLR @ +28 dBm	ACLR	POUT = +28 dBm (20 MHz LTE, 8.5 dB PAR signal)		-32.5	-30	dBc
Output power@ $P_{IN} = +5 \text{ dBm}$	Pout@+5 dBm Pin	CW, PIN = +5 dBm	+35.2	+36		dBm
Output power @ 3dB gain compression ³	P3dB	CW, reference to small signal gain	+34	+35		dBm
2 nd harmonic	2f0	CW, Pout = +28 dBm		-40	-34	dBc
3 rd harmonic	3fo	CW, POUT = +28 dBm		-70	-64	dBc
Power-added efficiency	PAE	CW, Pout = +28 dBm	32.5	35.5		%
Quiescent current	ICCQ	No RF signal		70	105	mA

Table 5. SKY66289-11 Electrical Specifications¹

(Vcc1 = Vcc3 = VBIAS = 5 V, PAEN = 2.0 V, f = 806 MHz, Tc = +25 °C, Input / Output Load = 50 Ω, Unless Otherwise Noted)

¹ Performance is guaranteed only under the conditions listed in this table.

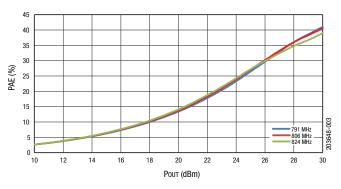
² Not tested in production. Verified by design.

³ Refer to the performance plot in Figure 7.

Table 6. SKY66289-11 Electrical Specifications (Vcc1 = Vcc3 = Vbias = 5 V, PAEN = 2.0 V, f = 780 MHz, Tc = +25 °C, Input / Output Load = 50 Ω , Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Frequency	f		753		803	MHz
Small signal gain	S21	PiN = -30 dBm		36.5		dB
Gain @ +28 dBm	S21 @+28 dBm	CW, Pout=+28 dBm		36.3		dB
Input return loss	S11	PIN = -20 dBm		20		dB
Output return loss	IS22I	PiN = -20 dBm		12		dB
Reverse isolation ¹	IS12I	PiN = −30 dBm		59		dB
ACLR @ +28 dBm	ACLR	POUT = +28 dBm (20 MHz LTE, 8.5 dB PAR signal)		-33		dBc
Output power@ $P_{IN} = +5 \text{ dBm}$	Pout@+5 dBm Pin	CW, PIN = +5 dBm		+35.8		dBm
Output power @ 3dB gain compression	P3dB	CW, reference to small signal gain		+33.7		dBm
2 nd harmonic	2f0	CW, POUT = +28 dBm		-39		dBc
3 rd harmonic	3fo	CW, Pout = +28 dBm		-65		dBc
Power-added efficiency	PAE	CW, Pout = +28 dBm		34.6		%
Quiescent current	Icco	No RF signal		68		mA

¹ Not tested in production. Verified by design.


(VCC1 = VCC2 = VCC3 = VBIAS = 5 V, PAEN = 2.0 V, f = 780 MHz, TC = +25 °C, Input/Output Load = 50 Ω , Unless Otherwise Noted)

-29

-30 -31

-32

-33

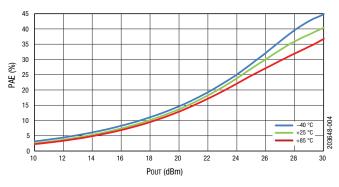


Figure 4. PAE vs POUT Across Temperature



Figure 5. ACLR vs POUT Across Frequency

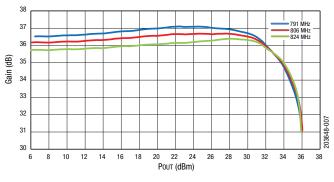


Figure 7. Gain vs POUT Across Frequency

ACLR (dBc) -34 -35 -36 -37 -38 203648-006 -40 °C +25 °C -39 -40 +85 °C --41 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 POUT (dBm)

Figure 6. ACLR vs POUT Across Temperature

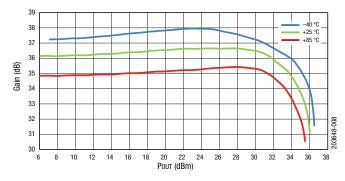


Figure 8. Gain vs POUT Across Temperature

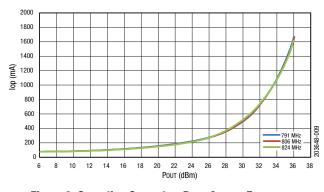


Figure 9. Operating Current vs POUT Across Frequency

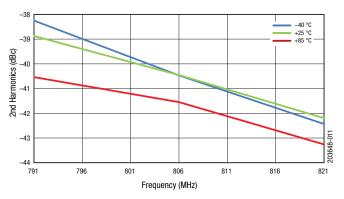


Figure 11. 2^{nd} Harmonic vs Frequency Across Temperature @POUT = +28 dBm (CW)

