DATA SHEET

SKY77764 Power Amplifier Module for CDMA / WCDMA / HSDPA / HSUPA / HSPA+ / LTE – Bands III, IV, IX (1710 MHz–1785 MHz)

Applications

- WCDMA handsets
- HSDPA
- HSUPA
- HSPA+
- LTE
- CDMA2000
- EVDO

Features

- Low voltage positive bias supply 3.0 V to 4.5 V
- · Good linearity
- High efficiency
- 46% at 28.6 dBm
- Large dynamic range
- Small, low profile package - 3 mm x 3 mm x 0.9 mm
 - 10-pad configuration
- · Power down control
- InGaP
- Supports low collector voltage operation
- Digital Enable
- No VREF required
- CMOS compatible control signals
- Integrated Directional Coupler

Sky are legis For to S doc

Skyworks Green™ products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks *Definition of Green™*, document number SQ04-0074.

Description

The SKY77764 Power Amplifier Module (PAM) is a fully matched 10-pad surface mount module developed for Wideband Code Division Multiple Access (WCDMA) applications. This small and efficient module packs full 1710-1785 MHz bandwidth coverage into a single compact package. Because of high efficiencies attained throughout the entire power range, the SKY77764 delivers unsurpassed talk-time advantages. The SKY77764 meets the stringent spectral linearity requirements of High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), and Long Term Evolution (LTE) data transmission with high power added efficiency. An integrated directional coupler eliminates the need for any external coupler.

The Gallium Arsenide (GaAs) Microwave Monolithic Integrated Circuit (MMIC) contains all amplifier active circuitry, including input and interstage matching circuits. The silicon CMOS support die, providing precision biasing for the MMIC affords a true CMOS-compatible control interface. Output match into a 50-ohm load, realized off-chip within the module package, optimizes efficiency and power performance.

The SKY77764 is manufactured with Skyworks' InGaP GaAs Heterojunction Bipolar Transistor (HBT) process which provides for all positive voltage DC supply operation and maintains high efficiency and good linearity. While primary bias to the SKY77764 can be supplied directly from any suitable battery with an output of 3.2 V to 4.2 V, optimal performance is obtained with VCC2 sourced from a DC-DC power supply adjusted within 0.5 V to 3.6 V based on target output power levels. Power down executes by setting VENABLE to zero volts. No external supply side switch is needed as typical "off" leakage is a few microamperes with full primary voltage supplied from the battery.

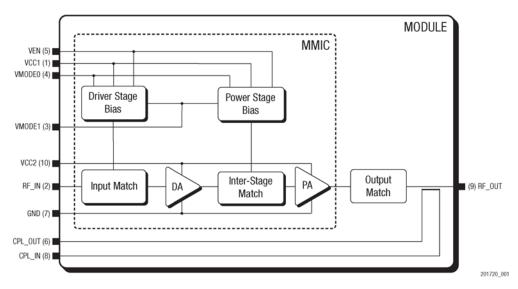


FIGURE 1. SKY77764 FUNCTIONAL BLOCK DIAGRAM

Electrical Specifications

The following tables list the electrical characteristics of the SKY77764 Power Amplifier. Table 1 lists the absolute maximum ratings and Table 2 shows the recommended operating conditions. Electrical specifications for nominal operating

conditions are listed in Table 4. Table 3 presents a truth table for the power settings. Tables 5 through 8 provide the standard test configurations for WCDMA (STC1), HSDPA (STC2), and HSUPA (STC3, STC4) respectively.

SKY77764 POWER AMPLIFIER MODULE for CDMA/ WCDMA/ HSDPA/ HSUPA/ HSPA+/ LTE – BANDS III/ IV/ IX (1710–1785)

+150

No Parameter Symbol Minimum Nominal Maximum Unit **RF Input Power** Pin 0 10 dBm ____ Supply Voltage¹ No RF VCC1 3.8 6.0 Volts _ With RF 3.8 5.0 No RF VCC2 3.4 6.0 _ With RF _ 3.4 4.6 **Enable Control Voltage** Ven _ 1.8 4.2 Volts VMODEO 4.2 Mode Control Voltage _ 1.8 Volts **VMODE1** 1.8 4.2 Case Temperature² °C Operating TCASE -30 +25 +110

TABLE 1. ABSOLUTE MAXIMUM OPERATING CONDITIONS
No damage assuming only one parameter is set at limit at a time with all other parameters set at nominal value.

