General Description

The SLG46855 provides a small, low power component for commonly used Mixed-Signal functions. The user creates their circuit design by programming the one time programmable (OTP) Non-Volatile Memory (NVM) to configure the interconnect logic, the IO Pins, and the macrocells of the SLG46855. This highly versatile device allows a wide variety of Mixed-Signal functions to be designed within a very small, low power single integrated circuit.

Key Features

- Two High Speed General Purpose Analog Comparators (ACMPxH)
- Two Low Power General Purpose Analog Comparators (ACMPxL)
- Two Voltage References (Vref)
- Two Vref Outputs
- Fifteen Combination Function Macrocells
 - Three Selectable DFF/LATCH or 2-bit LUTs
 - One Selectable Programmable Pattern Generator or 2-bit LUT
 - Nine Selectable DFF/LATCH or 3-bit LUTs
 - One Selectable Pipe Delay or Ripple Counter, or 3-bit LUT
 - One Selectable DFF/LATCH or 4-bit LUTs
- Eight Multi-Function Macrocells
 - Seven Selectable DFF/LATCH or 3-bit LUTs + 8-bit Delay/Counters
 - One Selectable DFF/LATCH or 4-bit LUT + 16-bit Delay/Counter
- Serial Communications
 - I²C Protocol Interface
- Programmable Delay with Edge Detector Output
- Deglitch Filter or Edge Detector
- Three Oscillators (OSC)
 - 2.048 kHz Oscillator
 - 2.048 MHz Oscillator
 - 25 MHz Oscillator

Applications

- Personal Computers and Servers
- PC Peripherals
- Consumer Electronics
- Data Communications Equipment
- Handheld and Portable Electronics
- Smartphones and Fitness Bands
- Notebook and Tablet PCs

- Analog Temperature Sensor
- Power-On Reset (POR)
 - Read Back Protection (Read Lock)
 - Power Supply
 - 2.5 V (±8 %) to 5 V (±10 %)
 - Operating Temperature Range: -40 °C to 85 °C
 - RoHS Compliant/Halogen-Free
 - Available Package
 - 14-pin STQFN: 1.6 mm x 2.0 mm x 0.55 mm, 0.4 mm pitch

RENESAS

Contents

General Description	1
Key Features	1
Applications	1
1 Block Diagram	7
2 Pinout	
2.1 Pin Configuration - STQFN- 14L	8
3 Characteristics	
3.1 Absolute Maximum Ratings	
3.2 Electrostatic Discharge Ratings	
3.3 Recommended Operating Conditions	
3.4 Electrical Characteristics	
3.5 Timing Characteristics	
3.6 Counter/Delay Characteristics	
3.7 Oscillator Characteristics	23
3.8 ACMP Characteristics	24
3.9 Analog Temperature Sensor Characteristics	
4 User Programmability	
5 IO Pins	
5.1 GPIO Pins	
5.2 GPI Pins	
5.3 GPO Pins	
5.4 Pull-Up/Down Resistors	
5.5 Fast Pull-up/down during Power-up	
5.6 GPI Structure	
5.7 GPIO with I ² C Mode IO Structure	
5.8 Matrix OE IO Structure	
5.9 GPO Structure	
5.10 IO Typical Performance	
6 Connection Matrix	40
6.1 Matrix Input Table	41
6.2 Matrix Output Table	43
6.3 Connection Matrix Virtual Inputs	46
6.4 Connection Matrix Virtual Outputs	46
7 Combination Function Macrocells	47
7.1 2-Bit LUT or D Flip-Flop Macrocells	47
7.2 2-bit LUT or Programmable Pattern Generator	50
7.3 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells	52
7.4 4-Bit LUT or D Flip-Flop with Set/Reset Macrocell	61
7.5 3-Bit LUT or Pipe Delay/Ripple Counter Macrocell	63
8 Multi-Function Macrocells	67
8.1 3-Bit LUT or DFF/Latch with 8-Bit Counter/Delay Macrocells	67
8.2 4-Bit LUT or DFF/Latch with 16-Bit Counter/Delay Macrocell	77
8.3 CNT/DLY/FSM Timing Diagrams	80
8.4 Wake and Sleep Controller	
9 Analog Comparators	93
9.1 ACMP0H Block Diagram	94
9.2 ACMP1H Block Diagram	95
9.3 ACMP2L Block Diagram	96
9.4 ACMP3L Block Diagram	97
9.5 ACMP Typical Performance	98
10 Programmable Delay/Edge Detector	102
10.1 Programmable Delay Timing Diagram - Edge Detector OUTPUT	
11 Additional Logic Function. Deglitch Filter	103
12 Voltage Reference	104
12.1 Voltage Reference Overview	

DataSheet

GreenPAK Programmable Mixed-Signal Matrix

12.2 Vref Selection Table	
12.3 Vref Block Diagram	
12.4 Vref Load Regulation	
13 Clocking	
13.1 Osc General description	
13.2 Oscillator0 (2.048 kHz)	
13.3 Oscillator1 (2.048 MHz)	
13.4 Oscillator2 (25 MHz)	
13.5 CNT/DLY Clock Scheme	111
13.6 External Clocking	112
13.7 Oscillators Power-On Delay	113
13.8 Oscillators Accuracy	115
14 Power-On Reset	118
14.1 General Operation	118
14.2 POR Sequence	119
14.3 Macrocells Output States During POR Sequence	119
15 I ² C Serial Communications Macrocell	
15.1 I ² C Serial Communications Macrocell Overview	
15.2 I ² C Serial Communications Device Addressing	
15.3 I ² C Serial General Timing	
15.4 I ² C Serial Communications Commands	
15.5 I ² C Serial Command Register Map	
15.6 I ² C Additional Options	
16 Analog Temperature Sensor	
17 Register Definitions	133
17.1 Register Map	
18 Package Top Marking Definitions	
18.1 STQFN 14L 1.6 mm x 2 mm 0.4P FC, before February 1, 2021	
18.2 STQFN 14L 1.6 mm x 2 mm 0.4P FC, after February 1, 2021	
19 Package Information	
19.1 Package outlines FOR STQFN 14L 1.6 mm x 2.0 mm x 0.55 mm 0.4P FC Package	
19.2 STQFN Handling	
19.3 Soldering Information	
20 Ordering Information	
20.1 Tape and Reel Specifications	
20.2 Carrier Tape Drawing and Dimensions	
21 Layout Guidelines	
21.1 STQEN 14L 1.6 mm X 2.0 mm X 0.55 mm 0.4P FC Package	
UIUSSary	

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

Figures

Figure 1: Block Diagram	7
Figure 2: Steps to Create a Custom GreenPAK Device	30
Figure 3: IO0 GPI Structure Diagram	32
Figure 4: GPIO with I ² C Mode IO Structure Diagram	33
Figure 5: Matrix OE IO Structure Diagram	34
Figure 6: Matrix OE IO 4x Drive Structure Diagram	35
Figure 7: GPO Register OE 4x Drive Structure Diagram	36
Figure 8: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C	37
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage. 1x Drive at T = 25 °C. Full Range	37
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C	38
Figure 11: Typical Low Level Output Current vs. Low Level Output Voltage. 2x Drive at T = 25 °C. Full Range	38
Figure 12: Typical Low Level Output Current vs. Low Level Output Voltage. 2x Drive at T = 25 °C	
Figure 13: Connection Matrix	
Figure 14: Connection Matrix Example	40
Figure 15: 2-bit UTO or DEFO	47
Figure 16: 2-bit UT1 or DEF1	48
Figure 17: 2-bit IT2 or DEE2	48
Figure 18: DEE Polarity Operations	10
Figure 19: 2-bit I LIT3 or PGen	
Figure 20: PGen Timing Diagram	51
Figure 21: 3-bit LITO or DEF3	
Figure 22: 3-bit LUT1 or DEFA	5/
Figure 22: 3-bit LUT2 or DEE5	5 - 54
Figure 20: 3-bit LUT3 or DEE6	55
Figure 25: 3 bit LUTA or DEE7	55
Figure 26: 3-bit LUT5 or DEE8	56
Figure 20. 3-bit LUTS of DEFO	56
Figure 27: 3-bit LUT7 or DEE10	50
Figure 20: 3-bit LUT9 or DEE11	57
Figure 29. 5-bit LOTO OF DEFT11	57
Figure 30. DFF Polarity Operations with nSet	00
Figure 31. DEF Folding Operations with noet	01
Figure 32: 2 bit LUT16/Dine Delay/Dinele Counter	02
Figure 33. 3-bit LOT To/Pipe Delay/Ripple Counter	04
Figure 34. Example. Ripple Counter Functionality	05
Figure 35: Possible Connections Inside Multi-Function Macrocell	67
Figure 36: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF13, CNT/DLY1)	08
Figure 37: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF14, CN1/DLY2)	09
Figure 38: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF15, CNT/DLY3)	70
Figure 39: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF16, CNT/DLY4)	/1
Figure 40: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT13/DFF17, CNT/DLY5)	72
Figure 41: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT14/DFF18, CNT/DLY6)	73
Figure 42: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT15/DFF19, CNT/DLY7)	/4
Figure 43: 4-bit LUI1 or CNI/DLY0	78
Figure 44: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3	80
Figure 45: Delay Mode Timing Diagram for Different Edge Select Modes	81
Figure 46: Counter Mode Timing Diagram without Two DFFs Synced Up	81
Figure 47: Counter Mode Timing Diagram with Two DFFs Synced Up	82
Figure 48: One-Shot Function Timing Diagram	82
Figure 49: Frequency Detection Mode Timing Diagram	83
Figure 50: Edge Detection Mode Timing Diagram	84
Figure 51: Delayed Edge Detection Mode Timing Diagram	85
Figure 52: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3	86
Figure 53: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3	86
Figure 54: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3	87
Figure 55: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator Is Forced On, UP = 1) for Counter Data = 3	87

Figure 56: Counter Value, Counter Data = 3	88
Figure 57: Wake/Sleep Controller	89
Figure 58: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used	90
Figure 59: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used	90
Figure 60: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used	91
Figure 61: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Set is Used	91
Figure 62: ACMP0H Block Diagram	94
Figure 63: ACMP1H Block Diagram	95
Figure 64: ACMP2L Block Diagram	96
Figure 65: ACMP3L Block Diagram	97
Figure 66: Typical Propagation Delay vs. Vref for ACMPxH at T = 25 °C, Gain = 1, Buffer - Disabled, Hysteresis = 0	98
Figure 67: Typical Propagation Delay vs. Vref for ACMPxL at T = 25 °C, Gain = 1, Buffer - Disabled, Hysteresis = 0	98
Figure 68: ACMPxH Power-On Delay vs. V _{DD}	99
Figure 69: ACMPxL Power-On Delay vs. V _{DD}	99
Figure 70: ACMPxH Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, Input Buffer Disabled	100
Figure 71: ACMPxH Input Offset Voltage vs. Vref at T = -40 °C to 85 °C, Input Buffer Enabled	100
Figure 72: ACMPxL Input Offset Voltage vs. Vref at T = -40 °C to 85 °C	101
Figure 73: ACMP Input Current Source vs. Input Voltage at T = -40 °C to 85 °C, V _{DD} = 3.3 V	101
Figure 74: Programmable Delay	102
Figure 75: Edge Detector Output	102
Figure 76: Deglitch Filter/Edge Detector	103
Figure 77: Voltage Reference Block Diagram	105
Figure 78: Typical Load Regulation, Vref = 320 mV, T = -40 °C to +85 °C, Buffer - Enable	106
Figure 79: Typical Load Regulation, Vref = 640 mV, T = -40 °C to +85 °C, Buffer - Enable	106
Figure 80: Typical Load Regulation, Vref = 1280 mV, T = -40 °C to +85 °C, Buffer - Enable	107
Figure 81: Typical Load Regulation, Vref = 2016 mV, T = -40 °C to +85 °C, Buffer - Enable	107
Figure 82: Oscillator0 Block Diagram	109
Figure 83: Oscillator1 Block Diagram	110
Figure 84: Oscillator2 Block Diagram	111
Figure 85: Clock Scheme	112
Figure 86: Oscillator Startup Diagram	113
Figure 87: Oscillator0 Maximum Power-On Delay vs. V _{DD} at T = 25 °C, OSC0 = 2.048 kHz	113
Figure 88: Oscillator1 Maximum Power-On Delay vs. V _{DD} at T = 25 °C, OSC1 = 2.048 MHz	114
Figure 89: Oscillator2 Maximum Power-On Delay vs. V _{DD} at T = 25 °C, OSC2 = 25 MHz	114
Figure 90: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz	115
Figure 91: Oscillator1 Frequency vs. Temperature, OSC1 = 2.048 MHz	115
Figure 92: Oscillator2 Frequency vs. Temperature, OSC2 = 25 MHz	116
Figure 93: Oscillators Total Error vs. Temperature	116
Figure 94: POR Sequence	119
Figure 95: Internal Macrocell States During POR Sequence	120
Figure 96: Power-Down	121
Figure 97: Basic Command Structure	123
Figure 98: I ² C General Timing Characteristics	123
Figure 99: Byte Write Command, R/W = 0	124
Figure 100: Sequential Write Command	124
Figure 101: Current Address Read Command, R/W = 1	125
Figure 102: Random Read Command	125
Figure 103: Sequential Read Command	126
Figure 104: Reset Command Timing	126
Figure 105: Example of I ² C Byte Write Bit Masking	129
Figure 106: Analog Temperature Sensor Structure Diagram	131
Figure 107: TS Output vs. Temperature, V _{DD} = 2.3 V to 5.5 V	132

Tables

Table 1: Functional Pin Description	8
Table 2: Pin Type Definitions	11
Table 3: Absolute Maximum Ratings	12
Table 4: Electrostatic Discharge Ratings	12
Table 5: Recommended Operating Conditions	12
Table 6: EC at T = -40 °C to +85 °C, V _{DD} = 2.3 V to 5.5 V Unless Otherwise Noted	13
Table 7: EC of the I ² C Pins at T = -40 \degree C to +85 \degree C, V _{DD} = 2.3 V to 5.5 V Unless Otherwise Noted	16
Table 8: I ² C Pins Timing Characteristics T = -40 °C to +85 °C, V _{DD} = 2.3 V to 5.5 V Unless Otherwise Noted	17
Table 9: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C	17
Table 10: Typical Delay Estimated for Each Macrocell at T = 25 °C	19
Table 11: Programmable Delay Expected Typical Delays and Widths at T = 25 °C	22
Table 12: Typical Filter Rejection Pulse Width at T = 25 °C	23
Table 13: Typical Counter/Delay Offset at T = 25 °C	23
Table 14: Oscillators Frequency Limits, V _{DD} = 2.3 V to 5.5 V	23
Table 15: Oscillators Power-On Delay at T = 25 °C, OSC Power Setting: "Auto Power-On"	24
Table 16: ACMP Specifications at T = -40 °C to +85 °C, V _{DD} = 2.3 V to 5.5 V Unless Otherwise Noted	24
Table 17: TS Output vs Temperature (Output Range 1)	28
Table 18: TS Output vs Temperature (Output Range 2)	28
Table 19: TS Output Error (Output Range 1)	29
Table 20: TS Output Error (Output Range 2)	29
Table 21: Matrix Input Table	41
Table 22: Matrix Output Table	43
Table 23: Connection Matrix Virtual Inputs	46
Table 24: 2-bit LUT0 Truth Table	49
Table 25: 2-bit LUT1 Truth Table	49
Table 26: 2-bit LUT2 Truth Table	49
Table 27: 2-bit LUT Standard Digital Functions	49
Table 28: 2-bit LUT1 Truth Table	52
Table 29: 2-bit LUT Standard Digital Functions	52
Table 30: 3-bit LUT0 Truth Table	58
Table 31: 3-bit LUT1 Truth Table	58
Table 32: 3-bit LUT2 Truth Table	58
Table 33: 3-bit LUT3 Truth Table	58
Table 34: 3-bit LUT4 Truth Table	58
Table 35: 3-bit LUT5 Truth Table	58
Table 36: 3-bit LUT6 Truth Table	58
Table 37: 3-bit LUT7 Truth Table	58
Table 38: 3-bit LUT8 Truth Table	59
Table 39: 3-bit LUT Standard Digital Functions	59
Table 40: 4-bit LUT0 Truth Table	62
Table 41: 4-bit LUT Standard Digital Functions	63
Table 42: 3-bit LUT16 Truth Table	66
Table 43: 3-bit LUT9 Truth Table	75
Table 44: 3-bit LUT10 Truth Table	75
Table 45: 3-bit LUT11 Truth Table	75
Table 46: 3-bit LUT12 Truth Table	75
Table 47: 3-bit LUT13 Truth Table	75
Table 48: 3-bit LUT14 Truth Table	75
Table 49: 3-bit LUT15 Truth Table	75
Table 50: 4-bit LUT1 Truth Table	79
Table 51: 4-bit LUT Standard Digital Functions	
Table 52: Vref Selection Table	
Table 53: Oscillator Operation Mode Configuration Settings	
Table 54: Read/Write Protection Options	
Table 55: Register Map	

RENESAS

1 Block Diagram

Figure 1: Block Diagram

D	а	ta	s	h	e	e	t
-	-		-		-	-	

GreenPAK Programmable Mixed-Signal Matrix

2 Pinout

2.1 PIN CONFIGURATION - STQFN- 14L

Pin #	Pin Name	Pin Functions
1	V _{DD}	Power Supply
2	GPI0	GPI, SLA_0
3	GPIO0	GPIO, SCL
4	GPIO1	GPIO, SDA
5	GPIO2	GPIO with OE, EXT_Vref0, SLA_1
6	GPIO3	GPIO with OE
7	GPO0	GPO, EXT_Vref1
8	GND	Ground
9	GPIO4	GPIO with OE, ACMP0_H+, SLA_2
10	GPIO5	GPIO with OE, ACMP1_H+, SLA_3
11	GPIO6	GPIO with OE, ACMP2_L+
12	GPI07	GPIO with OE, ACMP3_L+
13	GPIO8	GPIO with OE, Vref0_OUT, TS_OUT
14	GPIO9	GPIO with OE, Vref1_OUT

<u>Legend:</u>

OE: Output Enable ACMPx+: ACMPx Positive Input ACMPx-: ACMPx Negative Input SCL: 1²C Clock Input SDA: 1²C Data Input/Output Vrefx: Voltage Reference Output EXT_CLKx: External Clock Input SLA: Slave Address TS_OUT: Temperature Output

Table 1: Functional Pin Description

STQFN 14L Pin #	Pin Name	Signal Name	Function	Input Options	Output Options		
1		V _{DD}	Power Supply				
	V _{DD}	ACMP0_H+	Analog Comparator 0 Positive Input	Analog			
		ACMP1_H+	Analog Comparator 1 Positive Input	Analog			
			ACMP2_L+	Analog Comparator 2 Positive Input	Analog		
		ACMP3_L+	Analog Comparator 3 Positive Input	Analog			
2		GPI0 GPI0				Digital Input without Schmitt Trigger	
	GP10		General Purpose Input	Digital Input with Schmitt Trigger			
				Low Voltage Digital Input			
		Slave Address 0					