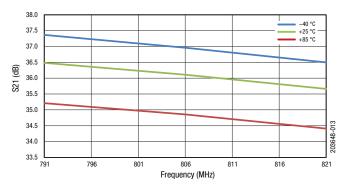


Figure 13. Small Signal Gain vs Frequency Across Temperature

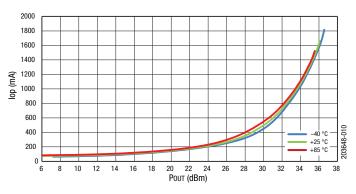


Figure 10. Operating Current vs POUT Across Temperature

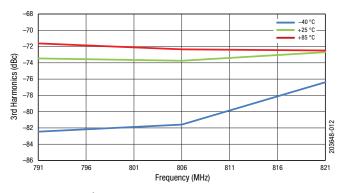


Figure 12. 3rd Harmonic vs Frequency Across Temperature @POUT = +28 dBm (CW)

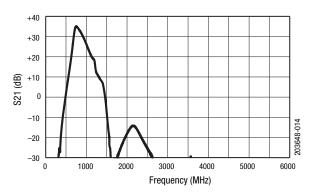


Figure 14. Wide Band Small Signal Gain vs Frequency

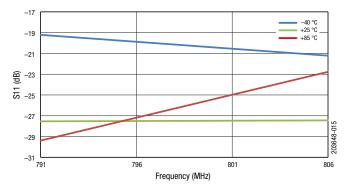


Figure 15. Input Return Loss vs Frequency Across Temperature

45

40

35

30 PAE (%)

25

20

15

10

5

0

10

12

14

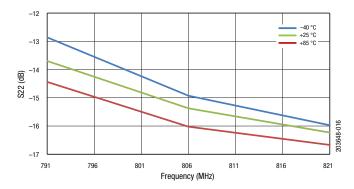


Figure 16. Output Return Loss vs Frequency Across Temperature

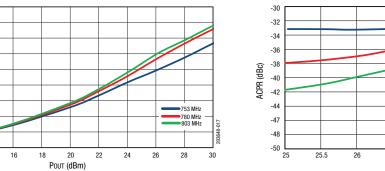


Figure 17. PAE vs POUT Across Frequency

753 MHz 780 MHz 803 MHz NR64R. 27.5 26.5 27 28 28.5 29 POUT (dBm)

Figure 18. ACLR vs POUT Across Frequency

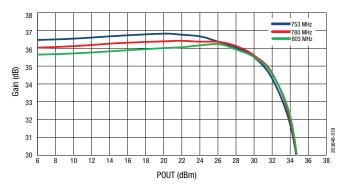


Figure 19. Gain vs POUT Across Frequency

Evaluation Board Description

The SKY66289-11 Evaluation Board is used to test the performance of the SKY66289-11 PA. An Evaluation Board schematic is provided in Figure 20. Table 6 provides the Bill of Materials (BoM) list for Evaluation Board components.

An assembly drawing for the Evaluation Board is shown in Figure 21. Layer details are shown in Figure 22. Layer details physical characteristics are noted in Figure 23.

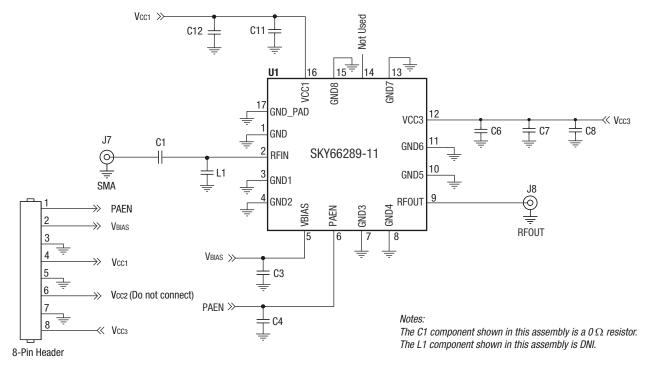
Evaluation Board Test Procedure

Turn-On Sequence

- 1. Connect 50 Ω test equipment or load to the input and output RF ports of the Evaluation Board.
- 2. Connect the DC ground.
- 3. Connect all VCCs and VBIAS lines to a +5 V supply. Connect PAEN to a 2.0 V supply.
- 4. Without applying RF, turn on the 5 V supply, then turn on the 2 V PAEN.
- 5. Apply RF signal at -30 dBm and observe that the gain of the device complies with the values in Table 5. Begin measurements.