¹ Overvoltage shutdown circuitry turns on at approximately 5 V.

² Case Operating Temperature (TCASE) refers to the temperature of the GROUND PAD at the underside of the package.

Tstg

Storage

Parameter		Symbol	Minimum	Nominal	Maximum	Unit
					maxinu	
RF Output Power ¹	WCDMA	Pout_max	28.6	—	—	dBm
	HSDPA		27.6	_	_	
	HSUPA		25.0	—	—	
	LTE		27.6	—		
	CDMA2000		28.0	—	—	
Operating Frequency		fo	1710.0	1747.5	1785.0	MHz
Supply Voltage ²		Vcc1	3.0	3.4	4.5	Volts
		Vcc2	0.5	—	3.6	
Enable Control Voltage	Low	Ven_l	0.0	0.0	0.5	Volts
	High	Ven_h	1.35	1.8	3.1	
Mode Control Voltage	Low	VMODEO	0.0	0.0	0.5	Volts
		VMODE1	0.0	0.0	0.5	
	High	VMODEO	1.35	1.8	3.1	
		VMODE1	1.35	1.8	3.1	
Case Operating Temperature ³		TCASE	-20	+25	+85	°C

TABLE 2. RECOMMENDED OPERATING CONDITIONS

-40

¹ For VCC < 3.4 V, output power back-off = 0.5 dB.

² Specifications in Table 4 are specified at VCC1 = 3.2 V-4.2 V.

³ Equivalent to -30 °C to +75 °C Ambient Operating Temperature.

TABLE 3. MODES OF OPERATION

Power Setting	ENABLE	VMODEO	VMODE1	VCC
Power Down Mode	Low	Low	Low	On
Standby Mode	Low	_		On
High Power Mode (17.0 dBm \leq Pout \leq 28.6 dBm)	High	Low	—	On
Medium Power Mode (7.0 dBm \leq Pout \leq 17.0 dBm)	High	High	Low	On
Low Power Mode (Pout \leq 7.0 dBm)	High	High	High	On

TABLE 4. ELECTRICAL SPECIFICATIONS FOR NOMINAL OPERATING CONDITIONS mic range up to 28 6 dRm output nower for STC1 modulation_upless otherwise specified

Per Table 2 over dynamic range up to 28.6 (dBm output po	wer for STC1 modulation, u	nless other	rwise spec	cified.	

Characteristics		Symbol	Condition	Minimum	Typical	Maximum	Unit	
Gain ¹		GLOW	Pout = 7.0 dBm Vcc2 = 0.8 V	12.0	16.0	19.0	dB	
		Gmed	Pout = 17.0 dBm Vcc2 = 1.5 V	20.0	24.0	28.0		
		Gніgh	Pout = 28.6 dBm	25.0	28.0	31.0		
Rx Band Gain	Band III	RxG	Pout = 28.6 dBm	_	_	-1	dB	
	Band IV				_	-6		
	Band IX					-1		
		RxG_gps		_		-1		
		RxG_ISM		_	_	-10		
Power Added Efficiency		PAELOW	Pout = 7.0 dBm, Vcc2 = 0.8 V	10.5	12.5	—	%	
	PAEMED	Pout = 17.0 dBm, Vcc2 = 1.5 V	22.0	26.0	—			
	РАЕнідн	Pout = 28.6 dBm	43.0	46.0	—			
Total Supply Current	Icc_low	Pout = 7.0 dBm, Vcc2 = 0.8 V	—	45	55	mA		
		ICC_MED	Pout = 17.0 dBm, Vcc2 = 1.5 V	_	125	150		
		Ісс_нісн	Pout = 28.6 dBm	_	460	500		
Quiescent Current	irrent		Low Power Mode	_	23.0	27.5	mA	
		IQ_MED	Medium Power Mode	_	33.0	42.0		
Enable Control Current		IEN	—	_	20	40	μA	
Mode Control Current		IMODEO	—	_	20	40	μA	
		IMODE1	—	_	20	40		
Total Supply Current in Power Down Mode		IPD	Vcc = 4.5 V Ven = Low VMODE0 = Low VMODE1 = Low	—	1	10	μA	
ICC1 Current		Ісс1_нідн	—	—	_	10	mA	
Adjacent Channel Leakage power Ratio ²	5 MHz offset	ACLR5	Pout = 7.0 dBm	—	-43.0	-38.5	dBc	
			Pout = 17.0 dBm	—	-47.0	-39.0		
			Pout = 28.6 dBm	—	-42.0	-39.0		
	10 MHz offset	ACLR10	Pout = 7.0 dBm	—	-67.0	-52.0		
			Pout = 17.0 dBm	—	-65.0	-52.0		
			Pout = 28.6 dBm	_	-55.0	-52.0		