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

STQFN 14L Pin #	Pin Name	Signal Name	Function	Input Options	Output Options		
						Digital Input without Schmitt Trigger	Open-Drain NMOS (3.2x)
		GPIO0	with OE (Note 1)	Digital Input with Schmitt Trigger			
3	GPIO0			Low Voltage Digital Input			
5				Digital Input without Schmitt Trigger			
		SCL	l ² C Serial Clock	Digital Input with Schmitt Trigger			
				Low Voltage Digital Input			
			General Purpose IO	Digital Input without Schmitt Trigger	Open-Drain NMOS (3.2x)		
		GPIO1		Digital Input with Schmitt Trigger			
4	GPIO1			Low Voltage Digital Input			
4	GFIUT	SDA	l ² C Serial Data	Digital Input without Schmitt Trigger			
				Digital Input with Schmitt Trigger			
				Low Voltage Digital Input			
	GPIO2	GPIO2	General Purpose IO with OE (Note 1)	Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)		
				Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)		
5		GPIO2	5 GPIO2			Low Voltage Digital Input	
				Slave Address 1			
			EXT_VREF0	Analog Comparator Negative Input	Analog		
6	GPIO3				Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)	
		GPIO3 GPIO3	General Purpose IO with OE (Note 1)	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)		
				Low Voltage Digital Input			
	GPO0				Push-Pull (1x) (2x)		
7		GPO0	GPO0	GPO0 General Purpose Output		Open-Drain NMOS (1x) (2x) (4x)	
		EXT_VREF1	Analog Comparator Negative Input	Analog			
8	GND	GND	Power Supply				

Table 1: Functional Pin Description (Continued)

GreenPAK Programmable Mixed-Signal Matrix

STQFN 14L Pin #	Pin Name	Signal Name	Function	Input Options	Output Options		
					Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)	
		GPIO4	with OE (Note 1)	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x) (4x)		
9	GPIO4			Low Voltage Digital Input			
		ACMP0_H+	Analog Comparator 0_H Positive Input	Analog			
		Slave Address 2					
				Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)		
		GPIO5	with OE (Note 1)	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)		
10	GPIO5			Low Voltage Digital Input			
		ACMP1_H+	Analog Comparator 1_H Positive Input	Analog			
		Slave Address 3					
	GPIO6	GPIO6	General Purpose IO with OE (Note 1)	Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)		
11				Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)		
					Low Voltage Digital Input		
		ACMP2_L+	Analog Comparator 2_L Positive Input	Analog			
12	GPIO7	GPI07				Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)
			GPIO7	General Purpose IO with OE (Note 1)	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)	
				Low Voltage Digital Input			
		ACMP3_L+	Analog Comparator 3_L Positive Input	Analog			
13	GPIO8	GPIO8			0 15 16	Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)
			GPIO8	GPIO8 General Purpose IO with OE (Note 1)	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)	
				Low Voltage Digital Input			
		Vref0	Vref0 Output	Analog			
14	GPIO9			Conorol Burnoso IO	Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)	
		GPIO9	with OE (Note 1)	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)		
				Low Voltage Digital Input			
		Vref1	Vref1 Output	Analog			
Note 1 Gen	eral Purp Matrix to	ose IO's with OE OF signal in IO	E can be used to implement structure	bidirectional signals under user co	ntrol via		

Table 1: Functional Pin Description (Continued)

GreenPAK Programmable Mixed-Signal Matrix

Table 2: Pin Type Definitions

Pin Type	Description
V _{DD}	Power Supply
GPI	General Purpose Input
GPIO	General Purpose Input/Output
GPO	General Purpose Output
GND	Ground

RENESAS

3 Characteristics

3.1 ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Table 3: Absolute Maximum Ratings

Parameter		Min	Max	Unit
Supply Voltage on V _{DD} relative to GND		-0.3	7	V
DC Input	Voltage	GND - 0.5 V	V _{DD} + 0.5 V	V
Maximum Average or DC Current (Through V _{DD} or GND pin)			90	mA
	Push-Pull 1x		11	
	Push-Pull 2x		16	
Maximum Average or DC Current (Through pin)	Push-Pull 4x		32	mA
	OD 1x		11	
	OD 2x		21	
	OD 4x		43	
Current at	Input Pin	-1.0	1.0	mA
Input Leakage Curre	ent (Absolute Value)		1000	nA
Storage Tempe	erature Range	-65	150	°C
Junction Te	mperature		150	°C
Moisture Ser	nsitive Level	1		

3.2 ELECTROSTATIC DISCHARGE RATINGS

Table 4: Electrostatic Discharge Ratings

Parameter		Max	Unit
ESD Protection (Human Body Model)	2000		V
ESD Protection (Charged Device Model)	1300		V

3.3 RECOMMENDED OPERATING CONDITIONS

Table 5: Recommended Operating Conditions

Parameter	Condition	Min	Max	Unit
Supply Voltage (V _{DD})		2.3	5.5	V
Operating Temperature		-40	85	°C
Maximal Voltage Applied to any PIN in High Impedance State			V _{DD} + 0.3	V
Capacitor Value at V _{DD}		0.1		μF
Analog Input Common Mode Range	Allowable Input Voltage at Analog Pins	0	V _{DD}	V

Da	Ita	ch	00	h
	ια	311	CC	7ι

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

3.4 ELECTRICAL CHARACTERISTICS

Table 6: EC at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

Parameter	Description	Condition	Min	Тур	Max	Unit
		Logic Input (Note 1)	0.7x V _{DD}		V _{DD} + 0.3	V
V _{IH}	HIGH-Level Input Voltage	Logic Input with Schmitt Trigger	0.8x V _{DD}		V _{DD} + 0.3	V
		Low-Level Logic Input (Note 1)	1.25		Max Ui V _{DD} + 0.3 V _{DD} + 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2x VDD 0.5 0.103 0.270 0.107	V
		Logic Input (Note 1)	GND- 0.3		0.3x V _{DD}	V
V _{IL}	LOW-Level Input Voltage	Logic Input with Schmitt Trigger	GND- 0.3		0.2x V _{DD}	V
Parameter VIH VIL VOH VOH		Low-Level Logic Input (Note 1)	GND- 0.3		0.5	V
V _{IL}		Push-Pull, 1x Drive, V _{DD} = 2.5 V ± 8 %, I _{OH} = 1 mA	2.15			V
		Push-Pull, 1x Drive, V _{DD} = 3.3 V ± 10 %, I _{OH} = 3 mA	2.70			V
	HIGH-Level Output Voltage	Push-Pull, 1x Drive, V _{DD} = 5 V ± 10 %, I _{OH} = 5 mA	4.16			V
		Push-Pull, 2x Drive, V _{DD} = 2.5 V ± 8 %, I _{OH} = 1 mA	2.22			V
		Push-Pull, 2x Drive, V _{DD} = 3.3 V ± 10 %, I _{OH} = 3 mA	2.85			V
		Push-Pull, 2x Drive, V _{DD} = 5 V ± 10 %, I _{OH} = 5 mA	4.32			V
		Push-Pull, 4x Drive (only for GPO0 and GPIO4), V _{DD} = 2.5 V ± 8 %, I _{OH} = 1 mA	2.26			V
		Push-Pull, 4x Drive (only for GPO0 and GPIO4), V _{DD} = 3.3 V ± 10 %, I _{OH} = 3mA	2.92			V
		Push-Pull, 4x Drive (only for GPO0 and GPIO4), V _{DD} = 5 V ± 10 %, I _{OH} = 5 mA	4.40			V
		Push-Pull, 1x Drive, V _{DD} = 2.5 V ± 8 %, I _{OL} = 1 mA			0.103	V
		Push-Pull, 1x Drive, V _{DD} = 3.3 V ± 10 %, I _{OL} = 3 mA			0.218	V
V _{OL}	LOW-Level Output Voltage	Push-Pull, 1x Drive, $V_{DD} = 5 V \pm 10 \%$, $I_{OL} = 5 mA$			0.270	V
		Push-Pull, 2x Drive, V _{DD} = 2.5 V ± 8 %, I _{OL} = 1 mA			0.054	V
V _{IL}		Push-Pull, 2x Drive, $V_{DD} = 3.3 \text{ V} \pm 10 $ %, I _{OL} = 3 mA			0.107	V

Datasneet	Da	tas	heet	
-----------	----	-----	------	--

GreenPAK Programmable Mixed-Signal Matrix

Unit Parameter Description Condition Min Тур Max Push-Pull, 2x Drive, 0.133 V ----- $V_{DD} = 5 V \pm 10 \%$, $I_{OI} = 5 mA$ Push-Pull, 4x Drive (only for GPO0 and GPIO4), 0.026 V -----V_{DD} = 2.5 V ± 8 %, I_{OL} = 1 mA Push-Pull, 4x Drive (only for GPO0 and GPIO4), 0.054 V ------V_{DD} = 3.3 V ± 10 %, I_{OL}= 3 mA Push-Pull, 4x Drive (only for GPO0 and GPIO4), 0.067 V -- $V_{DD} = 5 V \pm 10 \%$, $I_{OL} = 5 mA$ NMOS OD, 1x Drive, V 0.043 ---- $V_{DD} = 2.5 V \pm 8 \%$, $I_{OI} = 1 mA$ NMOS OD, 1x Drive, 0.087 V -----V_{DD} = 3.3 V ± 10 %, I_{OL} = 3 mA NMOS OD, 1x Drive, V LOW-Level Output Voltage 0.107 VOL ___ V_{DD} = 5 V ± 10 %, I_{OL} = 5 mA NMOS OD, 2x Drive, V 0.023 -----V_{DD} = 2.5 V ± 8 %, I_{OL} = 1 mA NMOS OD, 2x Drive, V 0.046 -----V_{DD} = 3.3 V ± 10 %, I_{OI} = 3 mA NMOS OD, 2x Drive, 0.058 V V_{DD} = 5 V ± 10 %, I_{OL} = 5 mA NMOS OD, 4x Drive (only for GPO0 and GPIO4), 0.011 V ------ $V_{DD} = 2.5 \text{ V} \pm 8 \%$, $I_{OI} = 1 \text{ mA}$ NMOS OD, 4x Drive (only for GPO0 and GPIO4), 0.023 V ___ V_{DD} = 3.3 V ± 10 %, I_{OL} = 3 mA NMOS OD, 4x Drive (only for GPO0 and GPIO4), 0.031 V -----V_{DD} = 5 V ± 10 %, I_{OL} = 5 mA Push-Pull, 1x Drive, 1.37 ----mΑ $V_{DD} = 2.5 V \pm 8 \%$, $V_{OH} = V_{DD} - 0.2$ Push-Pull, 1x Drive, 5.61 mΑ ------V_{DD} = 3.3 V ± 10 %, V_{OH} = 2.4 V Push-Pull, 1x Drive, 20.42 mΑ V_{DD} = 5 V ± 10 %, V_{OH} = 2.4 V Push-Pull, 2x Drive, 2.95 mΑ --V_{DD} = 2.5 V ± 8 %, V_{OH} = V_{DD} - 0.2 HIGH-Level Output Pulse Push-Pull, 2x Drive, I_{OH} 11.00 mΑ --Current (Note 2) ---V_{DD} = 3.3 V ± 10 %, V_{OH} = 2.4 V Push-Pull, 2x Drive, 39.14 --mΑ ---V_{DD} = 5 V ± 10 %, V_{OH} = 2.4 V Push-Pull, 4x Drive (only for GPO0 and GPIO4), 5.83 mΑ ----- $V_{DD} = 2.5 V \pm 8 \%, V_{OH} = V_{DD} - 0.2$ Push-Pull, 4x Drive (only for GPO0 and GPIO4), 20.69 mA ------V_{DD} = 3.3 V ± 10 %, V_{OH} = 2.4 V

Table 6: EC at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Parameter	Description	Condition	Min	Тур	Мах	Unit
I _{ОН}	HIGH-Level Output Pulse Current (Note 2)	Push-Pull, 4x Drive (only for GPO0 and GPIO4), $V_{DD} = 5 V \pm 10 \%$, $V_{OH} = 2.4 V$	72.93			mA
	Push-Pull, 1x Drive, V _{DD} = 2.5 V ± 8 %, V _{OL} = 0.15 V	1.52			mA	
		Push-Pull, 1x Drive, V _{DD} = 3.3 V ± 10 %, V _{OL} = 0.4 V	5.42			mA
		Push-Pull, 1x Drive, V _{DD} = 5 V ± 10 %, V _{OL} = 0.4 V	7.36			mA
		Push-Pull, 2x Drive, V _{DD} = 2.5 V ± 8 %, V _{OL} = 0.15 V	3.27			mA
		Push-Pull, 2x Drive, V _{DD} = 3.3 V ± 10 %, V _{OL} = 0.4 V	10.74			mA
		Push-Pull, 2x Drive, V _{DD} = 5 V ± 10 %, V _{OL} = 0.4 V	14.41			mA
		Push-Pull, 4x Drive (only for GPO0 and GPIO4), $V_{DD} = 2.5 V \pm 8 \%$, $V_{OL} = 0.15 V$	6.66			mA
	I _{OL} LOW-Level Output Pulse Current (Note 2)	Push-Pull, 4x Drive (only for GPO0 and GPIO4), V_{DD} = 3.3 V ± 10 %, V_{OL} = 0.4 V	21.23			mA
		Push-Pull, 4x Drive (only for GPO0 and GPIO4), $V_{DD} = 5 V \pm 10 \%$, $V_{OL} = 0.4 V$	28.56			mA
OL		NMOS OD, 1x Drive, V _{DD} = 2.5 V ± 8 %, V _{OL} = 0.15 V	4.11			mA
		NMOS OD, 1x Drive, V _{DD} = 3.3 V ± 10 %, V _{OL} = 0.4 V	13.35			mA
		NMOS OD, 1x Drive, V _{DD} = 5 V ± 10 %, V _{OL} = 0.4 V	17.90			mA
		NMOS OD, 2x Drive, V _{DD} = 2.5 V ± 8 %, V _{OL} = 0.15 V	8.02			mA
		NMOS OD, 2x Drive, V _{DD} = 3.3 V ± 10 %, V _{OL} = 0.4 V	25.23			mA
		NMOS OD, 2x Drive, V _{DD} = 5 V ± 10 %, V _{OL} = 0.4 V	33.18			mA
		NMOS OD, 4x Drive (only for GPO0 and GPIO4), $V_{DD} = 2.5 V \pm 8 \%$, $V_{OL} = 0.15 V$	15.65			mA
		NMOS OD, 4x Drive (only for GPO0 and GPIO4), V_{DD} = 3.3 V ± 10 %, V_{OL} = 0.4 V	48.93			mA
		NMOS OD, 4x Drive (only for GPO0 and GPIO4), $V_{DD} = 5 V \pm 10 \%$, $V_{OL} = 0.4 V$	63.93			mA
T _{SU}	Startup Time	From V _{DD} rising past PON _{THR}		1	2	ms
PON _{THR}	Power-On Threshold	$V_{\mbox{\scriptsize DD}}$ Level Required to Start Up the Chip	1.6	1.85	2.05	V
POFF _{THR}	Power-Off Threshold	V _{DD} Level Required to Switch Off the Chip	0.85	1.25	1.5	V

Table 6: EC at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Parameter	Description	Condition	Min	Тур	Max	Unit
		1 M for Pull-up: V_{IN} = GND; for Pull-down: V_{IN} = V_{DD}		1		MΩ
R _{PULL}	Pull-up or Pull-down Resistance	100 k for Pull-up: V _{IN} = GND; for Pull-down: V _{IN} = V _{DD}		100		kΩ
		10 k For Pull-up: V _{IN} = GND; for Pull-down: V _{IN} = V _{DD}		10		kΩ
C _{IN}	Input Capacitance			4		pF
Note 1 No hysteresis. Note 2 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.						

Table 7: EC of the I^2C Pins at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

Doromotor	Fast-Mode Fast-Mode Plus		Unit					
Farameter	Description	Condition	Min	Max	Min	Max	Unit	
V _{IL}	LOW-level Input Voltage		-0.5	0.3xV _{DD}	-0.5	0.3xV _{DD}	V	
V _{IH}	HIGH-level Input Voltage		0.7xV _{DD}	5.5	0.7xV _{DD}	5.5	V	
V _{HYS}	Hysteresis of Schmitt Trigger Inputs		0.05xV _{DD}		0.05xV _{DD}		v	
V _{OL1}	LOW-Level Output Voltage 1	(Open-Drain or open collector) at 3mA sink current V _{DD} > 2 V	0	0.4	0	0.4	v	
V _{OL2}	LOW-Level Output Voltage 2	(Open-Drain or open collector) at 2 mA sink current $V_{DD} \le 2 V$	0	0.2xV _{DD}	0	0.2xV _{DD}	v	
		V_{OL} = 0.4 V, V_{DD} = 2.3 V	3		19.5		mA	
	LOW-Level Output	V _{OL} = 0.4 V, V _{DD} = 3.0 V	3		20		mA	
^{IOL} Current (Note 1)	V _{OL} = 0.4 V, V _{DD} = 4.5 V	3		20		mA		
		V _{OL} = 0.6 V	6				mA	
t _{of}	Output Fall Time from V _{IHmin} to V _{ILmax} (Note 1)		14x (V _{DD} /5.5V)	250	10x (V _{DD} /5.5V)	120	ns	
t _{SP}	Pulse Width of Spikes that must be suppressed by the Input Filter		0	50	0	50	ns	
li	Input Current each IO Pin	$0.1 \mathrm{xV}_{\mathrm{DD}} < \mathrm{V}_{\mathrm{I}} < 0.9 \mathrm{xV}_{\mathrm{DDmax}}$	-10	+10	-10	+10	μΑ	
C _i	Capacitance for each IO Pin			10		10	pF	
Note 1 Does V _{OL} = 0.4 V. Note 2 For F	Note 1 Does not meet standard I ² C specifications: $t_{of} = 20x(V_{DD}/5.5V)$ (min); For Fast-mode Plus I _{OL} = 20 mA (min) at V _{OL} = 0.4 V. Note 2 For Fast-mode Plus SDA pin must be configured as NMOS 2x Open-Drain, see register [789] in section 17.							

GreenPAK Programmable Mixed-Signal Matrix

Parameter	Description	Condition	Fast-Mode		Fast-Mode Plus		Unit
			Min	Мах	Min	Мах	
F _{SCL}	Clock Frequency, SCL			400		1000	kHz
t _{LOW}	Clock Pulse Width Low		1300		500		ns
t _{HIGH}	Clock Pulse Width High		600		260		ns
	Input Filter Spike Suppression (SCL, SDA)	V _{DD} = 2.5 V ± 8 %		95		168	
t _l		V _{DD} = 3.3 V ± 10 %		95		157	ns
		V _{DD} = 5.0 V ± 10 %		111		156	
t _{AA}	Clock Low to Data Out Valid			900		450	ns
t _{BUF}	Bus Free Time between Stop and Start		1300		500		ns
t _{HD_STA}	Start Hold Time		600		260		ns
t _{SU_STA}	Start Set-up Time		600		260		ns
t _{HD_DAT}	Data Hold Time		0		0		ns
t _{SU_DAT}	Data Set-up Time		100		50		ns
t _R	Inputs Rise Time			300		120	ns
t _F	Inputs Fall Time			300		120	ns
t _{su_sто}	Stop Set-up Time		600		260		ns
t _{DH}	Data Out Hold Time		50		50		ns
Note 1 Timir	ng diagram can be found in the Figure	e 98.					