Turn-Off Sequence

- 1. Turn off the RF input to the device.
- 2. Turn off PAEN (set to 0 V).
- 3. Turn off all VCCs and VBIAS.

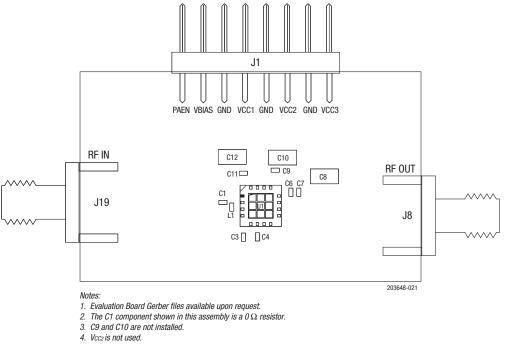

NOTE: It is important to adjust the VCC voltage sources so that +5 V is measured at the board. High collector currents drop the collector voltage significantly if long leads are used. Adjust the bias voltage to compensate.

Circuit Design Considerations

The following design considerations are general in nature and must be followed regardless of final use or configuration:

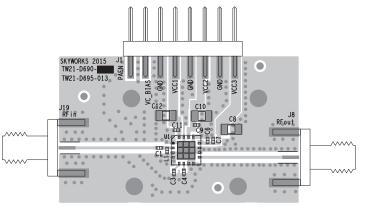
- Paths to ground should be made as short as possible.
- The ground pad of the SKY66289-11 has special electrical and thermal grounding requirements. This pad is the main thermal conduit for heat dissipation. Because the circuit board acts as the heat sink, it must shunt as much heat as possible from the device.
- Therefore, design the connection to the ground pad to dissipate the maximum wattage produced by the circuit board. Multiple vias to the grounding layer are required.

NOTE: A poor connection between the ground pad and ground increases junction temperature (TJ), which reduces the life of the device.



203648-020

Figure 20. SKY66289-11 Evaluation Board Schematic


Component	Description	Size
C1	Resistor, 0 Ω , jumper, 0.063 W	0402
C3, C4, C7, C11	Ceramic capacitor, 3300 pF, X7R, ±10%, 50 V	0402
C6	Ceramic capacitor, 100 pF	0402
C8, C12	Ceramic capacitor, 10 μF, 16 V, ±10%, X7R	1206
L1, C9, C10	DNI	DNI
TW21-D690-031	Evaluation Board	-

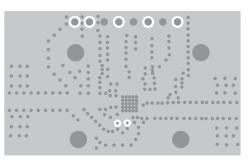

Table. 6. SKY66289-11 Evaluation Board Bill of Materials (BoM)

Figure 21. Evaluation Board Assembly Drawing

DATA SHEET • SKY66289-11: 750 TO 850 MHz HIGH-EFFICIENCY 4 W POWER AMPLIFIER

Layer 1 Note: L1, C9, and C10 are DNI components.

. . . • • • • • • • • • • . Layer 4 Layer 3

50 Ohm	Cross Section	Name	Thickness (mm)	Materials
W = 0.500 mm		TMask L1 Dielectric L2 Dielectric L3 Dielectric L4	0.010 0.035 0.250 0.035 0.350 0.035	Solder Resist Cu, 1 oz. R04350 Cu, 1 oz. FR4 Cu, 1 oz. FR4 Cu, 1 oz. FR4 Cu, 1 oz.
		BMask	0.010	Solder Resist
				203648-023

Figure 23. Layer Detail Physical Characteristics

203648-022

Application Circuit Notes

Center Ground. It is extremely important to sufficiently ground the bottom ground pad of the device for both thermal and stability reasons. Multiple small vias are acceptable and work well under the device if solder migration is an issue.

GND (pins 1, 3, 4, 7, 8, 10, 11, 13, and 15). Attach all ground pins to the RF ground plane with the largest diameter and lowest inductance via that the layout allows. Multiple small vias are acceptable and will work well under the device if solder migration is an issue.

VBIAS (pin 5). The bias supply voltage for each stage, nominally set to +5 V.

RFOUT (pin 9). Amplifier RF output pin ($Z_0 = 50 \Omega$). The module includes an onboard internal DC blocking capacitor. All impedance matching is provided internal to the module.

VCC1 and VCC3 (pin 16 and 12, respectively). Supply voltage for each stage collector bias is nominally set to 5 V. Bypass and decoupling capacitors C6 through C12 should be placed in the approximate location shown on the evaluation board assembly drawing, although exact placement is not critical.

RFIN (pin 2). Amplifier RF input pin ($Z_0 = 50 \Omega$). The module includes an onboard internal DC blocking capacitor. All impedance matching is provided internal to the module.