Characteristi	CS	Symbol	Condition	Minimum	Typical	Maximum	Unit
Adjacent Channel Leakage power Ratio ³	EUTRA offset	ACLR_EUTRA	$POUT \le (POUT_MAX - MPR^4)$	_	-40	_	dBc
	UTRA offset	ACLR1_UTRA		_	-42	_	
		ACLR2_UTRA		_		_	
Adjacent Channel Power Ratio ^{5,6}	1.25 MHz offset	ACPR1	Pout = 28.25 dBm	_	-49	_	dBc
	1.98 MHz offset	ACPR2		—	-57	_	
Harmonic Suppression	Second	f02	Pout \leq 28.6 dBm	—	-45	-35	dBc
	Third	f03		—	-50	-45	
Tx Noise in Rx Bands ¹	Rx Band III		1805 MHz-1880 MHz	—		-137	dBm/Hz
	Rx Band IV		2110 MHz-2170 MHz	—		-140	
	Rx Band IX		1840 MHz-1879.9 MHz	—		-136	
	GPS Rx		1574 MHz-1577 MHz	—		-134	
	ISM Rx		2400 MHz-2483.5 MHz	—		-143	
Error Vector Magnitude		EVM1	Pout = Pout_max	_	_	3.35	%
		EVM2	Pout = Pout_max - 3	_	_	2.50	
Rise / Fall Time	DC	TON_DC	—	_		20	μs
		TOFF_DC	_	_	_	20	
	RF	TON_rf	_	_		6	
		TOFF_RF	_	_		6	
Coupling Factor		CPL	Pout = Pout_max	-22	-20	-18	dB
CPL_out / Pout Power Ratio Variation Over	Output VSWR		2.5:1 VSWR at Pout all VSWR phases CPL_IN 50 Ω terminated	_	±0.32	—	dB
Daisy-chain	VSWR		CPL_IN and CPL_OUT ports 698 MHz to 2620 MHz VEN = Low	-	—	1.6:1	dB
	Insertion Loss		CPL_IN to CPL_OUT ports 698 MHz to 2620 MHz VEN = Low	_	—	0.25	
Input Voltage Standing Wave Ratio	VSWR	—	—	1.7:1	1.95:1	_	
Stability (Spurious output) ¹	S	6:1 VSWR All phases	_		-70	dBc	
Ruggedness – no damage ^{1,7}		Ru	Pout ≤ 28.6 dBm	10:1	_	_	VSWR

 Table. 4 [CONTINUED] Electrical Specifications for Nominal Operating Conditions

 Per Table 2 over dynamic range up to 28.6 dBm output power for STC1 modulation, unless otherwise specified.

³ LTE: EVM and ACLR are measured with QPSK modulation with 20 MHz bandwidth and 18 resource blocks. (Maximum Power Reduction = 0 dBm per 3GPP TS36.101.
 ⁴ MPR is the maximum power reduction as defined in 3GPP TS36.101

¹ Over conditions

⁵ ACPR is specified per IS95 as the ratio of the total in-band power (1.23 MHz BW) to adjacent power in a 30 kHz BW.

² ACLR is expressed as a ratio of total adjacent power to WCDMA modulated in-band, both measured in 3.84 MHz bandwidth at specified offsets.

For CDMA2000 test configured as [PCD at -7.40 dB, DCCH-9600 bps at -15.35 dB; SCHO-9600 bps at -15.63 dB] and other test configurations that yield a peak-to-average up to 4.02 dB for CCDF = 1%, up to 1 dB power back off from the maximum listed for IS95 may be required to meet specified maximum ACP performance under worst-case conditions.

⁷ All phases, time = 10 seconds.