Table 8: I²C Pins Timing Characteristics T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

Table 9: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C

Parameter	Description	Note	V_{DD} = 2.5 V	V _{DD} = 3.3 V	$V_{DD} = 5.0 V$	Unit
		PDET+I ² C	0.09	0.12	0.18	μA
		PDET+BG+I ² C	0.28	0.42	0.52	μΑ
		Vref0 (Source: Any ACMPxH)	11.73	11.18	11.11	μA
		Vref0 (Source: None or TempSensor)	12.01	12.23	12.83	μΑ
		Vref1 (Source: Any ACMPxL)	5.83	5.37	4.80	μΑ
		Vref1 (Source: None)	6.20	6.25	6.73	μA
	Current	Temperature Sensor Output Range 1	14.49	14.52	14.81	μΑ
		Temperature Sensor Output Range 2	14.35	14.38	14.68	μΑ
'DD		OSC2 25 MHz, Pre-divider = 1	50.23	62.39	90.30	μΑ
		OSC2 25 MHz, Pre-divider = 4	33.20	39.60	55.12	μΑ
		OSC2 25 MHz, Pre-divider = 8	30.08	35.44	48.66	μΑ
		OSC1 2.048 MHz, Pre-divider = 1	20.70	22.03	24.93	μA
		OSC1 2.048 MHz, Pre-divider = 4	18.62	19.24	20.58	μA
		OSC1 2.048 MHz, Pre-divider = 8	18.52	19.03	20.12	μA
		OSC0 2.048 kHz, Pre-divider = 1	0.27	0.28	0.311	μA
		OSC0 2.048 kHz, Pre-divider = 4	0.27	0.28	0.306	μΑ

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

Parameter	Description	Note	$V_{DD} = 2.5 V$	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
		OSC0 2.048 kHz, Pre-divider = 8	0.27	0.28	0.305	μΑ
		Any ACMPxL (Vref Source – External V _{IN+} = V _{IN-} = 0 V)	0.46	0.46	0.47	μΑ
		Any ACMPxL (Vref Source – Internal V _{IN+} = 0 V V _{IN-} = 32 mV)	1.3	1.3	1.32	μΑ
		ACMP2L, ACMP3L (Vref Source – External V _{IN+} = V _{IN-} = 0 V)	0.79	0.79	0.82	μΑ
		ACMP2L, ACMP3L (Vref Source – Internal V _{IN+} = 0 V V _{IN-} = 32 mV)	1.56	1.56	1.59	μΑ
	Current	ACMP0H (100 μ A – Enable Vref Source - External V _{IN+} = V _{IN-} = 0 V Buffer - Disable)	133.6	136.9	147.6	μΑ
		ACMP0H (100 μA – Enable Vref Source – External V _{IN+} = V _{IN-} = 0 V Buffer - Enable)	139.4	142.8	153.7	μΑ
IDD		$\begin{array}{l} ACMP0H \\ (100 \ \mu A - Enable \\ Vref Source - Internal \\ V_{IN+} = 1M \ Pull-up \\ V_{IN-} = 32 \ mV) \\ Buffer - Disable) \end{array}$	45.8	46.3	48.2	μΑ
		ACMP0H (100 μ A – Disable V _{IN+} = V _{DD} V _{IN-} = 32 mV)	35.3	35.9	37.8	μΑ
		Any ACMPxH (Buffer – Disable 100 μA – Disable)	21.5	21.9	23	μΑ
		Any ACMPxH (Buffer – Enable 100 μA – Disable)	25	25.4	27.2	μA
		ACMP0H, ACMP1H (100 μ A – Enable Vref Source - External V _{IN+} = V _{IN-} = 0 V Buffer - Disable)	146.76	150.1	175.1	μΑ
		ACMP0H, ACMP1H (100 μ A – Enable Vref Source – External V _{IN+} = V _{IN-} = 0 V Buffer - Enable)	160.3	166.5	186.8	μΑ

Table 9: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C(Continued)

GreenPAK Programmable Mixed-Signal Matrix

Parameter	Description	Note	V_{DD} = 2.5 V	V_{DD} = 3.3 V	V_{DD} = 5.0 V	Unit
I _{DD}		ACMP0H, ACMP1H (100 μ A – Enable Vref Source – Internal V _{IN+} = 1M Pull-up V _{IN-} = 32 mV) Buffer - Disable)	63.2	66.4	70.1	μΑ
		ACMP0H, ACMP1H (Buffer – Disable 100 μA – Disable)	38.8	39.8	42.3	μΑ
	Current	ACMP0H, ACMP1H (Buffer – Enable 100 μA – Disable)	50	51	54.2	μΑ
		All ACMP (100 μ A – Enable Vref Source - External V _{IN+} = V _{IN-} = 0 V Buffer - Disable)	147.2	150.6	176.3	μΑ
		All ACMP (100 μ A – Enable Vref Source – Internal V _{IN+} = 1M Pull-up V _{IN-} = 32 mV) Buffer - Disable)	65.2	66.4	70.1	μΑ
		All ACMP (Buffer – Disable 100 μA – Disable)	39.5	40.5	43.4	μΑ

Table 9: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C(Continued)

3.5 TIMING CHARACTERISTICS

Table 10: Typical Delay Estimated for Each Macrocell at T = 25 °C

Demonster	Description	Noto	V _{DD} = 2.5 V		V _{DD} = 3.3 V		V _{DD} = 5 V		11
Parameter	Description	Note	Rising	Falling	Rising	Falling	Rising	Falling	Unit
tpd	Delay	Digital Input to PP 1x	27	29	19	21	14	16	ns
tpd	Delay	Digital Input to PP 2x	24	26	17	19	13	14	ns
tpd	Delay	Digital Input with Schmitt Trigger to PP 1x	27	29	19	21	14	16	ns
tpd	Delay	Low Voltage Digital Input to PP 1x	38	241	26	164	18	104	ns
tpd	Delay	Digital input to NMOS 1x		25		19		14	ns
tpd	Delay	Digital input to NMOS 2x		24		18		13	ns
tpd	Delay	Digital input to NMOS 4x		24		17		13	ns
tpd	Delay	Output enable from Pin, OE Hi-Z to 1	26		19		14		ns
tpd	Delay	Output enable from Pin, OE Hi-Z to 0		25		18		13	ns
tpd	Delay	PP 1x 3 State Hi-Z to 1	26		19		14		ns
tpd	Delay	PP 1x 3 State Hi-Z to 0		25		18		13	ns
tpd	Delay	PP 2x 3 State Hi-Z to 1	23		17		12		ns
tpd	Delay	PP 2x 3 State Hi-Z to 0		22		16		12	ns
tpd	Delay	LATCH Q	16	18	11	13	8	9	ns

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

		Noto	V _{DD} =	= 2.5 V	V _{DD} =	= 3.3 V	V _{DD} = 5 V		
Parameter	Description	Note	Rising	Falling	Rising	Falling	Rising	Falling	Unit
tpd	Delay	LATCH nQ	19	15	14	11	9	7	ns
tpd	Delay	LATCH nRESET High Q	25	21	17	15	12	10	ns
tpd	Delay	LATCH nRESET High nQ	22	24	16	17	11	12	ns
tpd	Delay	LATCH nRESET Low Q	22	23	15	16	11	12	ns
tpd	Delay	LATCH nRESET Low nQ	24	21	17	15	12	10	ns
tpd	Delay	LATCH nSET High Q	19	21	14	15	9	10	ns
tpd	Delay	LATCH nSET High nQ	22	19	16	13	11	9	ns
tpd	Delay	LATCH nSET Low Q	22	18	16	13	11	9	ns
tpd	Delay	LATCH nSET Low nQ	19	21	14	15	9	10	ns
tpd	Delay	Multi-Function LATCH Q	19	22	14	16	9	11	ns
tpd	Delay	Multi-Function LATCH nQ	22	19	16	13	11	9	ns
tpd	Delay	Multi-Function LATCH nRESET Q	23	27	16	19	11	14	ns
tpd	Delay	Multi-Function LATCH nRESET nQ	27	23	20	17	14	11	ns
tpd	Delay	Multi-Function LATCH nSET Q	25	21	18	15	13	10	ns
tpd	Delay	Multi-Function LATCH nSET nQ	21	25	15	18	10	13	ns
tpd	Delay	LATCH3, LATCH12 First Q	17	19	12	14	8	9	ns
tpd	Delay	LATCH3, LATCH12 First nQ	20	17	14	12	10	8	ns
tpd	Delay	LATCH3, LATCH12 First nRESET High Q	26	23	18	16	13	11	ns
tpd	Delay	LATCH3, LATCH12 First nRESET High nQ	24	26	17	18	12	13	ns
tpd	Delay	LATCH3, LATCH12 First nRESET Low Q	23	25	16	18	11	12	ns
tpd	Delay	LATCH3, LATCH12 First nRESET Low nQ	26	23	18	16	13	11	ns
tpd	Delay	LATCH3, LATCH12 First nSET High Q	21	22	15	16	10	11	ns
tpd	Delay	LATCH3, LATCH12 First nSET High nQ	23	20	17	14	12	10	ns
tpd	Delay	LATCH3, LATCH12 First nSET Low Q	23	20	16	14	11	10	ns
tpd	Delay	LATCH3, LATCH12 First nSET Low nQ	21	23	15	16	10	11	ns
tpd	Delay	LATCH3, LATCH12 Second Q	19	19	13	13	9	9	ns
tpd	Delay	LATCH3, LATCH12 Second nQ	20	18	14	13	10	9	ns
tpd	Delay	LATCH3, LATCH12 Second nRESET High Q	-	22		16		11	ns
tpd	Delay	LATCH3, LATCH12 Second nRESET High nQ	23		17		12		ns
tpd	Delay	LATCH3, LATCH12 Second nRESET Low Q		25		18		12	ns
tpd	Delay	LATCH3, LATCH12 Second nRESET Low nQ	26		18		13		ns
tpd	Delay	LATCH3, LATCH12 Second nSET High Q	20		14		10		ns
tpd	Delay	LATCH3, LATCH12 Second nSET High nQ		20		14		10	ns
tpd	Delay	LATCH3, LATCH12 Second nSET Low Q	23		16		11		ns
tpd	Delay	LATCH3, LATCH12 Second nSET Low		22		16		11	ns

Table 10: Typical Delay Estimated for Each Macrocell at T = 25 °C (Continued)

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

Parameter Descriptio		Note	V _{DD} =	= 2.5 V	V _{DD} =	= 3.3 V	V _{DD} = 5 V		
Parameter	Description	Note	Rising	Falling	Rising	Falling	Rising	Falling	Unit
tpd	Delay	2-bit LUT	15	16	11	11	7	8	ns
tpd	Delay	3-bit LUT	16	17	11	12	8	8	ns
tpd	Delay	4-bit LUT	19	17	13	12	9	9	ns
tpd	Delay	Multi-Function 3-bit LUT	18	21	13	15	9	11	ns
tpd	Delay	Multi-Function 3-bit LUT, CNT Delay	46	47	33	34	23	24	ns
tpd	Delay	Multi-Function 4-bit LUT	21	23	15	17	10	12	ns
tpd	Delay	Multi-Function 4-bit LUT, CNT Delay	48	46	34	34	23	24	ns
tpd	Delay	Edge detect	19	20	13	14	9	9	ns
tw	Width	Edge detect	211	212	156	157	115	115	ns
tpd	Delay	Edge detect Delayed	231	235	170	173	124	126	ns
tpd	Delay	Ripple CNT CLK DOWN Q0	18	16	13	11	9	8	ns
tpd	Delay	Ripple CNT CLK DOWN Q1	29	22	20	16	14	11	ns
tpd	Delay	Ripple CNT CLK DOWN Q2	27	29	20	21	14	14	ns
tpd	Delay	Ripple CNT CLK UP Q0	18	16	13	11	9	8	ns
tpd	Delay	Ripple CNT CLK UP Q1	24	24	17	17	12	12	ns
tpd	Delay	Ripple CNT CLK UP Q2	29	23	21	17	15	12	ns
tpd	Delay	Ripple CNT nSET DOWN Q0	26	33	19	23	14	16	ns
tpd	Delay	Ripple CNT nSET DOWN Q1	26	41	19	29	13	21	ns
tpd	Delay	Ripple CNT nSET DOWN Q2	25	41	18	29	13	20	ns
tpd	Delay	Ripple CNT nSET UP Q0	26	33	19	23	14	16	ns
tpd	Delay	Ripple CNT nSET UP Q1	26	38	19	27	13	19	ns
tpd	Delay	Ripple CNT nSET UP Q2	25	44	18	32	13	22	ns
tpd	Delay	DFF Q	17	17	12	12	8	8	ns
tpd	Delay	DFF nQ	18	16	13	11	9	8	ns
tpd	Delay	DFF nRESET High Q		20		14		10	ns
tpd	Delay	DFF nRESET High nQ	21		15		10		ns
tpd	Delay	DFF nRESET Low Q		22		16		11	ns
tpd	Delay	DFF nRESET Low nQ	23		17		12		ns
tpd	Delay	DFF nSET High Q	21		15		10		ns
tpd	Delay	DFF nSET High nQ		20		14		10	ns
tpd	Delay	DFF nSET Low Q	23		16		12		ns
tpd	Delay	DFF nSET Low nQ		22		16		11	ns
tpd	Delay	Multi-Function DFF Q	19	19	13	13	9	9	ns
tpd	Delay	Multi-Function DFF nQ	20	19	14	13	9	9	ns
tpd	Delay	Multi-Function DFF nRESET Q		26		19		13	ns
tpd	Delay	Multi-Function DFF nRESET nQ	26		19		13		ns
tpd	Delay	Multi-Function DFF nSET Q	26		19		13		ns
tpd	Delay	Multi-Function DFF nSET nQ		26		19		14	ns
tpd	Delay	DFF3, DFF12 First Q	18	18	13	13	9	9	ns

Table 10: Typical Delay Estimated for Each Macrocell at T = 25 °C (Continued)

Datasheet

RENESAS

SLG46855

GreenPAK Programmable Mixed-Signal Matrix

Demonster	Description	Noto	V _{DD} =	= 2.5 V	V _{DD} =	= 3.3 V	V _{DD} = 5 V		11
Parameter	Description	Note	Rising	Falling	Rising	Falling	Rising	Falling	Unit
tpd	Delay	DFF3, DFF12 First nQ	19	18	14	13	9	9	ns
tpd	Delay	DFF3, DFF12 First nRESET High Q		22		15		11	ns
tpd	Delay	DFF3, DFF12 First nRESET High nQ	22		16		11		ns
tpd	Delay	DFF3, DFF12 First nRESET Low Q		24		17		12	ns
tpd	Delay	DFF3, DFF12 First nRESET Low nQ	25		18		12		ns
tpd	Delay	DFF3, DFF12 First nSET High Q	22		16		11		ns
tpd	Delay	DFF3, DFF12 First nSET High nQ		22		15		11	ns
tpd	Delay	DFF3, DFF12 First nSET Low Q	24		17		12		ns
tpd	Delay	DFF3, DFF12 First nSET Low nQ		24		17		12	ns
tpd	Delay	DFF3, DFF12 Second Q	20	21	14	15	10	10	ns
tpd	Delay	DFF3, DFF12 Second nQ	21	20	15	14	11	10	ns
tpd	Delay	DFF3, DFF12 Second nRESET High Q		21		15		10	ns
tpd	Delay	DFF3, DFF12 Second nRESET High nQ	22		16		11		ns
tpd	Delay	DFF3, DFF12 Second nRESET Low Q		23		17		12	ns
tpd	Delay	DFF3, DFF12 Second nRESET Low nQ	24		17		12		ns
tpd	Delay	DFF3, DFF12 Second nSET High Q	22		15		11		ns
tpd	Delay	DFF3, DFF12 Second nSET High nQ		21		15		10	ns
tpd	Delay	DFF3, DFF12 Second nSET Low Q	24		17		12		ns
tpd	Delay	DFF3, DFF12 Second nSET Low nQ		23		17		12	ns
tpd	Delay	PGen CLK	16	16	12	11	8	8	ns
tpd	Delay	PGen nRESET Hi-Z to 0		21		15		11	ns
tpd	Delay	PGen nRESET Hi-Z to 1	20		14		10		ns
tpd	Delay	Pipe Delay Out	23	20	16	15	11	10	ns
tpd	Delay	Pipe Delay nRESET Out	30	28	22	21	16	15	ns
tpd	Delay	Filter Q	160	140	109	98	68	65	ns
tpd	Delay	Filter nQ	141	159	99	108	66	68	ns

Table 10: Typical Delay Estimated for Each Macrocell at T = 25 °C (Continued)

Table 11: Programmable Delay Expected Typical Delays and Widths at T = 25 °C

Parameter	Description	Note	V _{DD} = 2.5 V	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
tw	Pulse Width, 1 cell	mode: (any)edge detect, edge detect output	214	159	116	ns
tw	Pulse Width, 2 cell	mode: (any)edge detect, edge detect output	425	314	230	ns
tw	Pulse Width, 3 cell	mode: (any)edge detect, edge detect output	635	469	343	ns
tw	Pulse Width, 4 cell	mode: (any)edge detect, edge detect output	846	624	457	ns
time1	Delay, 1 cell	mode: (any)edge detect, edge detect output	18	13	9	ns
time1	Delay, 2 cell	mode: (any)edge detect, edge detect output	18	13	9	ns
time1	Delay, 3 cell	mode: (any)edge detect, edge detect output	18	13	9	ns
time1	Delay, 4 cell	mode: (any)edge detect, edge detect output	18	13	9	ns

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

Parameter	Description	Note	V_{DD} = 2.5 V	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
time2	Delay, 1 cell	mode: both edge delay, edge detect output	235	173	126	ns
time2	Delay, 2 cell	mode: both edge delay, edge detect output	446	328	239	ns
time2	Delay, 3 cell	mode: both edge delay, edge detect output	656	484	353	ns
time2	Delay, 4 cell	mode: both edge delay, edge detect output	866	639	466	ns

Table 11: Programmable Delay Expected Typical Delays and Widths at T = 25 °C (Continued)

Table 12: Typical Filter Rejection Pulse Width at T = 25 °C

Parameter	V_{DD} = 2.5 V	V _{DD} = 3.3 V	V_{DD} = 5.0 V	Unit
Filtered Pulse Width	< 150	< 55	< 35	ns

3.6 COUNTER/DELAY CHARACTERISTICS

Table 13: Typical Counter/Delay Offset at T = 25 °C

Parameter	OSC Freq	OSC Power	V_{DD} = 2.5 V	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
Power-On time	25 MHz	auto	0.14	0.14	0.14	μs
Power-On time	2.048 MHz	auto	0.5	0.5	0.4	μs
Power-On time	2.048 kHz	auto	628	544	466	μs
frequency settling time	25 MHz	auto	4	4	8	μs
frequency settling time	2.048 MHz	auto	0.3	0.4	0.4	μs
frequency settling time	2.048 kHz	auto	660	570	480	μs
variable (CLK period)	25 MHz	forced	0-40	0-40	0-40	ns
variable (CLK period)	2.048 MHz	forced	0-0.5	0-0.5	0-0.5	μs
variable (CLK period)	2.048 kHz	forced	0-488	0-488	0-488	μs
tpd (non-delayed edge)	25 MHz/ 2.048 kHz	either	35	14	10	ns

3.7 OSCILLATOR CHARACTERISTICS

Table 14: Oscillators Frequency Limits, V_{DD} = 2.3 V to 5.5 V

	Temperature Range								
OSC	+25 °C			-40 °C to +85 °C					
	Minimum Value, kHz	Maximum Value, kHz	Error, %	Minimum Value, kHz	Maximum Value, kHz	Error, %			
2 048 kHz OSC0	2.027	2.07	-1.04	1 894	2 093	-7.51			
2.040 M 12 0000			+1.08	1.004	2.000	+2.19			
	2020 63	2073.54	-1.34	1005 83	2080 10	-2.55			
2.040 10112 0001	2020.03		+1.25	1993.03	2000.19	+1.58			
	24506 37	25450.69	-1.98	23843 44	25681.02	-4.63			
23 10112 0302	24000.07	20400.09	+1.8	20040.44	20001.02	+2.72			

Datasheet	Revision 3.17	28-Feb-2023
CFR0011-120-00	23 of 201	© 2023 Renesas Electronics Corporation

GreenPAK Programmable Mixed-Signal Matrix

3.7.1 OSC Power-On Delay

Table 15: Oscillators Power-On Delay at T = 25 °C, OSC Power Setting: "Auto Power-On"