Package Dimensions

Typical part marking for the SKY66289-11 is shown in Figure 24. The PCB layout footprint for the SKY66289-11 is shown in Figure 25. Package dimensions are shown in Figure 26, and tape and reel dimensions are provided in Figure 27.

Package and Handling Information

Since the device package is sensitive to moisture absorption, it is baked and vacuum packed before shipping. Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY66289-11 is rated to Moisture Sensitivity Level 3 (MSL3) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to Skyworks Application Note, *PCB Design and SMT Assembly/Rework Guidelines for MCM-L Packages*, document number 101752.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

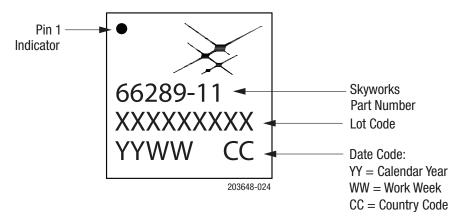
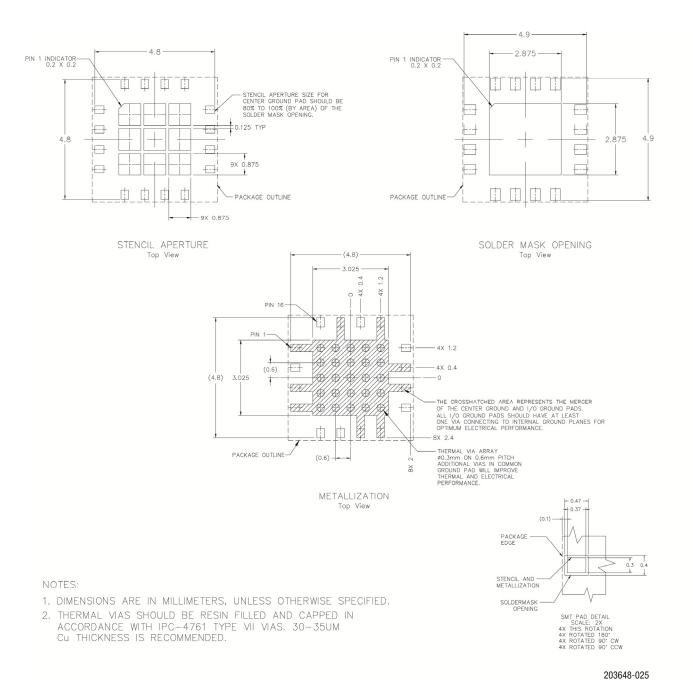
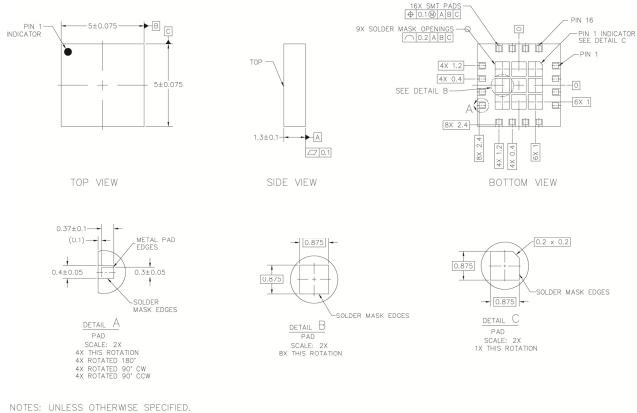
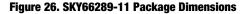


Figure 24. Typical Part Marking

DATA SHEET • SKY66289-11: 750 TO 850 MHz HIGH-EFFICIENCY 4 W POWER AMPLIFIER


Figure 25. SKY66289-11 PCB Layout Footprint

DATA SHEET • SKY66289-11: 750 TO 850 MHz HIGH-EFFICIENCY 4 W POWER AMPLIFIER

NOTES: UNLESS OTHERWISE SPECIFIED. 1. DIMENSIONING AND TOLERANCING IN ACCORDANCE WITH ASME Y14.5M-1994. 2. DIMENSIONS ARE IN MILLIMETERS. 3. PAD DEFINITIONS PER DETAILS ON DRAWING.

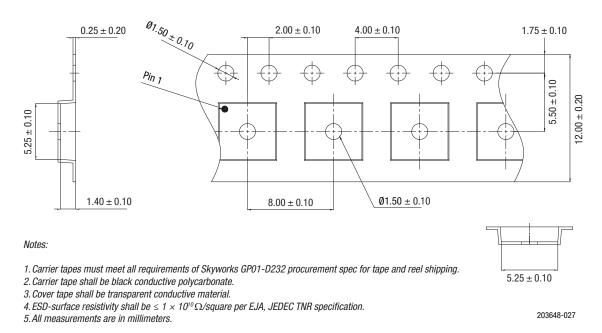


Figure 27. SKY66289-11 Tape and Reel Dimensions