TABLE 5. STANDARD TEST CONFIGURATION - STC1 WCDMA MODE

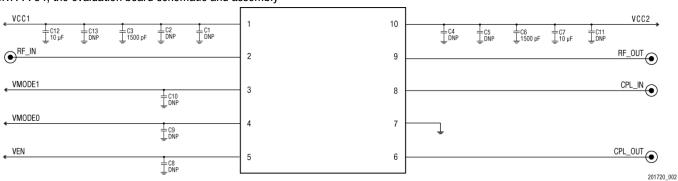
Parameter	Level	Spread Code	Spread Factor	I/Q	βc	βd	βhs	βec	βed	Relative Power (dB)
DPCCH	15 kbps	0	256	Q	8/15	-		-		-6.547
DPDCH	60 kbps	16	64	I	_	15/15	_	_		-1.087

TABLE 6. STANDARD TEST CONFIGURATION - STC2 HSDPA MODE

Parameter	Level	Spread Code	Spread Factor	I/Q	βc	βd	βhs	βec	βed	Relative Power (dB)
DPCCH	15 kbps	0	256	Q	12/15	_		—	—	-7.095
DPDCH	60 kbps	16	64	I	—	15/15		—	—	-5.157
HS-DPCCH	15 kbps	64	256	Q	_	_	24/15	_	—	-3.012

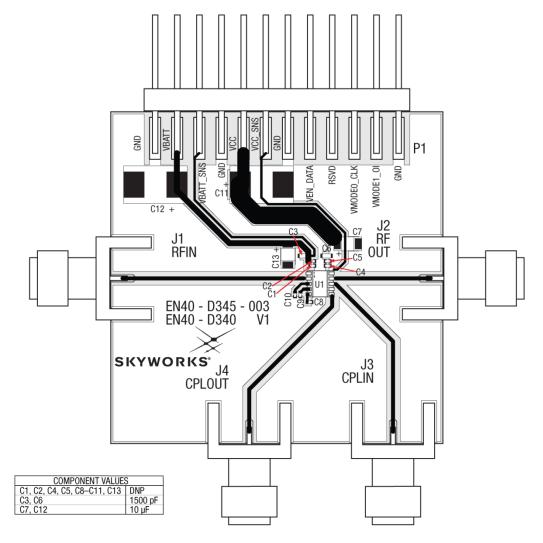
TABLE 7. STANDAR	D TEST CONFIGURATION -	- STC3 HSUPA MODE
------------------	------------------------	-------------------

Parameter	Level	Spread Code	Spread Factor	I/Q	βc	βd	βhs	βec	βed	Relative Power (dB)
DPCCH	15 kbps	0	256	Q	8/15	—	—		—	-19.391
DPDCH	960 kbps	1	4	I	_	15/15	—	_	—	-13.931
HS- DPCCH	15 kbps	64	256	Q	_	_	8/15	_	—	-19.391
E-DPCCH	15 kbps	1	256	I	_	_	_	10/15	—	-17.338
E-DPDCH	960 kbps	2	4	I	_	-	_	_	71.5/15	-0.371


TABLE 8. STANDARD TEST CONFIGURATION - STC4 HSUPA MODE

Parameter	Level	Spread Code	Spread Factor	I/Q	βc	βd	βhs	βec	βed	Relative Power (dB)
DPCCH	15 kbps	0	256	Q	6/15	-	—	—	_	-12.499
DPDCH	960 kbps	1	4	I	—	15/15	—	—	_	-4.540
HS- DPCCH	15 kbps	64	256	Q	—	-	2/15	—	_	-22.041
E-DPCCH	15 kbps	1	256	I	—	-	—	12/15	_	-6.478
E-DPDCH	960 kbps	2	4	I	—	_	—	_	15/15	-4.425

diagrams are included for analysis and design. Figure 2 shows the basic schematic of the board for the 1710 MHz to 1785 MHz


Evaluation Board Description

The evaluation board is a platform for testing and interfacing design circuitry. To accommodate the interface testing of the SKY77764, the evaluation board schematic and assembly

range.