Power Supply	OSC0 2.048 kHz		OSC1 2.048 MHz		OSC2 25 MHz		OSC2 25 MHz Start with Delay	
Range (V _{DD}), V	Typical Value, μs	Maximum Value, µs	Typical Value, ns	Maximum Value, ns	Typical Value, ns	Maximum Value, ns	Typical Value, ns	Maximum Value, ns
2.30	663.11	851.42	537.19	555.00	45.28	54.00	141.33	151.00
2.50	628.07	797.96	515.76	532.00	40.61	48.00	139.45	148.00
2.70	600.38	755.49	500.24	517.00	36.54	43.00	138.10	146.00
3.00	568.24	706.08	483.11	500.00	32.59	38.00	137.33	145.00
3.30	543.57	667.84	470.94	487.00	29.09	34.00	136.40	144.00
3.60	524.11	638.41	460.38	477.00	27.04	32.00	136.45	143.00
4.00	503.62	607.04	448.54	466.00	24.69	29.00	136.21	143.00
4.20	495.07	594.20	443.45	460.00	23.51	28.00	136.17	143.00
4.50	483.54	576.70	436.89	454.00	22.32	26.00	136.06	142.00
5.00	465.55	550.57	427.49	444.00	21.06	25.00	136.41	143.00
5.50	444.62	521.73	420.13	438.00	20.01	23.00	136.50	144.00

3.8 ACMP CHARACTERISTICS

Table 16: ACMP Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

Param- eter	Description	Note	Condition	Min	Тур	Мах	Unit
V	ACMP Input Voltage	Positive Input		0		V _{DD}	V
✓ACMP	Range	Negative Input		0		V _{DD}	V
V _{offset} ACMP Input Offset		ACMPxH Vhys = 0 mV, Gain = 1, Vref = 32 mV to 2016 mV		-5.9		7.0	mV
		ACMPxL Vhys = 0 mV, Gain = 1, Vref = 32 mV to 2016 mV		-7.0		7.0	mV
t _{start}	ACMP Startup Time	ACMP Power-On delay, Minimal required wake time for the "Wake and Sleep function", for ACMPxH	PC Fored On			50	μs
		ACMP Power-On delay, Minimal required wake time for the "Wake and Sleep function", for ACMPxL	be Forced On			316	μs

GreenPAK Programmable Mixed-Signal Matrix

Param- eter	Description	Note	Condition	Min	Тур	Max	Unit
		V _{HYS} = 32 mV	T = 25 °C	21.56		34.64	mV
		V _{HYS} = 64 mV	T = 25 °C	52.47		67.39	mV
	ACMP0H, ACMP1H	V _{HYS} = 192 mV	T = 25 °C	181.6 0	-	195.22	mV
	(Note 1)	V _{HYS} = 32 mV		20.61	-	37.19	mV
		V _{HYS} = 64 mV		52.48		67.83	mV
N		V _{HYS} = 192 mV		178.5 9		196.98	mV
VHYS		V _{HYS} = 32 mV	T = 25 °C	23.97		37.31	mV
		V _{HYS} = 64 mV	T = 25 °C	55.54		69.68	mV
	ACMP2L, ACMP3L Built-in Hysteresis (Note 1)	V _{HYS} = 192 mV	T = 25 °C	183.8 9		198.08	mV
		V _{HYS} = 32 mV		23.20		37.31	mV
		V _{HYS} = 64 mV		55.45		70.50	mV
(1		V _{HYS} = 192 mV		183.1 5		198.08	mV
		Gain = 1x			10		GΩ
R.	Series Input	Gain = 0.5x			2		MΩ
'`sin	Resistance	Gain = 0.33x			Typ Mail 34.6 67.3 195.1 195.1 37.1 67.8 196.1 196.1 196.1 198.1 198.1 198.1 198.1 198.1 198.1 10 2 2 2 2 1.66 4.3 0.71 2.2 0.63 1.0 1.54 3.83 3.83 4.45		MΩ
		Gain = 0.25x			2		MΩ
		Gain = 1,	Low to High		195 37. 67. 196 196 37. 69. 198 198 198 198 10 2 - 2 - 1.84 7.0 1.66 4.3 0.71 2.3 0.63 1.0 1.54 - 1.50 - 3.83 - 4.45 -	7.03	μs
		Vref = 32 mV to 2016 mV, Overdrive = 10 mV	High to Low		1.66	4.37	μs
		Gain = 1,	Low to High		0.71	2.27	μs
PROP	Propagation Delay, Response Time	Vref = 32 mV to 2016 mV, Overdrive = 100 mV	High to Low		0.63	1.01	μs
	for ACMP0H, ACMP1H	Gain = 1, T = 25 °C,	Low to High		1.54		μs
		Vref = 32 mV, Overdrive = 10 mV	High to Low		1.50		μs
		Gain = 0.5, T = 25 °C,	Low to High		3.83		μs
		Vref = 32 mV, Overdrive = 10 mV	High to Low		4.45		μs

Table 16: ACMP Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)

D	a	ta	s	h	e	el	ċ.
-	-		-		-	-	•

GreenPAK Programmable Mixed-Signal Matrix

Param- eter	Description	Note	Condition	Min	Тур	Max	Unit
		Gain = 0.33, T = 25 °C,	Low to High		4.30		μs
		Vref = 32 mV, Overdrive = 10 mV	High to Low		4.90	-	μs
		Gain = 0.25, T = 25 °C,	Low to High		4.64		μs
		Vref = 32 mV, Overdrive = 10 mV	High to Low		4.82		μs
		Gain = 1, T = 25 °C,	Low to High		0.69		μs
	Propagation Delay, Response Time	Vref = 32 mV, Overdrive = 100 mV	High to Low		0.60		μs
	for ACMP0H, ACMP1H	Gain = 0.5, T = 25 °C,	Low to High		1.36		μs
	Vref = 32 mV, Overdrive = 100 mV	High to Low		1.51		μs	
	Gain = 0.33, T = 25 °C,	Low to High		1.42		μs	
		Vref = 32 mV, Overdrive = 100 mV	High to Low		1.59	-	μs
		Gain = 0.25, T = 25 °C,	Low to High		1.41		μs
		Vref = 32 mV, Overdrive = 100 mV	High to Low		1.38		μs
		Gain = 1,	Low to High		65.19	120.35	μs
		Vref = 32 mV to 2016 mV, Overdrive = 10 mV	High to Low		67.83	125.59	μs
		Gain = 1,	Low to High		27.87	58.65	μs
PROP		Vref = 32 mV to 2016 mV, Overdrive = 100 mV	High to Low		27.10	59.81	μs
		Gain = 1, T = 25 °C,	Low to High		64.71		μs
		Vref = 32 mV, Overdrive = 10 mV	High to Low		66.56		μs
		Gain = 0.5, T = 25 °C,	Low to High		105.65		μs
		Vref = 32 mV, Overdrive = 10 mV	High to Low		109.80		μs
	Propagation Delay, Response Time	Gain = 0.33, T = 25 °C,	Low to High		143.35		μs
	for ACMP2L, ACMP3L	Overdrive = 10 mV	High to Low		150.59		μs
		Gain = 0.25, T = 25 °C,	Low to High		178.31		μs
		Vref = 32 mV, Overdrive = 10 mV	High to Low		188.63		μs
		Gain = 1, T = 25 °C,	Low to High		26.97		μs
		Vref = 32 mV, Overdrive = 100 mV	High to Low		26.13		μs
		Gain = 0.5, T = 25 °C,	Low to High		35.16		μs
		vret = 32 mV, Overdrive = 100 mV	High to Low		34.31		μs
		Gain = 0.33, T = 25 °C,	Low to High		39.99		μs
		vret = 32 mV, Overdrive = 100 mV	High to Low		39.17		μs

Table 16: ACMP Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)

Datasheet	D	a	ta	S	h	е	e	t
-----------	---	---	----	---	---	---	---	---

GreenPAK Programmable Mixed-Signal Matrix

Param- eter	Description	Note	Condition	Min	Тур	Мах	Unit
	Propagation Delay,	Gain = 0.25, T = 25 °C,	Low to High		42.76		μs
PROP	Response Time for ACMP2L, ACMP3L	Vref = 32 mV, Overdrive = 100 mV	High to Low		43.57		μs
		G = 1		1	1	1	
G	Gain error	G = 0.5		0.496	0.5	0.504	
G	Gainenoi	G = 0.33		0.330	0.33	0.338	
		G = 0.25		0.247	0.25	0.254	
	Internal Vref0 error, Vref0 = 32 mV to 2016 mV, Buffer Disabled	V _{DD} = 4.0 V	T = 25 °C	-2.06		2.06	%
	Vref0 Output error, Vref0 = 224 mV to 2016 mV, Buffer Enabled		T = 25 °C, Loading = 1 μΑ	-6.40		5.42	%
Vref0			Load Resistance = 1 $M\Omega$			5	pF
			Load Resistance = 560 k Ω			10	pF
	Vref() Output		Load Resistance = 100 k Ω			40	pF
	Capacitance Loading		Load Resistance = 10 k Ω			80	pF
			Load Resistance = 2 k Ω			120	pF
			Load Resistance = 1 k Ω , Vref= 32 mV to 1024 mV			150	pF
	Internal Vref1 error, Vref1 = 32 mV to 2016 mV, Buffer Disabled	V _{DD} = 4.0 V	T = 25 °C	-5.29		5,29	%
	Vref1 Output error, Vref1 = 224 mV to 2016 mV, Buffer Enabled		T = 25 °C, Loading = 1 μΑ	-7.01		5.86	%
Vref1			Load Resistance = 1 $M\Omega$	-		15	pF
			Load Resistance = 560 k Ω			27	pF
	Vref1 Output		Load Resistance = 100 k Ω			64	pF
	Capacitance Loading		Load Resistance = 10 k Ω			120	pF
			Load Resistance = 2 $\mathbf{k}\Omega$			180	pF
			Load Resistance = 1 k Ω , Vref= 32 mV to 1024 mV			210	pF
ls	Input Current Source		Vin = V _{DD} - 0.7 V	94.4	103.7	111.7	μA
Note 1 \	/ _{IL} = Vin - V _{HYS} , V _{IH} = \	/in.					

Table 16: ACMP Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)

3.9 ANALOG TEMPERATURE SENSOR CHARACTERISTICS

Temperature Sensor typical nonlinearity ± 0.69 % for output range 1 and ± 0.85 % for output range 2 at V_{DD} = 3.3 V.

Table 17: TS Output vs Temperature (Output Range 1)

T °C	V _{DD} = 2.5 V		V _{DD} =	: 3.3 V	V _{DD} = 5.0 V		
1, 0	Typical, mV	Accuracy, %	Typical, mV	Accuracy, %	Typical, mV	Accuracy, %	
-40	998	±0.67	997	±0.67	997	±0.70	
-30	975	±0.59	974	±0.58	974	±0.58	
-20	952	±0.54	952	±0.52	951	±0.52	
-10	930	±0.65	929	±0.63	929	±0.62	
0	907	±0.69	906	±0.69	906	±0.65	
10	884	±0.79	883	±0.77	883	±0.75	
20	861	±0.82	860	±0.80	859	±0.78	
30	837	±0.93	836	±0.89	836	±0.86	
40	813	±0.89	813	±0.85	812	±0.81	
50	789	±1.01	789	±0.97	788	±0.92	
60	765	±1.13	764	±1.09	764	±1.05	
70	741	±1.24	740	±1.21	740	±1.16	
80	717	±1.36	716	±1.33	715	±1.29	
85	704	±1.48	703	±1.45	703	±1.42	

Table 18: TS Output vs Temperature (Output Range 2)

T °C	V _{DD} = 2.5 V		V _{DD} =	: 3.3 V	V _{DD} = 5.0 V		
1, 0	Typical, mV	Accuracy, %	Typical, mV	Accuracy, %	Typical, mV	Accuracy, %	
-40	1189	±0.70	1188	±0.69	1188	±0.69	
-30	1161	±0.58	1161	±0.57	1160	±0.59	
-20	1134	±0.62	1133	±0.62	1133	±0.64	
-10	1107	±0.69	1106	±0.68	1106	±0.68	
0	1079	±0.72	1078	±0.71	1078	±0.71	
10	1051	±0.80	1051	±0.79	1050	±0.80	
20	1023	±0.87	1022	±0.85	1022	±0.86	
30	995	±0.97	994	±0.96	994	±0.95	
40	966	±0.91	965	±0.88	965	±0.86	
50	937	±1.00	936	±1.01	936	±0.99	
60	908	±1.14	907	±1.12	907	±1.10	
70	879	±1.24	878	±1.22	878	±1.20	
80	849	±1.40	848	±1.38	848	±1.37	
85	835	±1.50	834	±1.48	833	±1.45	

GreenPAK Programmable Mixed-Signal Matrix

	Error at T								
V _{DD} , V	-40 °C, %	-20 °C, %	0 °C, %	20 °C, %	40 °C, %	60 °C, %	80 °C, %	85 °C, %	
2.30	±0.67	±0.55	±0.69	±0.82	±0.90	±1.14	±1.37	±1.50	
2.50	±0.67	±0.54	±0.69	±0.82	±0.89	±1.13	±1.36	±1.49	
2.70	±0.68	±0.53	±0.68	±0.81	±0.88	±1.11	±1.35	±1.48	
3.00	±0.67	±0.52	±0.67	±0.80	±0.86	±1.10	±1.34	±1.45	
3.30	±0.67	±0.52	±0.67	±0.80	±0.85	±1.09	±1.33	±1.45	
3.60	±0.68	±0.52	±0.66	±0.79	±0.84	±1.07	±1.32	±1.44	
4.20	±0.68	±0.52	±0.66	±0.78	±0.83	±1.06	±1.30	±1.43	
4.50	±0.69	±0.52	±0.65	±0.78	±0.82	±1.05	±1.30	±1.43	
5.00	±0.70	±0.52	±0.65	±0.78	±0.81	±1.05	±1.30	±1.42	
5.50	±0.71	±0.54	±0.66	±0.79	±0.81	±1.05	±1.29	±1.40	

Table 19: TS Output Error (Output Range 1)

Table 20: TS Output Error (Output Range 2)

	Error at T							
V _{DD} , V	-40 °C, %	-20 °C, %	0 °C, %	20 °C, %	40 °C, %	60 °C, %	80 °C, %	85 °C, %
2.30	±0.67	±0.61	±0.73	±0.87	±0.92	±1.15	±1.41	±1.50
2.50	±0.67	±0.62	±0.72	±0.87	±0.91	±1.14	±1.40	±1.50
2.70	±0.67	±0.61	±0.72	±0.86	±0.90	±1.14	±1.40	±1.49
3.00	±0.67	±0.61	±0.71	±0.85	±0.89	±1.13	±1.39	±1.48
3.30	±0.67	±0.62	±0.71	±0.85	±0.88	±1.12	±1.39	±1.48
3.60	±0.67	±0.61	±0.71	±0.85	±0.88	±1.11	±1.38	±1.47
4.20	±0.67	±0.63	±0.71	±0.85	±0.87	±1.10	±1.37	±1.46
4.50	±0.68	±0.63	±0.71	±0.85	±0.87	±1.11	±1.37	±1.46
5.00	±0.69	±0.64	±0.71	±0.86	±0.86	±1.10	±1.37	±1.45
5.50	±0.71	±0.65	±0.72	±0.86	±0.87	±1.11	±1.35	±1.44

4 User Programmability

The SLG46855 is a user programmable device with one time programmable (OTP) memory elements that are able to configure the connection matrix and macrocells. A programming development kit allows the user the ability to create initial devices. Once the design is finalized, the programming code (.gpx file) is forwarded to Renesas Electronics Corporation to integrate into a production process.

Figure 2: Steps to Create a Custom GreenPAK Device

5 IO Pins

The SLG46855 has a total of 10 GPIO, 1 GPI, and 1 GPO Pins which can function as either a user defined Input or Output, as well as serving as a special function (such as outputting the voltage reference).

5.1 GPIO PINS

GPIO0, GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, GPIO7, GPIO8 and GPIO9serve as General Purpose IO Pins.

5.2 GPI PINS

GPI0 serves as a General Purpose Input Pin.

5.3 GPO PINS

GPO0 serves as a General Purpose Output Pin.

5.4 PULL-UP/DOWN RESISTORS

All IO Pins have the option for user selectable resistors connected to the input structure. The selectable values on these resistors are 10 k Ω , 100 k Ω and 1 M Ω . The internal resistors can be configured as either Pull-up or Pull-downs.

5.5 FAST PULL-UP/DOWN DURING POWER-UP

During power-up, IO Pull-up/down resistance will switch to 2.6 k Ω initially and then it will switch to normal setting value. This function is enabled by register [778].

RENESAS

5.6 GPI STRUCTURE

5.6.1 GPI Structure (for GPI0)

_			
Na	tae	eho	ot
			CL.

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

5.7 GPIO WITH I²C MODE IO STRUCTURE

5.7.1 GPIO with I²C Mode Structure (for GPIO0 and GPIO1)

IO6, IO7 Mode [2:0] 00: Digital Input without Schmitt Trigger 01: Digital Input with Schmitt Trigger 10: Low Voltage Digital Input 11: Reserved

register [790]=1: Open-Drain NMOS for GPIO0 register [796]=1: Open-Drain NMOS for GPIO1

Note 1: OE cannot be selected by user and is controlled by register. Digital In is Matrix input.

Note 2: GPIO0 and GPIO1 do not support Push-Pull and PMOS Open-Drain modes.

Note 3: It is possible to apply an input voltage higher than V_{DD} to GPIO0 and GPIO1. However, this voltage should not exceed 5.5 V. Note 4: Can be varied over PVT, for reference only

Figure 4: GPIO with I²C Mode IO Structure Diagram

_				_			
	-	-		h.	-	-	٤.
	2				-	н.	
-			-		<u> </u>	•	•

5.8 MATRIX OE IO STRUCTURE

5.8.1 Matrix OE IO Structure (for GPIO2, GPIO3, GPIO5, GPIO6. GPIO7, GPIO8, and GPIO9)

Figure 5: Matrix OE IO Structure Diagram

D	а	ta	s	h	e	e	t
-	-	LC I	-		-	-	•

5.8.2 Matrix OE 4x Drive Structure (for GPIO4)

Figure 6: Matrix OE IO 4x Drive Structure Diagram

_				
Na	ta	eh	00	÷
20		311	CC	

5.9 GPO STRUCTURE

5.9.1 GPO Register OE Structure (for GPO0)

Figure 7: GPO Register OE 4x Drive Structure Diagram

Da	tas	he	et
			-

GreenPAK Programmable Mixed-Signal Matrix

5.10 IO TYPICAL PERFORMANCE

Figure 8: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C

Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range

Datasheet	Revision 3.17	28-Feb-2023
CFR0011-120-00	37 of 201	© 2023 Renesas Electronics Corporation

GreenPAK Programmable Mixed-Signal Matrix

Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C

Figure 11: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range

28-Feb-2023

Figure 12: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C

	400	haa	4
Da	las	nee	L

6 Connection Matrix

The Connection Matrix in the SLG46855 is used to create the internal routing for internal functional macrocells of the device once it is programmed. The registers are programmed from the one time programmable (OTP) NVM cell during Test Mode Operation. The output of each functional macrocell within the SLG46855 has a specific digital bit code assigned to it that is either set to active "High" or inactive "Low", based on the design that is created. Once the 2048 register bits within the SLG46855 are programmed a fully custom circuit will be created.

The Connection Matrix has 64 inputs and 96 outputs. Each of the 64 inputs to the Connection Matrix is hard-wired to the digital output of a particular source macrocell, including IO pins, LUTs, analog comparators, other digital resources, such as V_{DD} and GND. The input to a digital macrocell uses a 6-bit register to select one of these 64 input lines.

For a complete list of the SLG46855's register table, see Section 17.

Figure 13: Connection Matrix

Datasheet		

KENESAS

6.1 MATRIX INPUT TABLE

Table 21: Matrix Input Table

Matrix Input	Materix Innut Signal Equation	Matrix Decode		e			
Number	Number		4	3	2	1	0
0	GND	0	0	0	0	0	0
1	LUT2_0/DFF0 output	0	0	0	0	0	1
2	LUT2_1/DFF1 output	0	0	0	0	1	0
3	LUT2_2/DFF2 output	0	0	0	0	1	1
4	LUT2_3/PGen output	0	0	0	1	0	0
5	LUT3_0/DFF3 output	0	0	0	1	0	1
6	LUT3_1/DFF4 output	0	0	0	1	1	0
7	LUT3_2/DFF5 output	0	0	0	1	1	1
8	LUT3_3/DFF6 output	0	0	1	0	0	0
9	LUT3_4/DFF7 output	0	0	1	0	0	1
10	LUT3_5/DFF8 output	0	0	1	0	1	0
11	LUT3_6/DFF9 output	0	0	1	0	1	1
12	LUT3_7/DFF10 output	0	0	1	1	0	0
13	LUT3_8/DFF11 output	0	0	1	1	0	1
14	CNT0 output	0	0	1	1	1	0
15	MF0_LUT4/DFF_OUT	0	0	1	1	1	1
16	CNT1 output	0	1	0	0	0	0
17	MF1_LUT3/DFF_OUT	0	1	0	0	0	1
18	CNT2 output	0	1	0	0	1	0
19	MF2_LUT3/DFF_OUT	0	1	0	0	1	1
20	CNT3 output		1	0	1	0	0
21	MF3_LUT3/DFF_OUT		1	0	1	0	1
22	CNT4 output	0	1	0	1	1	0
23	MF4_LUT3/DFF_OUT	0	1	0	1	1	1
24	CNT5 output	0	1	1	0	0	0
25	MF5_LUT3/DFF_OUT	0	1	1	0	0	1
26	CNT6 output	0	1	1	0	1	0
27	MF6_LUT3/DFF_OUT	0	1	1	0	1	1
28	CNT7 output	0	1	1	1	0	0
29	MF7_LUT3/DFF_OUT	0	1	1	1	0	1
30	LUT3_16/Ripple CNT/Pipe Delay_out0	0	1	1	1	1	0
31	Ripple CNT/Pipe Delay_out1	0	1	1	1	1	1
32	GPIO0 digital input or I ² C_virtual_0 Input	1	0	0	0	0	0
33	GPIO1 digital input or I ² C_virtual_1 Input	1	0	0	0	0	1
34	I ² C_virtual_2 Input	1	0	0	0	1	0
35	I ² C_virtual_3 Input	1	0	0	0	1	1
36	I ² C_virtual_4 Input	1	0	0	1	0	0
37	I ² C_virtual_5 Input	1	0	0	1	0	1

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 21: Matrix Input Table (Continued)

Matrix Input	Matrix Input Number Matrix Input Signal Function		Matrix Decode					
Number			4	3	2	1	0	
38	I ² C_virtual_6 Input	1	0	0	1	1	0	
39	I ² C_virtual_7 Input	1	0	0	1	1	1	
40	Ripple CNT_out2	1	0	1	0	0	0	
41	LUT4_0/DFF12 output	1	0	1	0	0	1	
42	Programmable Delay Edge Detect Output	1	0	1	0	1	0	
43	Edge Detect Filter Output	1	0	1	0	1	1	
44	GPI0 Digital Input	1	0	1	1	0	0	
45	GPIO2 Digital Input	1	0	1	1	0	1	
46	GPIO3,Digital Input	1	0	1	1	1	0	
47	GPIO4 Digital Input	1	0	1	1	1	1	
48	GPIO5 Digital Input	1	1	0	0	0	0	
49	GPIO6 Digital Input	1	1	0	0	0	1	
50	GPIO7 Digital Input	1	1	0	0	1	0	
51	GPIO8 Digital Input	1	1	0	0	1	1	
52	GPIO9, Digital Input		1	0	1	0	0	
53	Oscillator0 output 0	1	1	0	1	0	1	
54	Oscillator1 output 0	1	1	0	1	1	0	
55	Oscillator2 output	1	1	0	1	1	1	
56	ACMP0 Output (normal speed)	1	1	1	0	0	0	
57	ACMP1 Output (normal speed)	1	1	1	0	0	1	
58	ACMP2 Output (low speed)	1	1	1	0	1	0	
59	ACMP3 output (low speed)	1	1	1	0	1	1	
60	Oscillator0 output 1	1	1	1	1	0	0	
61	Oscillator1 output 1	1	1	1	1	0	1	
62	POR OUT	1	1	1	1	1	0	
63	V _{DD}	1	1	1	1	1	1	

GreenPAK Programmable Mixed-Signal Matrix

6.2 MATRIX OUTPUT TABLE

Table 22: Matrix Output Table

Register Bit Address	Matrix Output Signal Function	Matrix Output Number
[5:0]	IN0 of LUT2_0 or Clock Input of DFF0	0
[11:6]	IN1 of LUT2_0 or Data Input of DFF0	1
[17:12]	IN0 of LUT2_1 or Clock Input of DFF1	2
[23:18]	IN1 of LUT2_1 or Data Input of DFF1	3
[29:24]	IN0 of LUT2_2 or Clock Input of DFF2	4
[35:30]	IN1 of LUT2_2 or Data Input of DFF2	5
[41:36]	IN0 of LUT2_3 or Clock Input of PGen	6
[47:42]	IN1 of LUT2_3 or nRST of PGen	7
[53:48]	IN0 of LUT3_0 or CLK Input of DFF3	8
[59:54]	IN1 of LUT3_0 or Data of DFF3	9
[65:60]	IN2 of LUT3_0 or nRST (nSET) of DFF3	10
[71:66]	IN0 of LUT3_1 or CLK Input of DFF4	11
[77:72]	IN1 of LUT3_1 or Data of DFF4	12
[83:78]	IN2 of LUT3_1 or nRST (nSET) of DFF4	13
[89:84]	IN0 of LUT3_2 or CLK Input of DFF5	14
[95:90]	IN1 of LUT3_2 or Data of DFF5	15
[101:96]	IN2 of LUT3_2 or nRST (nSET) of DFF5	16
[107:102]	IN0 of LUT3_3 or CLK Input of DFF6	17
[113:108]	IN1 of LUT3_3 or Data of DFF6	18
[119:114]	IN2 of LUT3_3 or nRST (nSET) of DFF6	19
[125:120]	IN0 of LUT3_4 or CLK Input of DFF7	20
[131:126]	IN1 of LUT3_4 or Data of DFF7	21
[137:132]	IN2 of LUT3_4 or Data of DFF7	22
[143:138]	IN0 of LUT3_5 or CLK Input of DFF8	23
[149:144]	IN1 of LUT3_5 or Data of DFF8	24
[155:150]	IN2 of LUT3_5 or nRST (nSET) of DFF8	25
[161:156]	IN0 of LUT3_6 or CLK Input of DFF9	26
[167:162]	IN1 of LUT3_6 or Data of DFF9	27
[173:168]	IN2 of LUT3_6 or nRST (nSET) of DFF9	28
[179:174]	IN0 of LUT3_7 or CLK Input of DFF10	29
[185:180]	IN1 of LUT3_7 or Data of DFF10	30
[191:186]	IN2 of LUT3_7 or nRST (nSET) of DFF10	31
[197:192]	IN0 of LUT3_8 or CLK Input of DFF11	32
[203:198]	IN1 of LUT3_8 or CLK Input of DFF11	33
[209:204	IN2 of LUT3_8 or nRST (nSET) of DFF11	34
[215:210]	IN0 of LUT3_12 or CLK Input of DFF16 Delay4 Input (or Counter4 nRST Input)	35
[221:216]	IN1 of LUT3_12 or nRST (nSET) of DFF16 Delay4 Input (or Counter4 nRST Input)	36

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

Table 22: Matrix Output Table (Continued)

Register Bit Address	Matrix Output Signal Function	Matrix Output Number
[227:222]	IN2 of LUT3_12 or Data of DFF16 Delay4 Input (or Counter4 nRST Input)	37
[233:228]	IN0 of LUT3_13 or CLK Input of DFF17 Delay5 Input (or Counter5 nRST Input)	38
[239:234]	IN1 of LUT3_13 or nRST (nSET) of DFF17 Delay5 Input (or Counter5 nRST Input)	39
[245:240]	IN2 of LUT3_13 or Data of DFF17 Delay5 Input (or Counter5 nRST Input)	40
[251:246]	IN0 of LUT3_14 or CLK Input of DFF18 Delay6 Input (or Counter6 nRST Input)	41
[257:252]	IN1 of LUT3_14 or nRST (nSET) of DFF18 Delay6 Input (or Counter6 nRST Input)	42
[263:258]	IN2 of LUT3_14 or Data of DFF18 Delay6 Input (or Counter6 nRST Input)	43
[269:264]	IN0 of LUT3_15 or CLK Input of DFF19 Delay7 Input (or Counter7 nRST Input)	44
[275:270]	IN1 of LUT3_15 or nRST (nSET) of DFF19 Delay7 Input (or Counter7 nRST Input)	45
[281:276]	IN2 of LUT3_15 or Data of DFF19 Delay7 Input (or Counter7 nRST Input)	46
[287:282]	IN0 of LUT3_16 or Input of Pipe Delay or UP signal of RIPP CNT	47
[293:288]	IN1 of LUT3_16 or nRST of Pipe Delay or nSET of RIPP CNT	48
[299:294]	IN2 of LUT3_16 or Clock of Pipe Delay_RIPP CNT	49
[305:300]	IN0 of LUT4_0 or CLK Input of DFF12	50
[311:306]	IN1 of LUT4_0 or Data of DFF12	51
[317:312]	IN2 of LUT4_0 or nRST (nSET) of DFF12	52
[323:318]	IN3 of LUT4_0	53
[329:324]	Programmable delay/edge detect input	54
[335:330]	Filter/Edge detect input	55
[341:336]	GPIO0 Digital Output	56
[347:342]	GPIO1 Digital Output	57
[353:348]	GPIO2 Digital Output	58
[359:354]	GPIO2 Digital Output OE	59
[365:360]	GPIO3, Digital Output	60
[371:366]	GPIO3, Digital Output OE	61
[377:372]	GPO0 Digital Output	62
[383:378]	GPIO4 Digital Output	63
[389:384]	GPIO4 Digital Output OE	64
[395:390]	GPIO5 Digital Output	65
[401:396]	GPIO5 Digital Output OE	66
[407:402]	GPIO6 Digital Output	67
[413:408]	GPIO6 Digital Output OE	68

D -	4	1.1.1	
Da	tas	ne	et

GreenPAK Programmable Mixed-Signal Matrix

Table 22: Matrix Output Table (Continued)

Register Bit Address	Matrix Output Signal Function	Matrix Output Number
[419:414]	GPIO7 Digital Output	69
[425:420]	GPIO7 Digital Output OE	70
[431:426]	GPIO8 Digital Output	71
[437:432]	GPIO8 Digital Output OE	72
[443:438]	GPIO9, Digital Output	73
[449:444]	GPIO9 Digital Output OE	74
[455:450]	PWR UP of ACMP0_H	75
[461:456]	PWR UP of ACMP1_H	76
[467:462]	PWR UP of ACMP2_L	77
[473:468]	PWR UP of ACMP3_L	78
[479:474]	Temp sensor, Vref Out_0, Vref Out_1 Power Up	79
[485:480]	Oscillator0 ENABLE	80
[491:486]	Oscillator1 ENABLE	81
[497:492]	Oscillator2 ENABLE	82
[503:498]	IN0 of LUT4_1 or CLK Input of DFF20 Delay0 Input (or Counter0 nRST Input)	83
[509:504]	IN1 of LUT4_1 or nRST of DFF20 Delay0 Input (or Counter0 nRST Input)	84
[515:510]	IN2 of LUT4_1 or nSET of DFF20 Delay0 Input (or Counter0 nRST Input)	85
[521:516]	IN3 of LUT4_1 or Data of DFF20 Delay0 Input (or Counter0 nRST Input)	86
[527:522]	IN0 of LUT3_9 or CLK Input of DFF13 Delay1 Input (or Counter1 nRST Input)	87
[533:528]	IN1 of LUT3_9 or nRST (nSET) of DFF13 Delay1 Input (or Counter1 nRST Input)	88
[539:523]	IN2 of LUT3_9 or Data of DFF13 Delay1 Input (or Counter1 nRST Input)	89
[545:540]	IN0 of LUT3_10 or CLK Input of DFF14 Delay2 Input (or Counter2 nRST Input)	90
[551:546]	IN1 of LUT3_10 or nRST (nSET) of DFF14 Delay2 Input (or Counter2 nRST Input)	91
[557:552]	IN2 of LUT3_10 or Data of DFF14 Delay2 Input (or Counter2 nRST Input)	92
[563:558]	IN0 of LUT3_11 or CLK Input of DFF15 Delay3 Input (or Counter3 nRST Input)	93
[569:564]	IN1 of LUT3_11 or nRST (nSET) of DFF15 Delay3 Input (or Counter3 nRST Input)	94
[575:570]	IN2 of LUT3_11 or Data of DFF15 Delay3 Input (or Counter3 nRST Input)	95
Note 1 For each Ac	ldress, the two most significant bits are unused.	

6.3 CONNECTION MATRIX VIRTUAL INPUTS

As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the device. Eight of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes from a corresponding data bit written as a register value via l^2C . This gives the user the ability to write data via the serial channel, and have this information translated into signals that can be driven into the Connection Matrix and from the Connection Matrix to the digital inputs of other macrocells on the device. The l^2C address for reading and writing these register values is at byte 0x4C (076).

Six of the eight Connection Matrix Virtual Inputs are dedicated to this virtual input function. An I²C write command to these register bits will set the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read either the original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the values from a previous write command (if that has happened).

Two of the eight Connection Matrix Virtual Inputs are shared with Pin digital inputs (GPIO0Digital or $l^2C_virtual_0$ Input), and (GPIO1 Digital or $l^2C_virtual_1$ Input). If the virtual input mode is selected, an l^2C write command to these register bits will set the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read either the original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the values from a previous write command (if that has happened). The l^2C disable/enable register bit [2032] selects whether the Connection Matrix input comes from the Pin input or from the virtual register:

- Select SCL & Virtual Input 0 or GPIO0
- Select SDA & Virtual Input 1 or GPIO1

See Table 22 for Connection Matrix Virtual Inputs.

Table 23: Connection Matrix Virtual Inputs

Matrix Input Number	Matrix Input Signal Function	Register Bit Addresses (d)
32	I ² C_virtual_0 Input	[608]
33	I ² C_virtual_1 Input	[609]
34	I ² C_virtual_2 Input	[610]
35	I ² C_virtual_3 Input	[611]
36	I ² C_virtual_4 Input	[612]
37	I ² C_virtual_5 Input	[613]
38	I ² C_virtual_6 Input	[614]
39	I ² C_virtual_7 Input	[615]

6.4 CONNECTION MATRIX VIRTUAL OUTPUTS

The digital outputs of the various macrocells are routed to the Connection Matrix to enable interconnections to the inputs of other macrocells in the device. At the same time, it is possible to read the state of each of the macrocell outputs as a register value via I^2C . This option, called Connection Matrix Virtual Outputs, allows the user to remotely read the values of each macrocell output. The I^2C addresses for reading these register values are bytes 0x48 (072) to 0x4F (079). Write commands to these same register values will be ignored (with the exception of the Virtual Input register bits at byte 0x4C (076)).

	-	4-	-		-	-	4	
	F.	тя	9	п	ρ	ρ	т.	
-			-		-	•	•	

7 Combination Function Macrocells

The SLG46855 has 15 combination function macrocells that can serve more than one logic or timing function. In each case, they can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that can be implemented in these macrocells.

- Three macrocells that can serve as either 2-bit LUT or as D Flip-Flop
- Nine macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input
- One macrocell that can serve as either 3-bit LUT or as Pipe Delay/Ripple Counter
- One macrocell that can serve as either 2-bit LUT or as Programmable Pattern Generator (PGen)
- One macrocell that can serve as either 4-bit LUT or as D Flip-Flop with Set/Reset Input

Inputs/Outputs for the 15 combination function macrocells are configured from the connection matrix with specific logic functions being defined by the state of configuration bits.

When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).

7.1 2-BIT LUT OR D FLIP-FLOP MACROCELLS

There is one macrocell that can serve as either 2-bit LUT or as D Flip-Flop. When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix and produce a single output, which goes back into the connection matrix. When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and clock (CLK) inputs for the Flip-Flop, with the output going back to the connection matrix.

The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:

DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change

LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK is

High).

Datashoot	Povision 2.17	28-Eab-2023
Datasheet	Revision 5.17	20-1 00-2023

Da	tas	he	et
			~

Revision 3.17

7.1.1 2-Bit LUT or D Flip-Flop Macrocell Used as 2-Bit LUT

Table 24: 2-bit LUT0 Truth Table

IN1	INO	OUT	
0	0	register [1496]	LSB
0	1	register [1497]	
1	0	register [1498]	
1	1	register [1499]	MSB

Table 25: 2-bit LUT1 Truth Table

IN1	INO	OUT	
0	0	register [1500]	LSB
0	1	register [1501]	
1	0	register [1502]	
1	1	register [1503]	MSB

Table 26: 2-bit LUT2 Truth Table

IN1	INO	OUT	
0	0	register [1504]	LSB
0	1	register [1505]	
1	0	register [1506]	
1	1	register [1507]	MSB

This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:

2-Bit LUT0 is defined by registers [1499:1496]

2-Bit LUT1 is defined by registers [1503:1500]

2-Bit LUT2 is defined by registers [1507:1504]

Table 26 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created within each of the 2-bit LUT logic cells.

Table 27: 2-bit LUT Standard Digital Functions

Function	MSB			LSB
AND-2	1	0	0	0
NAND-2	0	1	1	1
OR-2	1	1	1	0
NOR-2	0	0	0	1
XOR-2	0	1	1	0
XNOR-2	1	0	0	1

CFR0011-120-00

GreenPAK Programmable Mixed-Signal Matrix

7.2 2-BIT LUT OR PROGRAMMABLE PATTERN GENERATOR

The SLG46855 has one combination function macrocell that can serve as a logic or timing function. This macrocell can serve as a Look Up Table (LUT), or Programmable Pattern Generator (PGen).

When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix and produces a single output, which goes back into the connection matrix. When used as a LUT to implement combinatorial logic functions, the outputs of the LUT can be configured to any user defined function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any selectable function.

It is possible to define the RST level for the PGen macrocell. There are both high level reset (RST) and a low level reset (nRST) options available which are selected by register [1409]. When operating as a Programmable Pattern Generator, the output of the macrocell will clock out a sequence of two to sixteen bits that are user selectable in their bit values, and user selectable in the number of bits (up to sixteen) that are output before the pattern repeats.

50 of 201

Da	ta	sh	ee	et
			~	

GreenPAK Programmable Mixed-Signal Matrix

7.2.1 2-Bit LUT or PGen Macrocell Used as 2-Bit LUT

Table 28: 2-bit LUT1 Truth Table

IN1	IN0	OUT	
0	0	register [1384]	LSB
0	1	register [1385]	
1	0	register [1386]	
1	1	register [1387]	MSB

This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:

2-Bit LUT3 is defined by registers [1387:1384]

Table 28 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created within each of the 2-bit LUT logic cells.

Table 29: 2-bit LUT Standard Digital Functions

Function	MSB			LSB
AND-2	1	0	0	0
NAND-2	0	1	1	1
OR-2	1	1	1	0
NOR-2	0	0	0	1
XOR-2	0	1	1	0
XNOR-2	1	0	0	1

7.3 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS

There are nine macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs. When used to implement LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce a single output, which goes back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the connection matrix. It is possible to define the active level for the reset/set input of DFF/LATCH macrocell. There are both active high level reset/set (RST/SET) options available which are selected by register [1445].

DFF3 operation will flow the functional description below:

■ If register [1443] = 0, and the CLK is rising edge triggered, then Q=D, otherwise Q will not change.

If register [1443] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on CLK.