FIGURE 2. EVALUATION BOARD SCHEMATIC

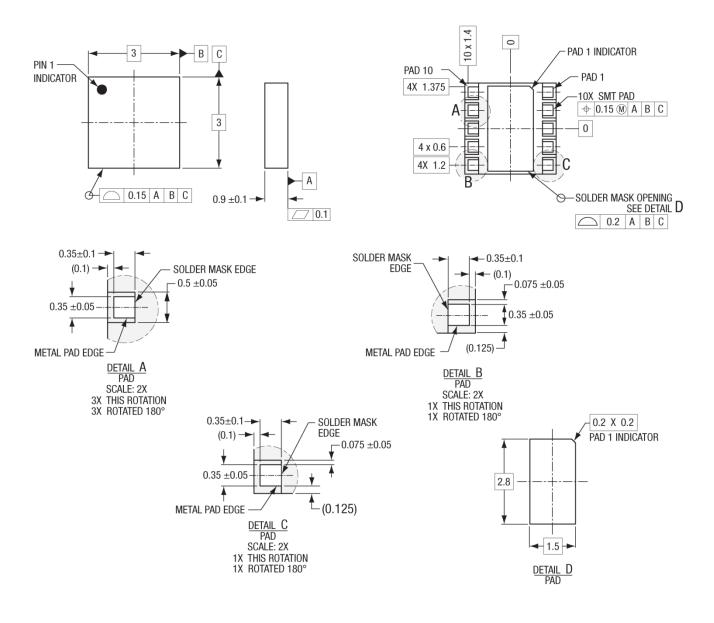
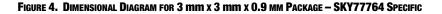
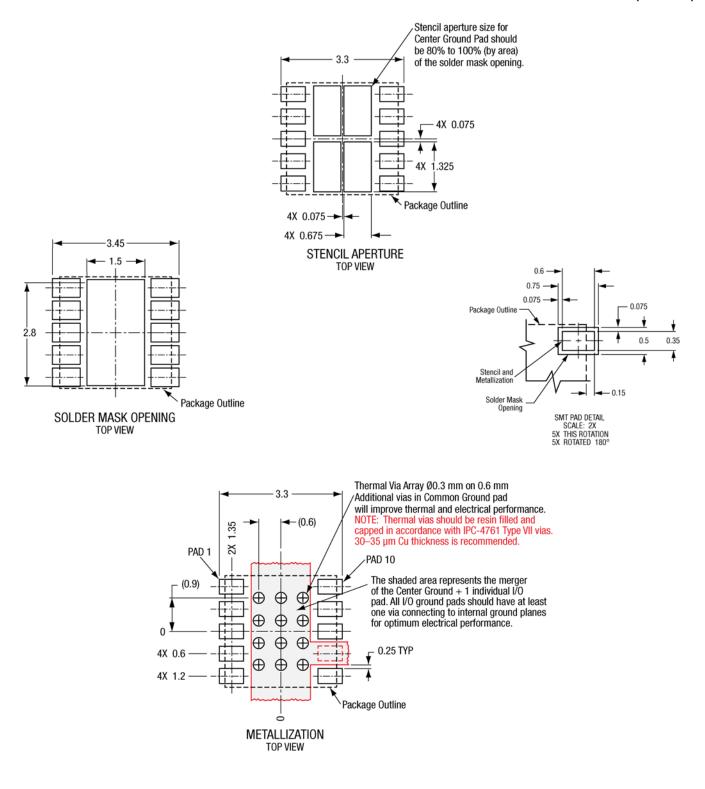

201720_003

FIGURE 3. EVALUATION BOARD ASSEMBLY DIAGRAM

Package Dimensions

The SKY77764 is a multi-layer laminate base, overmold encapsulated modular package designed for surface mount solder attachment to a printed circuit board. Figure 4 is a mechanical drawing of the pad layout for this package. Figure 5 provides a

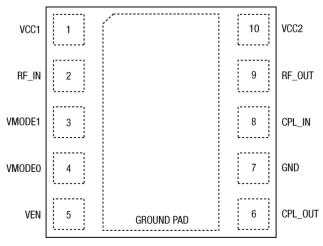

recommended phone board layout footprint for the PAM to help the designer attain optimum thermal conductivity, good grounding, and minimum RF discontinuity for the 50-ohm terminals.



NOTES: Unless otherwise specified.

Dimensioning and Tolerancing in accordance with ASME Y14.5M–1994
 All dimensions are in millimeters.

DS_D804_77761 REV 1 2/08/12 201720 004



DS_D804_77761 REV 1 2/08/12 201720_005

FIGURE 5. PHONE PCB LAYOUT DIAGRAM - 3 mm x 3 mm, 10-PAD PACKAGE - SKY77764

Package Description

Figure 6 shows the pad functions and the pad numbering convention, which starts with pad 1 in the upper left and increments counter-clockwise around the package. Typical case markings are illustrated in Figure 7.