Da	Ita	s	h	e	e	t	
	luca	9		C	0	•	

GreenPAK Programmable Mixed-Signal Matrix

Figure 21: 3-bit LUT0 or DFF3

	-	L	_	-	-	۰.
			9			г.
-		LCI	9	-	•	ι.

D -	4	_		_	_	
Da	τa	S	n	е	е	τ

	i.
latachoo	r
Datasnee	L

Datash	eet	

Ja	ta	S	h	ρ	ρ	t
Ja	ια	Э		C	C	L.

GreenPAK Programmable Mixed-Signal Matrix

7.3.1 3-Bit LUT or D Flip-Flop Macrocells Used as 3-Bit LUTs

Table 30: 3-bit LUT0 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1440]	LSB
0	0	1	register [1441]	
0	1	0	register [1442]	
0	1	1	register [1443]	
1	0	0	register [1444]	
1	0	1	register [1445]	
1	1	0	register [1446]	
1	1	1	register [1447]	MSB

Table 31: 3-bit LUT1 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1352]	LSB
0	0	1	register [1353]	
0	1	0	register [1354]	
0	1	1	register [1355]	
1	0	0	register [1356]	
1	0	1	register [1357]	
1	1	0	register [1358]	
1	1	1	register [1359]	MSB

Table 32: 3-bit LUT2 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1360]	LSB
0	0	1	register [1361]	
0	1	0	register [1362]	
0	1	1	register [1363]	
1	0	0	register [1364]	
1	0	1	register [1365]	
1	1	0	register [1366]	
1	1	1	register [1367]	MSB

Table 33: 3-bit LUT3 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1368]	LSB
0	0	1	register [1369]	
0	1	0	register [1370]	
0	1	1	register [1371]	
1	0	0	register [1372]	
1	0	1	register [1373]	
1	1	0	register [1374]	
1	1	1	register [1375]	MSB

Table 34: 3-bit LUT4 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1376]	LSB
0	0	1	register [1377]	
0	1	0	register [1378]	
0	1	1	register [1379]	
1	0	0	register [1380]	
1	0	1	register [1381]	
1	1	0	register [1382]	
1	1	1	register [1383]	MSB

Table 35: 3-bit LUT5 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1356]	LSB
0	0	1	register [1357]	
0	1	0	register [1358]	
0	1	1	register [1359]	
1	0	0	register [1360]	
1	0	1	register [1361]	
1	1	0	register [1362]	
1	1	1	register [1363]	MSB

Table 36: 3-bit LUT6 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1364]	LSB
0	0	1	register [1365]	
0	1	0	register [1366]	
0	1	1	register [1367]	
1	0	0	register [1368]	
1	0	1	register [1369]	
1	1	0	register [1370]	
1	1	1	register [1371]	MSB

Table 37: 3-bit LUT7 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1472]	LSB
0	0	1	register [1473]	
0	1	0	register [1474]	
0	1	1	register [1475]	
1	0	0	register [1476]	
1	0	1	register [1477]	
1	1	0	register [1478]	
1	1	1	register [1479]	MSB

Datasheet

28-Feb-2023

Table 38: 3-bit LUT8 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1480]	LSB
0	0	1	register [1481]	
0	1	0	register [1482]	
0	1	1	register [1483]	
1	0	0	register [1484]	
1	0	1	register [1485]	
1	1	0	register [1486]	
1	1	1	register [1487]	MSB

Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:

3-Bit LUT0 is defined by registers [1447:1440]
3-Bit LUT1 is defined by registers [1359:1352]
3-Bit LUT2 is defined by registers [1367:1360]
3-Bit LUT3 is defined by registers [1375:1368]
3-Bit LUT4 is defined by registers [1383:1376]
3-Bit LUT5 is defined by registers [1463:1456]
3-Bit LUT6 is defined by registers [1471:1464]
3-Bit LUT7 is defined by registers [1479:1472]
3-Bit LUT8 is defined by registers [1487:1480]

Table 38 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created within each of the four 3-bit LUT logic cells.

Table	39:	3-bit	LUT	Standard	Digital	Functions
-------	-----	-------	-----	----------	---------	-----------

Function	MSB							LSB
AND-3	1	0	0	0	0	0	0	0
NAND-3	0	1	1	1	1	1	1	1
OR-3	1	1	1	1	1	1	1	0
NOR-3	0	0	0	0	0	0	0	1
XOR-3	1	0	0	1	0	1	1	0
XNOR-3	0	1	1	0	1	0	0	1

GreenPAK Programmable Mixed-Signal Matrix

7.3.2 Initial Polarity Operations

Figure 30: DFF Polarity Operations with nReset

n	-	ta	~	h	~	~	6
	α	ια	5		e	e	L

GreenPAK Programmable Mixed-Signal Matrix

Figure 31: DFF Polarity Operations with nSet

7.4 4-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELL

There is one macrocell that can serve as either a 4-bit LUT or as a D Flip-Flop with Set/Reset inputs. When used to implement LUT functions, the 4-bit LUT takes in four input signals from the connection matrix and produce a single output, which goes back into the connection matrix. When used to implement D Flip-Flop function, the input signals from the connection matrix go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the connection matrix.

- If register [1436] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change.
- If register [1436] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on CLK.

It is possible to define the active level for the reset/set input of DFF/LATCH macrocell. There are both active high level reset/set (RST/SET) and active low level reset/set (nRST/nSET) options available which are selected by register [1434].

Datasheet	Revision 3.17	28-Feb-2023
CFR0011-120-00	61 of 201	© 2023 Renesas Electronics Corporation

Figure 32: 4-bit LUT0 or DFF12

7.4.1 4-Bit LUT Macrocell Used as 4-Bit LUT

Table 40: 4-bit LUT0 Truth Table

IN3	IN2	IN1	IN0	OUT	
0	0	0	0	register [1424]	LSB
0	0	0	1	register [1425]	
0	0	1	0	register [1426]	
0	0	1	1	register [1427]	
0	1	0	0	register [1428]	
0	1	0	1	register [1429]	
0	1	1	0	register [1430]	
0	1	1	1	register [1431]	
1	0	0	0	register [1432]	
1	0	0	1	register [1433]	
1	0	1	0	register [1434]	
1	0	1	1	register [1435]	
1	1	0	0	register [1436]	
1	1	0	1	register [1437]	
1	1	1	0	register [1438]	
1	1	1	1	register [1439]	MSB

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:

4-Bit LUT0 is defined by registers [1439:1424]

Function	MSB															LSB
AND-4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAND-4	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
OR-4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
NOR-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
XOR-4	0	1	1	0	1	0	0	1	1	0	0	1	0	1	1	0
XNOR-4	1	0	0	1	0	1	1	0	0	1	1	0	1	0	0	1

Table 41: 4-bit LUT Standard Digital Functions

7.5 3-BIT LUT OR PIPE DELAY/RIPPLE COUNTER MACROCELL

There is one macrocell that can serve as either a 3-bit LUT or as a Pipe Delay/Ripple Counter.

When used to implement LUT functions, the 3-bit LUT takes in three input signals from the connection matrix and produces a single output, which goes back into the connection matrix.

When used as a Pipe Delay, there are three inputs signals from the matrix, Input (IN), Clock (CLK), and Reset (nRST). The Pipe Delay cell is built from 16 D Flip-Flop logic cells that provide the three delay options, two of which are user selectable. The DFF cells are tied in series where the output (Q) of each delay cell goes to the next DFF cell input (IN). Both of the two outputs (OUT0 and OUT1) provide user selectable options for 1 - 16 stages of delay. There are delay output points for each set of the OUT0 and OUT1 outputs to a 4-input mux that is controlled by registers [1419:1416] for OUT0 and registers [1423:1420] for OUT1. The 4-input mux is used to control the selection of the amount of delay.

The overall time of the delay is based on the clock used in the SLG46855 design. Each DFF cell has a time delay of the inverse of the clock time (either external clock or the internal Oscillator within the SLG46855). The sum of the number of DFF cells used will be the total time delay of the Pipe Delay logic cell. OUT1 Output can be inverted (as selected by register [1413]).

In the Ripple Counter mode there are 3 options for setting which use 7 bits. There are 3 bits to set **nSET value (SV)** in range from 0 to 7. This value will be set into the Ripple Counter outputs when nSET input goes LOW. **End value (EV)** will use 3 bits for setting output code, which will be last code in the cycle. After reaching the EV, the Ripple Counter goes to the first code by the rising edge on CLK input. The **Functionality mode** option uses 1 bit. This setting defines how exactly Ripple Counter will operate.

The user can select one of the functionality modes by register: RANGE or FULL. If the RANGE option is selected, the count starts from SV. If UP input is LOW the count goes down: $SV \rightarrow EV \rightarrow EV-1$ to $SV+1 \rightarrow SV$, and others (if SV is smaller than EV), or $SV \rightarrow SV-1$ to $EV+1 \rightarrow EV \rightarrow SV$ (if SV is bigger than EV). If UP input is HIGH, count starts from SV up to EV, and others.

In the FULL range configuration the Ripple Counter functions as follows. If UP input is LOW, the count starts from SV and goes down to 0. Then current counter value jumps to EV and goes down to 0, and others.

If UP input is HIGH, count goes up starting from SV. Then current counter value jumps to 0 and counts up to EV, and others. See Ripple Counter functionality example in Figure 34.

Every step is executed by the rising edge on CLK input.

	4-	_		_	_	4
Da	ta	S	Π	e	e	τ

Figure 33: 3-bit LUT16/Pipe Delay/Ripple Counter

_				_			
	-		-		-	-	۰.
		тя	9	п	ρ		г.
-	•		-		•	•	•

Revision 3.17

Figure 34: Example: Ripple Counter Functionality

Datasheet		

GreenPAK Programmable Mixed-Signal Matrix

7.5.1 3-Bit LUT or Pipe Delay Macrocells Used as 3-Bit LUT

Table 42: 3-bit LUT16 Truth Table

IN2	IN1	INO	OUT
0	0	0	register [1416]
0	0	1	register [1417]
0	1	0	register [1418]
0	1	1	register [1419]
1	0	0	register [1420]
1	0	1	register [1421]
1	1	0	register [1422]
1	1	1	register [1423]

Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:

3-Bit LUT16 is defined by registers [1423:1416]

n	-	ta	~	h	~	~	6
	α	ια	5		e	e	L

GreenPAK Programmable Mixed-Signal Matrix

8 Multi-Function Macrocells

The SLG46855 has 8 Multi-Function macrocells that can serve more than one logic or timing function. In each case, they can serve as a LUT, DFF with flexible settings, or as CNT/DLY with multiple modes such as One Shot, Frequency Detect, Edge Detect, and others. Also, the macrocell is capable to combine those functions: LUT/DFF connected to CNT/DLY or CNT/DLY connected to LUT/DFF, see Figure 35.

See the list below for the functions that can be implemented in these macrocells:

- Seven macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays
- One macrocell that can serve as a 4-bit LUT/D Flip-Flop and as 16-Bit Counter/Delay/FSM

Figure 35: Possible Connections Inside Multi-Function Macrocell

Inputs/Outputs for the 8 Multi-Function function macrocells are configured from the connection matrix with specific logic functions being defined by the state of NVM bits.

When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).

8.1 3-BIT LUT OR DFF/LATCH WITH 8-BIT COUNTER/DELAY MACROCELLS

There are seven macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays.

When used to implement LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce a single output, which goes back into the connection matrix or can be connected to CNT/DLY's input.

When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D), clock (CLK), and Reset/Set (nRST/nSET) inputs of the Flip-Flop, with the output going back to the connection matrix or to the CNT/DLY's input.

When used to implement Counter/Delays, each macrocell has a dedicated matrix input connection. For flexibility, each of these macrocells has a large selection of internal and external clock sources, as well as the option to chain from the output of the previous (N-1) CNT/DLY macrocell, to implement longer count/delay circuits. These macrocells can also operate in a One-Shot mode, which will generate an output pulse of user-defined width. They can also operate in a Frequency Detection or Edge Detection mode.

Counter/Delay macrocell has an initial value, which define its initial value after GPAK is powered up. It is possible to select initial Low or initial High, as well as initial value defined by a Delay In signal.

For example, in case initial LOW option is used, the rising edge delay will start operation.

For timing diagrams refer to sections 7.1 and 8.3.

Note: After two DFF – counters initialize with counter data = 0 after POR.

Initial state = 1 – counters initialize with counter data = 0 after POR.

Initial state = 0 And After two DFF is bypass - counters initialize with counter data after POR.

Datasheet

```
Revision 3.17
```

28-Feb-2023

GreenPAK Programmable Mixed-Signal Matrix

CNT6 and CNT7 current count value can be read via I^2 C. However, it is possible to change the counter data (value counter starts operating from) for any macrocell using I^2 C write commands. In this mode, it is possible to load count data immediately (after two DFF) or after counter ends counting. See Section 15.6.1 for further details.

Figure 36: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF13, CNT/DLY1)

Figure 37: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF14, CNT/DLY2)

D	at	а	s	h	e	e	t
_	~ ~		-		-	-	•

Figure 38: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF15, CNT/DLY3)

_				_			
	-	4-	-	h	-	-	4
	-	12	5	п	е	е	
_	-		-		-	-	•

Figure 39: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF16, CNT/DLY4)

	-	4-	-	-	-	4	
	-	T -	-	0		т.	
_	•	LC I	-	v	C	•	

28-Feb-2023

Figure 40: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT13/DFF17, CNT/DLY5)

Figure 41: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT14/DFF18, CNT/DLY6)

D	а	ta	s	h	e	e	t
_	-		-		-	-	•

Figure 42: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT15/DFF19, CNT/DLY7)

As shown in Figures 24-30 there is a possibility to use LUT/DFF and CNT/DLY simultaneously.

Note: It is not possible to use LUT and DFF at once, one of these macrocells must be selected.

- Case 1. LUT/DFF in front of CNT/DLY. Three input signals from the connection matrix go to previously selected LUT or DFF's inputs and produce a single output which goes to a CND/DLY input. In its turn Counter/Delay's output goes back to the matrix.
- Case 2. CNT/DLY in front of LUT/DFF. Two input signals from the connection matrix go to CND/DLY's inputs (IN and CLK). Its output signal can be connected to any input of previously selected LUT or DFF, after which the signal goes back to the matrix.
- Case 3. Single LUT/DFF or CNT/DLY. Also, it is possible to use a standalone LUT/DFF or CNT/DLY. In this case, all inputs and output of the macrocell are connected to the matrix.

Datasheet	Revision 3.17	28-Feb-2023
CFR0011-120-00	74 of 201	© 2023 Renesas Electronics Corporation

GreenPAK Programmable Mixed-Signal Matrix

8.1.2 3-Bit LUT or CNT/DLYs Used as 3-Bit LUTs

Table 43: 3-bit LUT9 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1208]	LSB
0	0	1	register [1209]	
0	1	0	register [1210]	
0	1	1	register [1211]	
1	0	0	register [1212]	
1	0	1	register [1213]	
1	1	0	register [1214]	
1	1	1	register [1215]	MSB

Table 44: 3-bit LUT10 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1224]	LSB
0	0	1	register [1225]	
0	1	0	register [1226]	
0	1	1	register [1227]	
1	0	0	register [1228]	
1	0	1	register [1229]	
1	1	0	register [1230]	
1	1	1	register [1231]	MSB

Table 45: 3-bit LUT11 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1240]	LSB
0	0	1	register [1241]	
0	1	0	register [1242]	
0	1	1	register [1243]	
1	0	0 register [1244]		
1	0	1	register [1245]	
1	1	0	register [1246]	
1	1	1	register [1247]	MSB

Table 46: 3-bit LUT12 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1256]	LSB
0	0	1	register [1257]	
0	1	0	register [1258]	
0	1	1	register [1259]	
1	0	0	register [1260]	
1	0	1	register [1261]	
1	1	0	register [1262]	
1	1	1	register [1263]	MSB

Table 47: 3-bit LUT13 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1272]	LSB
0	0	1	register [1273]	
0	1	0	register [1274]	
0	1	1	register [1275]	
1	0	0	register [1276]	
1	0	1	register [1277]	
1	1	0	register [1278]	
1	1	1	register [1279]	MSB

Table 48: 3-bit LUT14 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1288]	LSB
0	0	1	register [1289]	
0	1	0	register [1290]	
0	1	1	register [1291]	
1	0	0 register [1292]		
1	0	1	register [1293]	
1	1	0	register [1294]	
1	1	1	register [1295]	MSB

Table 49: 3-bit LUT15 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [1304]	LSB
0	0	1	register [1305]	
0	1	0	register [1306]	
0	1	1	register [1307]	
1	0	0	register [1308]	
1	0	1	register [1309]	
1	1	0	register [1310]	
1	1	1	register [1311]	MSB

Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:

3-Bit LUT9 is defined by registers [1215:1208]

3-Bit LUT10 is defined by registers [1231:1224]

3-Bit LUT11 is defined by registers [1247:1240]

3-Bit LUT12 is defined by registers [1263:1256]

3-Bit LUT13 is defined by registers [1279:1272]

3-Bit LUT14 is defined by registers [1295:1288]

3-Bit LUT15 is defined by registers [1311:1304]

8.2 4-BIT LUT OR DFF/LATCH WITH 16-BIT COUNTER/DELAY MACROCELL

There is one macrocell that can serve as either 4-bit LUT/D Flip-Flops or as 16-bit Counter/Delay.

When used to implement LUT function, the 4-bit LUT takes in four input signals from the Connection Matrix and produces a single output, which goes back into the Connection Matrix.

When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and clock (CLK) inputs for the Flip-Flop, with the output going back to the connection matrix.

When used to implement 16-Bit Counter/Delay function, two of the four input signals from the connection matrix go to the external clock (EXT_CLK) and reset (DLY_IN/CNT Reset) for the Counter/Delay, with the output going back to the connection matrix.

This macrocell has an optional Finite State Machine (FSM) function. There are two additional matrix inputs for Up and Keep to support FSM functionality

This macrocell can also operate in a one-shot mode, which will generate an output pulse of user-defined width.

This macrocell can also operate in a frequency detection or edge detection mode.

This macrocell can have its active count value read via l^2C . See Section 15.6.1 for further details.

Note: After two DFF – counters initialize with counter data = 0 after POR. Initial state = 1 – counters initialize with counter data = 0 after POR. Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.

	4		
LIA	TAS	ne	ет
20	LU U		UL.

8.2.1 4-Bit LUT or DFF/LATCH with 16-Bit CNT/DLY Block Diagram

Figure 43: 4-bit LUT1 or CNT/DLY0

	4		
LIA	TAS	ne	ет
20	LU U		UL.

GreenPAK Programmable Mixed-Signal Matrix

8.2.2 4-Bit LUT or 16-Bit Counter/Delay Macrocells Used as 4-Bit LUTs

Table 50: 4-bit LUT1 Truth Table

IN3	IN2	IN1	IN0	OUT	
0	0	0	0	register [1176]	LSB
0	0	0	1	register [1177]	
0	0	1	0	register [1178]	
0	0	1	1	register [1179]	
0	1	0	0	register [1180]	
0	1	0	1	register [1181]	
0	1	1	0	register [1182]	
0	1	1	1	register [1183]	
1	0	0	0	register [1184]	
1	0	0	1	register [1185]	
1	0	1	0	register [1186]	
1	0	1	1	register [1187]	
1	1	0	0	register [1188]	
1	1	0	1	register [1189]	
1	1	1	0	register [1190]	
1	1	1	1	register [1191]	MSB

This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:

4-Bit LUT1 is defined by registers [1191:1176]

Function	MSB															LSB
AND-4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAND-4	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
OR-4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
NOR-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
XOR-4	0	1	1	0	1	0	0	1	1	1	0	0	1	1	1	0
XNOR-4	1	0	0	1	0	1	1	0	0	0	1	1	0	0	0	1

Table 51: 4-bit LUT Standard Digital Functions

GreenPAK Programmable Mixed-Signal Matrix

8.3 CNT/DLY/FSM TIMING DIAGRAMS

8.3.1 Delay Mode CNT/DLY0 to CNT/DLY7

Figure 44: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3

	- 4	£					
D	a	a	S	n	e	e	t.
_			-		-	-	-

The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter, if the input signal is shorter than the delay time.

Figure 45: Delay Mode Timing Diagram for Different Edge Select Modes

8.3.2 Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY0 to CNT/DLY7

Datasheet	Revision 3.17	28-Feb-2023

8.3.3 One-Shot Mode CNT/DLY0 to CNT/DLY7

This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The pulse width determines by counter data and clock selection properties. The output pulse polarity (non-inverted or inverted) is selected by register bit. Any incoming edges will be ignored during the pulse width generation. The following diagram shows one-shot function for non-inverted output.

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

This macrocell generates a high level pulse with a set width (defined by counter data) when detecting the respective edge. It does not restart while pulse is high.

8.3.4 Frequency Detection Mode CNT/DLY0 to CNT/DLY7

Rising Edge: The output goes high if the time between two successive edges is less than the delay. The output goes low if the second rising edge has not come after the last rising edge in specified time.

Falling Edge: The output goes high if the time between two falling edges is less than the set time. The output goes low if the second falling edge has not come after the last falling edge in specified time.

Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not come.

Figure 49: Frequency Detection Mode Timing Diagram

-		- 1-		
Da	aτa	sn	ee	τ

Revision 3.17

8.3.5 Edge Detection Mode CNT/DLY1 to CNT/DLY7

The macrocell generates high level short pulse when detecting the respective edge. See Table 10.

Figure 50: Edge Detection Mode Timing Diagram

n	-	ta	~	h	~	~	6
	α	ια	5		e	e	L

8.3.6 Delayed Edge Detection Mode CNT/DLY0 to CNT/DLY7

In Delayed Edge Detection Mode, High level short pulses are generated on the macrocell output after the configured delay time, if the corresponding edge was detected on the input.

If the input signal is changed during the set delay time, the pulse will not be generated. See Figure 51.

Figure 51: Delayed Edge Detection Mode Timing Diagram

8.3.7 CNT/FSM Mode CNT/DLY0

Figure 52: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3

Figure 53: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator is Forced On, UP = 0) for Counter Data = 3

Figure 54: CNT/FSM Timing Diagram (Reset Rising Edge Mode, Oscillator is Forced On, UP = 1) for Counter Data = 3

Figure 55: CNT/FSM Timing Diagram (Set Rising Edge Mode, Oscillator Is Forced On, UP = 1) for Counter Data = 3

8.3.8 Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes

There is a difference in counter value for Counter and Delay/One-Shot/Frequency Detect modes. The counter value is shifted for two rising edges of the clock signal in Delay/One-Shot/Frequency Detect modes compared to Counter mode. See Figure 56:

Figure 56: Counter Value, Counter Data = 3

8.4 WAKE AND SLEEP CONTROLLER

The SLG46855 has a Wake and Sleep function for all ACMPs. The macrocell CNT/DLY0 can be reconfigured for this purpose registers [1032:1031] = 11 and register [1046] = 1. The WS serves for power saving, it allows to switch on and off selected ACMPs on selected bit of 16-bit counter.

Note 1: BG/Analog Good time is long and should be considered in wake and sleep timing in case it dynamically powers on/off.

Datasheet	Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Note 2: Wake time should be long enough to make sure ACMP and Vref have enough time to get a sample before going to sleep.

Power Control

Figure 57: Wake/Sleep Controller

Dat	aab		
Dat	asn	eet	
- uu			

GreenPAK Programmable Mixed-Signal Matrix

Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.

Figure 58: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Reset is Used

Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.

Figure 59: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Reset is Used

Da	ta	s	h	e	e	t
		-		-	-	-

Note: CNT0_out is a delayed WS_out signal for 1us to make sure the data is correct during LATCH.

Figure 60: Wake/Sleep Timing Diagram, Normal Wake Mode, Counter Set is Used

Figure 61: Wake/Sleep Timing Diagram, Short Wake Mode, Counter Set is Used

Note: If low power BG is powered on/off by WS, the wake time should be longer than 2.62 ms. The BG/analog start up time will take maximal 2.62 ms. Therefore, 8 periods of the Oscillator0 is recommended for the wake time, when BG is configured to Auto Power mode. If low power BG is always on, Oscillator0 period is longer than required wake time. The BG/analog start up time will

Datasheet	Revision 3.17	28-Feb-2023

GreenPAK Programmable Mixed-Signal Matrix

take maximal 450 us for ACMP0/1 and a shorter time for ACMP2/3. The short wake mode can be used to reduce the current consumption.

To use any ACMP under WS controller, the following settings must be done:

- ACMP Power Up Input from matrix = 1 (for each ACMP separately);
- CNT/DLY0 must be set to Wake and Sleep Controller function (for all ACMP);
- Register WS → enable (for each ACMP separately);
- CNT/DLY0 set/reset input = 0 (for all ACMP).

The user can select a period of time while the ACMP is sleeping in a range of 1 - 65535 clock cycles. Before they are sent to sleep their outputs are latched, so the ACMPs remain their state (High or Low) while sleeping.

WS controller has the following settings:

- Wake and Sleep Output State (High/Low)
 If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = High, the ACMP is continuously on.
 If OSC is powered off (Power-down option is selected; Power-down input = 1) and Wake and Sleep Output State = Low, the ACMP is continuously off.
 Both cases WS function is turned off.
- Counter Data (Range: 1 65535)
 User can select wake and sleep ratio of the ACMP; counter data = sleep time, one clock = wake time.
- Q mode defines the state of WS counter data when Set/Reset signal appears Reset when active signal appears, the WS counter will reset to zero and High level signal on its output will turn on the ACMPs. When Reset signal goes out, the WS counter will go Low and turn off the ACMP until the counter counts up to the end. Set when active signal appears, the WS counter will stop and Low level signal on its output will turn off the ACMP. When Set signal goes out, the WS counter will go on counting and High level signal will turn on the ACMP while counter is counting up to the end.

Note: The OSC0 matrix power-down to control ACMP WS is not supported for short wait time option.

 Edge Select defines the edge for Q mode High level Set/Reset - switches mode Set/Reset when level is High

Note: Q mode operates only in case of "High Level Set/Reset".

■ Wake time selection - time required for wake signal to turn the ACMPxH on

Normal Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on until WS signal is Low again. Wake time is one clock period. It should be longer than BG turn on time and minimal required comparing time of the ACMP.

Short Wake Time - when WS signal is High, it takes BG/analog start up time to turn the ACMPs on. They will stay on for 1 µs and turn off regardless of WS signal. The WS signal width does not matter.

- Keep pauses counting while Keep = 1
- Up reverses counting

If Up = 1, CNT is counting up from user selected value to 65535.

If Up = 0, CNT is counting down from user selected value to 0.

Datasheet	
-----------	--

9 Analog Comparators

There are two High Speed and two Low Power Rail-to-Rail General Purpose Analog Comparators (ACMP) macrocells in the SLG46855. In order for the ACMP cells to be used in a GreenPAK design, the power up signals (ACMP0H PWR UP, ACMP1H PWR UP, ACMP2L PWR UP, and ACMP3L PWR UP) need to be active. By connecting to signals coming from the Connection Matrix, it is possible to have each ACMP be ON continuously, OFF continuously, or switched on periodically based on a digital signal coming from the Connection Matrix. When ACMP is powered down, its output is low.

Two of the four General Purpose Analog Comparators are optimized for high speed operation (ACMP0H and ACMP1H), and two other are optimized for low power operation (ACMP2L and ACMP3L).

Each of the ACMP cells has a positive input signal that can be provided by a variety of external sources, and can also have a selectable gain stage (1x, 0.5x, 0.33x, 0.25x) before connection to the analog comparator. The gain divider is unbuffered and has input resistance of 2 M Ω (typ) for 0.5x, 0.33x, 0.25x, and 10 G Ω for 1x. Each of the ACMP cells has a negative input signal that is either created from an internal Vref or provided by any external source (GPIO2 and GPO0). Note that the external Vref signal is filtered with a 2nd order low pass filter with 8 kHz typical bandwidth, see Figure 62 to Figure 65.

Input bias current < 1 nA (typ).

PWR UP = 1 => ACMP is powered up.

PWR UP = 0 => ACMP is powered down.

During power-up, the ACMP output will remain LOW, and then becomes valid in 52 µs (max) after power up signal goes high for ACMP0H and ACMP1H, and becomes valid 325 µs (max) after power up signal goes high for ACMP2L and ACMP3L.

Each High Speed ACMP (ACMP0H and ACMP1H) has an optional Rail-to-Rail Input Buffer, which can be used along with the Gain divider to increase ACMP input resistance. However, Input buffer will increase an input offset voltage.

Each cell also has a hysteresis selection, to offer hysteresis of (0, 32, 64, 192) mV. The hysteresis option is available when using an internal Vref only.

The ACMP0H has an additional option of connecting an internal 100 µA current source to its positive input, register [690]. It is also possible to connect the 100 µA current source to each next ACMP via an internal analog MUX.

ACMP0H IN+ options are GPIO4, buffered GPIO4, V_{DD}, 100 μA Current Source ACMP1H IN+ options are GPIO5, buffered GPIO5, ACMP0H IN+ MUX output ACMP2L IN+ options are GPIO6, ACMP0H IN+ MUX output, ACMP1H IN+ MUX output ACMP3L IN+ options are GPIO7, ACMP2L IN+ MUX output, Temp Sensor OUT

D	а	ta	s	h	e	e	t	
-	a	LC1	•		C	C	۰.	

9.1 ACMP0H BLOCK DIAGRAM

Figure 62: ACMP0H Block Diagram

_				
D۶	ita	sh	ee	<u>۱</u>
-		U		

GreenPAK Programmable Mixed-Signal Matrix

9.2 ACMP1H BLOCK DIAGRAM

Figure 63: ACMP1H Block Diagram

D	a	ta	s	h	e	e	t
-			-		~	-	•

9.3 ACMP2L BLOCK DIAGRAM

Figure 64: ACMP2L Block Diagram

9.4 ACMP3L BLOCK DIAGRAM

Figure 65: ACMP3L Block Diagram

Da	Ita	ch	00	h
	ια	311	CC	7ι

GreenPAK Programmable Mixed-Signal Matrix

9.5 ACMP TYPICAL PERFORMANCE

Figure 66: Typical Propagation Delay vs. Vref for ACMPxH at T = 25 °C, Gain = 1, Buffer - Disabled, Hysteresis = 0

Figure 67: Typical Propagation Delay vs. Vref for ACMPxL at T = 25 °C, Gain = 1, Buffer - Disabled, Hysteresis = 0

D	a	ta	S	h	e	e	f
-	~		-	•••	~	-	•

Figure 68: ACMPxH Power-On Delay vs. V_{DD}

Figure 69: ACMPxL Power-On Delay vs. V_{DD}

Datasheet	Revision 3.17	28-Feb-2023
	99 of 201	

_				
D	ata	asi	ne	et
_	_	_		

at a	ch	001	F.
ala	511	eel	

GreenPAK Programmable Mixed-Signal Matrix

10 Programmable Delay/Edge Detector

The SLG46855 has a programmable time delay logic cell that can generate a delay that is selectable from one of four timings (time2) configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different delay patterns, rising edge detection, falling edge detection, both edge detection, and both edge delay. These four patterns can be further modified with the addition of delayed edge detection, which adds an extra unit of delay, as well as glitch rejection during the delay period. See Figure 74 for further information.

Note: The input signal must be longer than the delay, otherwise it will be filtered out.

10.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT

Figure 75: Edge Detector Output

Please refer to Table 10.

Datasheet	Revision 3.17	28-Feb-2023
CFR0011-120-00	102 of 201	© 2023 Renesas Electronics Corporation

GreenPAK Programmable Mixed-Signal Matrix

11 Additional Logic Function. Deglitch Filter

The SLG46855 has one Deglitch Filter macrocell with inverter function that is connected directly to the Connection Matrix inputs and outputs. In addition, this macrocell can be configured as an Edge Detector, with the following settings:

- Rising Edge Detector
- Falling Edge Detector
- Both Edge Detector
- Both Edge Delay

Figure 76: Deglitch Filter/Edge Detector

_							
	-	4-	-	L	-	-	4
	-			п	е	е	
_	-				-	-	•

12 Voltage Reference

12.1 VOLTAGE REFERENCE OVERVIEW

The SLG46855 has a Voltage Reference (Vref) macrocell to provide references to the four analog comparators. This macrocell can supply a user selection of fixed voltage references, or temperature sensor output. The macrocell also has the option to output reference voltages on GPIO8 and GPIO9. See Table 52 for the available selections for each analog comparator.

Also see Figure 77, which shows the reference output structure.

12.2 VREF SELECTION TABLE

Table 52: Vref Selection Table

SEL[5:0]	Vref	SEL[5:0]	Vref
0	0.032	32	1.056
1	0.064	33	1.088
2	0.096	34	1.12
3	0.128	35	1.152
4	0.16	36	1.184
5	0.192	37	1.216
6	0.224	38	1.248
7	0.256	39	1.28
8	0.288	40	1.312
9	0.32	41	1.344
10	0.352	42	1.376
11	0.384	43	1.408
12	0.416	44	1.44
13	0.448	45	1.472
14	0.48	46	1.504
15	0.512	47	1.536
16	0.544	48	1.568
17	0.576	49	1.6
18	0.608	50	1.632
19	0.64	51	1.664
20	0.672	52	1.696
21	0.704	53	1.728
22	0.736	54	1.76
23	0.768	55	1.792
24	0.8	56	1.824
25	0.832	57	1.856
26	0.864	58	1.888
27	0.896	59	1.92
28	0.928	60	1.952
29	0.96	61	1.984
30	0.992	62	2.016
31	1.024	63	External

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

12.3 VREF BLOCK DIAGRAM

Figure 77: Voltage Reference Block Diagram

Datasheet		

GreenPAK Programmable Mixed-Signal Matrix

12.4 VREF LOAD REGULATION

Note 1 It is not recommended to use Vref connected to external pin without buffer.

Note 2 Vref buffer performance is not guaranteed at V_{DD} < 2.7 V.

Figure 78: Typical Load Regulation, Vref = 320 mV, T = -40 °C to +85 °C, Buffer - Enable

Figure 79: Typical Load Regulation, Vref = 640 mV, T = -40 °C to +85 °C, Buffer - Enable

	-	4-	-		-	-	L .
	н	т.я		п	ρ	P 1	Г.
-			-		•		۰.

Figure 81: Typical Load Regulation, Vref = 2016 mV, T = -40 °C to +85 °C, Buffer - Enable

-	_	-	-	-+
d	d	SI	ie	eι

13 Clocking

13.1 OSC GENERAL DESCRIPTION

The SLG46855 has three internal oscillators to support a variety of applications:

- Oscillator0 (2.048 kHz)
- Oscillator1 (2.048 MHz)
- Oscillator2 (25 MHz).

There are two divider stages for each oscillator that gives the user flexibility for introducing clock signals to connection matrix, as well as various other macrocells. The pre-divider (first stage) for Oscillator allows the selection of /1, /2, /4 or /8 to divide down frequency from the fundamental. The second stage divider has an input of frequency from the pre-divider, and outputs one of eight different frequencies divided by /1, /2, /3, /4, /8, /12, /24 or /64 on Connection Matrix Input lines [53], [54], and [55]. Please see Figure 85 for more details on the SLG46855 clock scheme.

Oscillator2 (25 MHz) has an additional function of 100 ns delayed startup, which can be enabled/disabled by register [749]. This function is recommended to use when analog blocks are used along with the Oscillator.

The Matrix Power-down/Force On function allows switching off or force on the oscillator using an external pin. The Matrix Powerdown/Force On (Connection Matrix Output [80], [81], [82]) signal has the highest priority. The OSC operates according to the following table:

POR	External Clock Selection	Signal From Connection Matrix	Register: Power-Down or Force On by Matrix Input	Register: Auto Power-On or Force On	OSC Enable Signal from CNT/DLY Macrocells	OSC Operation Mode		
0	Х	Х	Х	Х	Х	OFF		
1	1	Х	Х	Х	Х	Internal OSC is OFF, logic is ON		
1	0	1	0	Х	Х	OFF		
1	0	1	1	Х	Х	ON		
1	0	0	Х	1	Х	ON		
1	0	0	х	0	CNT/DLY re- quires OSC	ON		
1	0	0	х	0	CNT/DLY does not require OSC	OFF		
Note 1 The OSC will run only when any macrocell that uses OSC is powered on.								

Table 53: Oscillator Operation Mode Configuration Settings

RENESAS
13.2 OSCILLATOR0 (2.048 KHZ)

Figure 82: Oscillator0 Block Diagram

_							
	-	4-	-	L.	-	-	4
	-	12	5	F 1	е	е	
_	-		-		-	-	•

13.3 OSCILLATOR1 (2.048 MHZ)

Figure 83: Oscillator1 Block Diagram

n	-	ta	~	h	~	~	6
	α	ια	5		e	e	L

13.4 OSCILLATOR2 (25 MHZ)

Figure 84: Oscillator2 Block Diagram

13.5 CNT/DLY CLOCK SCHEME

Each CNT/DLY within Multi-Function macrocell has its own additional clock divider connected to oscillators pre-divider. Available dividers are:

- OSC0/1, OSC0/8, OSC0/64, OSC0/512, OSC0/4096, OSC0/32768, OSC0/262144
- OSC1/1, OSC1/8, OSC1/64, OSC1/512
- OSC2/1, OSC2/4

	- 4	£					
D	a	a	S	n	e	e	t.
_			-		-	-	-

Figure 85: Clock Scheme

13.6 EXTERNAL CLOCKING

The SLG46855 supports several ways to use an external, higher accuracy clock as a reference source for internal operations.

13.6.1 GPI0 Source for Oscillator0 (2.048 kHz)

When register [752] is set to 1, an external clocking signal on GPI0 will be routed in place of the internal oscillator derived 2.048 kHz clock source. See Figure 82. The low and high limits for external frequency that can be selected are 0 MHz and 10 MHz.

13.6.2 GPIO2 Source for Oscillator1 (2.048 MHz)

When register [730] is set to 1, an external clocking signal on GPIO2 will be routed in place of the internal oscillator derived 2.048 MHz clock source. See Figure 83. The low and high limits for external frequency that can be selected are 0 MHz and 10 MHz.

13.6.3 GPIO8 Source for Oscillator 2 (25 MHz)

When register [742] is set to 1, an external clocking signal on GPIO8 will be routed in place of the internal oscillator derived 25 MHz clock source. See Figure 84. The external frequency range is 0 MHz to 20 MHz at V_{DD} = 2.3 V, 30 MHz at V_{DD} = 3.3 V, 50 MHz at V_{DD} = 5.0 V. When an external clock is selected for OSC2, the oscillator's output signal will be inverted with respect to the GPIO8 input signal.

Datasheet	Revision 3.17	28-Feb-2023

13.7 OSCILLATORS POWER-ON DELAY

Figure 86: Oscillator Startup Diagram

Note 1 OSC power mode: "Auto Power-On".

Note 2 "OSC enable" signal appears when any macrocell that uses OSC is powered on.

Figure 87: Oscillator0 Maximum Power-On Delay vs. V_{DD} at T = 25 °C, OSC0 = 2.048 kHz

RENESAS

SLG46855

GreenPAK Programmable Mixed-Signal Matrix

Figure 88: Oscillator1 Maximum Power-On Delay vs. V_{DD} at T = 25 °C, OSC1 = 2.048 MHz

Figure 89: Oscillator2 Maximum Power-On Delay vs. V_{DD} at T = 25 °C, OSC2 = 25 MHz

	-	4-	-		-	- 4	
		та	S	п	е	е	
_	~		-		~	~	

GreenPAK Programmable Mixed-Signal Matrix

13.8 OSCILLATORS ACCURACY

Note: OSC power setting: Force Power-On; Clock to matrix input - enable; Bandgap: turn on by register - enable.