Pad layout as seen from Top View looking through the package. GROUND PAD is package underside. 201720 000

FIGURE 6. SKY77764 PAD NAMES AND CONFIGURATION (TOP VIEW)

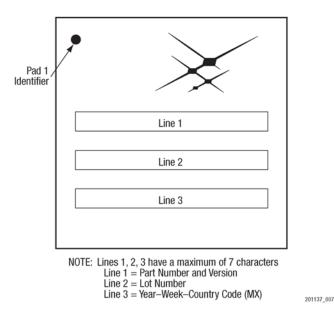


FIGURE 7. TYPICAL CASE MARKINGS

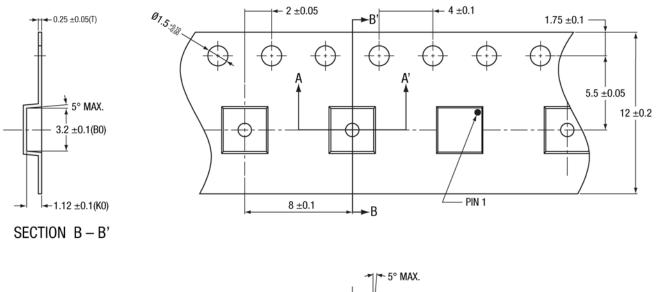
Package Handling Information

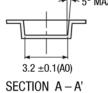
Because of its sensitivity to moisture absorption, this device package is baked and vacuum-packed prior to shipment. Instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY77764 is capable of withstanding an MSL3/260 °C solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is attached in a reflow oven, the temperature ramp rate should not exceed 3 °C per second; maximum temperature should not exceed 260 °C. If the part is manually attached, precaution should be taken to insure that the part is not subjected to temperatures exceeding 260 °C for more than 10 seconds. For details on attachment techniques, precautions, and handling procedures recommended by Skyworks, please refer to Skyworks Application Note: *PCB Design and SMT Assembly/Rework*, Document Number 101752. Additional information on standard SMT reflow profiles can also be found in the JEDEC Standard J-STD-020.

Production quantities of this product are shipped in the standard tape-and-reel format (Figure 8).

Electrostatic Discharge (ESD) Sensitivity


The SKY77764 meets class 1C JESD22-A114 Human Body Model (HBM), class IV JESD22-C101 Charged-Device Model (CDM), and class A JESD22-A115 Machine Model (MM) electrostatic discharge (ESD) sensitivity classification.



Attention: Observe Precautions for Handling Electrostatic Sensitive Devices Electrostatic Discharge (ESD) can damage this device, which must be protected from ESD at all times. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

To avoid ESD damage, both latent and visible, it is very important that the product assembly and test areas follow the ESD handling precautions listed below.

- Personnel Grounding
 - Wrist Straps
 - Conductive Smocks, Gloves and Finger Cots
 - Antistatic ID Badges
- Protective Workstation
 - Dissipative Table Top
 - Protective Test Equipment (Properly Grounded)
 - Grounded Tip Soldering Irons
 - Solder Conductive Suckers
 - Static Sensors
- Facility
 - Relative Humidity Control and Air Ionizers
 - Dissipative Floors (less than 1,000 M Ω to GND)
- Protective Packaging and Transportation
 - Bags and Pouches (Faraday Shield)
 - Protective Tote Boxes (Conductive Static Shielding)
 - Protective Trays
 - Grounded Carts
 - Protective Work Order Holders

NOTES:

- 1. CARRIER TAPE IS BLACK CONDUCTIVE POLYCARBONATE OR POLYSTYRENE.
- 2. COVER TAPE IS TRANSPARENT AND CONDUCTIVE.
- 3. ESD-SURFACE RESISTIVITY IS \leq 1 X 10¹⁰ OHMS/SQUARE PER EIA, JEDEC TNR SPECIFICATION. 4. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE: ±0.2 mm
- 5. Ao & Bo MEASURED ON PLANE 0.3 mm ABOVE THE BOTTOM OF THE POCKET.
- 6. ALL DIMENSIONS ARE IN MILLIMETERS.

CARRIER TAPE OVERMOLD MCM / RFLGA 3 x 3 x 0.75 / 0.90 mm BODY SIZE -108A 201075 008

FIGURE 8. DIMENSIONAL DIAGRAM FOR CARRIER TAPE BODY SIZE 3 mm x 3 mm x 0.75 / 0.90 mm - MCM