Figure 90: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz

Figure 91: Oscillator1 Frequency vs. Temperature, OSC1 = 2.048 MHz

_			
Da	tas	sh	eet

GreenPAK Programmable Mixed-Signal Matrix

Figure 92: Oscillator2 Frequency vs. Temperature, OSC2 = 25 MHz

	-	4-	_		-	-	
	ы	Та	5	п	е	е	г
_	-		-		~	-	•

Note: For more information see Section 3.7.

14 **Power-On Reset**

The SLG46855 has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells in the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the V_{DD} power is first ramping to the device, and also while the V_{DD} is falling during power-down. To accomplish this goal, the POR drives a defined sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of the IOs.

14.1 GENERAL OPERATION

The SLG46855 is guaranteed to be powered down and non-operational when the V_{DD} voltage (voltage on PIN1) is less than Power-Off Threshold (see in Table 6), but not less than -0.6 V. Another essential condition for the chip to be powered down is that no voltage higher (Note) than the V_{DD} voltage is applied to any other PIN. For example, if V_{DD} voltage is 0.3 V, applying a voltage higher than 0.3 V to any other PIN is incorrect, and can lead to incorrect or unexpected device behavior.

Note: There is a 0.6 V margin due to forward drop voltage of the ESD protection diodes.

To start the POR sequence in the SLG46855, the voltage applied on the V_{DD} should be higher than the Power-On threshold (Note). The full operational V_{DD} range for the SLG46855 is 2.3 V to 5.5 V. This means that the V_{DD} voltage must ramp up to the operational voltage value, but the POR sequence will start earlier, as soon as the V_{DD} voltage rises to the Power-On threshold. After the POR sequence has started, the SLG46855 will have a typical period of time to go through all the steps in the sequence (noted in the datasheet for that device), and will be ready and completely operational after the POR sequence is complete.

Note: The Power-On threshold is defined in Table 6.

To power down the chip the V_{DD} voltage should be lower than the operational and to guarantee that chip is powered down it should be less than Power-Off Threshold.

All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before, the voltage on PINs can't be bigger than the V_{DD} , this rule also applies to the case when the chip is powered on.

I

GreenPAK Programmable Mixed-Signal Matrix

14.2 POR SEQUENCE

The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 94.

As can be seen from Figure 94 after the V_{DD} has start ramping up and crosses the Power-On threshold, first, the on-chip NVM memory is reset. Next, the chip reads the data from NVM, and transfers this information to a CMOS LATCH that serves to configure each macrocell, and the Connection Matrix which routes signals between macrocells. The third stage causes the reset of the input pins, and then to enable them. After that, the LUTs are reset and become active. After LUTs the Delay cells, OSCs, DFFs, LATCHES, and Pipe Delay are initialized. Only after all macrocells are initialized internal POR signal (POR macrocell output) goes from LOW to HIGH. The last portion of the device to be initialized are the output pins, which transition from high impedance to active at this point.

The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many environmental factors, such as: slew rate, V_{DD} value, temperature, and even will vary from chip to chip (process influence).

14.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE

To have a full picture of SLG46855 operation during powering and POR sequence, review the overview the macrocell output states during the POR sequence (Figure 95 describes the output signals states).

First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output pins which are in high impedance state). On the next step, some of the macrocells start initialization: input pins output state becomes LOW; LUTs also output LOW. Only P_DLY macrocell configured as edge detector becomes active at this time. After that input pins are enabled.

D	а	ta	s	h	e	e	t	
-	a	LC1	•		C	C	۰.	

Next, only LUTs are configured. Next, all other macrocells are initialized. After macrocells are initialized, internal POR matrix signal switches from LOW to HIGH. The last are output pins that become active and determined by the input signals.

Figure 95: Internal Macrocell States During POR Sequence

14.3.1 Initialization

All internal macrocells by default have initial low level. Starting from indicated power-up time of 1.6 V to 2.05 V, macrocells in SLG46855 are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then the reset signal is released for internal macrocells and they start to initialize according to the following sequence:

- 1. Input pins, ACMP, Pull-up/down.
- 2. LUTs.
- 3. DFFs, Delays/Counters, Pipe Delay.
- 4. POR output to matrix.
- 5. Output pin corresponds to the internal logic.

The Vref output pin driving signal can precede POR output signal going high by $3 \mu s$ to $5 \mu s$. The POR signal going high indicates the mentioned power-up sequence is complete.

Note: The maximum voltage applied to any pin should not be higher than the V_{DD} level. There are ESD Diodes between pin $\rightarrow V_{DD}$ and pin $\rightarrow GND$ on each pin. So, if the input signal applied to pin is higher than V_{DD} , then current will sink through the diode to V_{DD} . Exceeding V_{DD} results in leakage current on the input pin, and V_{DD} will be pulled up, following the voltage on the input pin. There is no effect from input pin when input voltage is applied at the same time as V_{DD} .

Datasheet	Revision 3.17	28-Feb-2023
CFR0011-120-00	120 of 201	© 2023 Renesas Electronics Corporation

GreenPAK Programmable Mixed-Signal Matrix

14.3.2 Power-Down

Not guaranteed output state

Figure 96: Power-Down

During Power-down, macrocells in SLG46855 are powered off after V_{DD} falling down below Power-Off Threshold. Please note that during a slow rampdown, outputs can possibly switch state during this time.

15 I²C Serial Communications Macrocell

15.1 I²C SERIAL COMMUNICATIONS MACROCELL OVERVIEW

In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the Non-Volatile Memory (NVM), and this information is transferred at startup time to volatile RAM registers that enable the configuration of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection Matrix to route signals in the manner most appropriate for the user's application.

The I²C Serial Communications Macrocell in this device allows an I²C bus Master to read and write this information via a serial channel directly to the RAM registers, allowing the remote re-configuration of macrocells, and remote changes to signal chains within the device.

An I²C bus Master is also able read and write other register bits that are not associated with NVM memory. As an example, the input lines to the Connection Matrix can be read as digital register bits. These are the signal outputs of each of the macrocells in the device, giving an I²C bus Master the capability to remotely read the current value of any macrocell.

The user has the flexibility to control read access and write access via registers bits registers [1967:1965]. See Section 15.5 for more details on I²C read/write memory protection.

15.2 I²C SERIAL COMMUNICATIONS DEVICE ADDRESSING

Each command to the I²C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are shown in Figure 97. After the Start bit, the first four bits are a control code. Each bit in a control code can be sourced independently from the register or by value defined externally GPI0, GPIO2, GPIO4, and GPIO5. The LSB of the control code is defined by the value of GPI0, while the MSB is defined by the value of GPIO5. The address source (either register bit or PIN) for each bit in the control code is defined by registers [2027:2024]. This gives the user flexibility on the chip level addressing of this device and other devices on the same I²C bus. The Block Address is the next three bits (A10, A9, A8), which will define the most significant bits in the addressing of the data to be read or written by the command. The last bit in the Control Byte is the R/W bit, which selects whether a read command or write command is requested, with a "1" selecting for a Read command, and a "0" selecting for a Write command. This Control Byte will be followed by an Acknowledge bit (ACK), which is sent by this device to indicate successful communication of the Control Byte data.

In the I²C-bus specification and user manual, there are two groups of eight addresses (0000 xxx and 1111 xxx) that are reserved for the special functions, such as a system General Call address. If the user of this device choses to set the Control Code to either "1111" or "0000" in a system with other slave device, please consult the I²C-bus specification and user manual to understand the addressing and implementation of these special functions, to insure reliable operation.

In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the I^2C Macrocell on the SLG46855 are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will be "0" for all commands to the SLG46855.

With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word Address. Figure 97 shows this basic command structure.

n	-	ta	~	h	~	~	6
	α	ια	5		e	e	L

15.3 I²C SERIAL GENERAL TIMING

General timing characteristics for the I²C Serial Communications macrocell are shown in Figure 98. Timing specifications can be found in the AC Characteristics section.

Figure 98: I²C General Timing Characteristics

15.4 I²C SERIAL COMMUNICATIONS COMMANDS

15.4.1 Byte Write Command

Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to "0"), are placed onto the I²C bus by the Master. After the SLG46855 sends an Acknowledge bit (ACK), the next byte transmitted by the Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together set the internal address pointer in the SLG46855, where the data byte is to be written. After the SLG46855 sends another Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG46855 again provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place at the time that the SLG46855 generates the Acknowledge bit.

It is possible to latch all IOs during I^2C write command, register [1961] = 1 - Enable. It means that IOs will remain their state until the write command is done.

Datasheet	Revision 3.17	28-Feb-2023
CFR0011-120-00	123 of 201	© 2023 Renesas Electronics Corporation

Figure 99: Byte Write Command, $R/\overline{W} = 0$

15.4.2 Sequential Write Command

The write Control Byte, Word Address and the first data byte are transmitted to the SLG46855 in the same way as in a Byte Write command. However, instead of generating a Stop condition, the Bus Master continues to transmit data bytes to the SLG46855. Each subsequent data byte will increment the internal address counter, and will be written into the next higher byte in the command addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the SLG46855 generates the Acknowledge bit.

15.4.3 Current Address Read Command

The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the first STOP bit following any write control byte. For example, if a Sequential Read command (which contains a write control byte) reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently, a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control Byte sent by the Master, with the R/W bit = "1". The SLG46855 will issue an Acknowledge bit, and then transmit eight data bits for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition.

Datasheet	Revision 3.17	28-Feb-2023
CFR0011-120-00	124 of 201	© 2023 Renesas Electronics Corporation

Figure 101: Current Address Read Command, R/W = 1

15.4.4 Random Read Command

The Random Read command starts with a Control Byte (with R/W bit set to "0", indicating a write command) and Word Address to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with the R/W bit set to "1", after which the SLG46855 issues an Acknowledge bit, followed by the requested eight data bits.

Figure 102: Random Read Command

_							
D	a	ta	S	h	e	e	t.
_	-		-		-	-	•

15.4.5 Sequential Read Command

The Sequential Read command is initiated in the same way as a Random Read command, except that once the SLG46855 transmits the first data byte, the Bus Master issues an Acknowledge bit as opposed to a Stop condition in a random read. The Bus Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.

15.4.6 I²C Serial Reset Command

If I²C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including configuration of all macrocells, and all connections provided by the Connection Matrix. This is implemented by setting register [1960] I²C reset bit to "1", which causes the device to re-enable the Power-On Reset (POR) sequence, including the reload of all register data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has taken place, the contents of register [1960] will be set to "0" automatically. The Figure 104 illustrates the sequence of events for this reset function.

	-	ta	~	h	~	~	4	
-	a	u	9		C	0	•	

GreenPAK Programmable Mixed-Signal Matrix

15.5 I²C SERIAL COMMAND REGISTER MAP

There are seven read/write protect modes for the design sequence from being corrupted or copied. See Table 53 for details.

Table 54: Read/Write Protection Options

	Protection Modes Configuration								
Configurations	Unlocked	Partly Lock Read1	Partly Lock Read2	Partly Lock Read2/ Write	Lock Read	Lock Write	Lock Read/ Write	Data Output From	Register Address
	(Mode 0)	(Mode 1)	(Mode 2)	(Mode 3)	(Mode 4)	(Mode 5)	(Mode 6)		
I ² C Byte Write Bit Masking (section 15.6.3)	R/W	R/W	R/W	R/W	W	R	-	Memory	F6
l ² C Serial Reset Command (section 15.4.6)	R/W	R/W	R/W	R/W	W	R	-	Memory	F5,b'0
Outputs Latching During I ² C Write	R/W	R/W	R/W	R/W	W	R	-	Memory	F5,b'1
Connection Matrix Virtual Inputs (section 6.3)	R/W	R/W	R/W	R/W	W	R	-	Macrocell	4C
Configuration Bits for All Macrocells (IO Pins, ACMPs, Combination Function Macrocells, etc.)	R/W	R/W	W	-	W	R	-	Memory	
Macrocells Inputs Configuration (Connection Matrix Outputs, section 6.2)	R/W	w	W	-	W	R	-	Memory	0~47
Protection Mode Enable	R	R	R	R	R	R	R	Memory	F5,b'3
Protection Mode Selection	R/W	R	R	R	R	R	R	Memory	F5,b'7~5
Macrocells Output Values (Connection Matrix Inputs, section 6.1)	R	R	R	R	-	R	-	Macrocell	48~4B; 4D~4F
Counter Current Value (for 16-bit CNT)	R	R	R	R	-	R	-	Macrocell	A5,A6
Counter Current Value (for 8-bit CNT)	R	R	R	R	-	R	-	Macrocell	A7,A8
I ² C Control Code (section 15.2)	R	R	R	R	R	R	R	Memory	FD,b'3~0
Pin Slave Address Select	R	R	R	R	R	R	R	Memory	FD,b'7~4
I ² C Disable/Enable	R	R	R	R	R	R	R	Memory	FE,b'0

Datasheet

R/W	Allow Read and Write Data
W	Allow Write Data Only
R	Allow Read Data Only
-	The Data is protected for Read and Write

It is possible to read some data from macrocells, such as counter current value, connection matrix, and connection matrix virtual inputs. The I²C write will not have any impact on data in case data comes from macrocell output, except Connection Matrix Virtual Inputs. The silicon identification service bits allows identifying silicon family, its revision, and others.

See Section 17 for detailed information on all registers.

15.6 I²C ADDITIONAL OPTIONS

When Output latching during I^2C write, register [1961] = 1 allows all PINs output value to be latched until I^2C write is done. It will protect the output change due to configuration process during I^2C write in case multiple register bytes are changed. Inputs and internal macrocells retain their status during I^2C write.

If the user sets GPIO0 and GPIO1 function to a selection other than SDA and SCL, all access via I²C will be disabled.

Note: Any write commands that come to the device via I²C that are not blocked, based on the protection bits, will change the contents of the RAM register bits that mirror the NVM bits. These write commands will not change the NVM bits themselves, and a POR event will restore the register bits to original programmed contents of the NVM.

See Section 17 for detailed information on all registers.

15.6.1 Reading Counter Data via I²C

The current count value in three counters in the device can be read via I²C. The counters that have this additional functionality are 16-bit CNT0, and 8-bit counters CNT6 and CNT7.

15.6.2 I²C Expander

In addition to the eight Connection Matrix Virtual Inputs, the SLG46855 chip has four pins which can be used as an I²C Expander. These four pins are GPO0, GPIO6, GPIO7, and GPIO8.

Each of these pins can be used as an I²C Expander output or used as a normal pin. Also, each of these four expander outputs have initial state settings which are specified in registers [1959:1952].

DataSheet	Da	ta	s	h	e	et	
-----------	----	----	---	---	---	----	--

15.6.3 I²C Byte Write Bit Masking

The I^2C macrocell inside SLG46855 supports masking of individual bits within a byte that is written to the RAM memory space. This function is supported across the entire RAM memory space. To implement this function, the user performs a Byte Write Command (see Section 15.4.1 for details) on the I^2C Byte Write Mask Register (address 0F6H) with the desired bit mask pattern. This sets a bit mask pattern for the target memory location that will take effect on the next Byte Write Command to this register byte. Any bit in the mask that is set to "1" in the I^2C Byte Write Mask Register will mask the effect of changing that particular bit in the target register, during the next Byte Write Command. The contents of the I^2C Byte Write Mask Register are reset (set to 00h) after valid Byte Write Command. If the next command received by the device is not a Byte Write Command, the effect of the bit masking function will be aborted, and the I^2C Byte Write Mask Register will be reset with no effect. Figure 105 shows an example of this function.

Figure 105: Example of I²C Byte Write Bit Masking

Da	tas	she	et
	- COL		

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

16 Analog Temperature Sensor

The SLG46855 has an Analog Temperature sensor (TS) with an output voltage linearly-proportional to the Centigrade temperature. The TS cell shares buffer with Vref 0, so it is impossible to use both cells simultaneously, its output can be connected directly to the GPIO8 or to the ACPM3_L positive input. Using buffer causes low-output impedance, linear output, and makes interfacing to readout or control circuitry especially easy. The TS is rated to operate over a -40 °C to 85 °C temperature range. The error in the whole temperature range does not exceed ± 1.5 %. TS output voltage variation over V_{DD} at constant temperature is less than ± 1.5 %. For more detail refer to section 3.9.

The equation below calculates the typical analog voltage passed from the TS to the ACMPs' IN+ source input. It is important to note that there will be a chip to chip variation of about ±2 °C.

V_{TS1} = -2.3 x T + 905.2

V_{TS2} = -2.8 x T + 1077.2

where:

V_{TS1} (mV) - TS Output Voltage, range 1

V_{TS2} (mV) - TS Output Voltage, range 2

T (°C) - Temperature

Temperature hysteresis can be setup by enabling the GreenPAK's internal ACMP hysteresis.

D	a	ta	S	h	e	e	t
-	~		-		-	-	•

GreenPAK Programmable Mixed-Signal Matrix

Figure 106: Analog Temperature Sensor Structure Diagram

	-	4	_		-		
		Ta	C	n	Δ	α	т.
_	•	LC I	-		v	•	•

GreenPAK Programmable Mixed-Signal Matrix

Datasheet

Revision 3.17

17 Register Definitions

17.1 REGISTER MAP

Table 55: Register Map

A	ddress				
Byte	Register Bit	Signal Function	Register Bit Definition		
Matrix	c Output				
	0				
	1				
	2				
0	3		INU OF LUT2_U OF Clock Input of DFFU		
	4				
	5	LUT2_0 & DFF0			
	6	-			
	/ Q				
	0		IN1 of LUT2 0 or Data Input of DFF0		
	10				
1	12	-			
	13				
	14		OUT2.		
	15		IN0 of LUT2_1 or Clock Input of DFF1		
	16				
	17				
	18				
2	19				
2	20		OUT3:		
	21		IN1 of LUT2_1 or Data Input of DFF1		
	22				
	23				

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

A	ddress				
Byte	Register Bit	Signal Function	Register Bit Definition		
	24				
	25				
_	26		OUT4:		
3	27				
	28				
	29	LUT2_2 & DFF2			
	30				
	32				
	33		IN1 of LUT2 2 or Data Input of DFF2		
	34				
	35				
4	36				
	37				
	38		OUT6:		
	39		IN0 of LUT2_3 or Clock Input of PGen		
	40				
	41	ILIT2 3& PGen			
5 -	42				
	43				
	44				
	45		INT OF LUTZ_3 OF IRST OF PGen		
	46				
	47				
	40				
	4 9 50		OUT8: IN0 of LUT3 0 or CLK Input of DFF3		
	51	-			
6	52				
	53				
	54				
	55				
	56		OUT9:		
	57		IN1 of LUT3_0 or Data of DFF3		
	58				
7	59				
-	60				
	61				
	62		OUT10:		
	03 64				
	65				
	66				
	67				
8	68				
	69	LUI3_1 & DFF4	IN0 of LUT3_1 or CLK Input of DFF4		
	70				
	71				
	1		1		

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	72		
	73		
	74		OUT12:
A Byte 9 A B C D	75		
	/6		
	70	LUT3_1 & DFF4	
	78		
	80		011712
	81		IN2 of LUT3 1 or nRST (nSET) of DFF4
	82		
	83		
A	84		
	85		
	86		OUT14:
	87		IN0 of LUT3_2 or CLK Input of DFF5
	88		
	89		
	90		
в	91		
5	92	LUT3 2 & DFF5	OUT15: IN1 of LUT3_2 or Data of DFF5
	93		
	94		
	95		
	90		
В	97		
	90		IN2 of LUT3_2 or nRST (nSET) of DFF5
С	100		
	101		
	102		
	103		
	104		OUT17:
	105		IN0 of LUT3_3 or CLK Input of DFF6
	106		
D	107		
	108		
	109		
	110	LUT3_3 & DFF6	UUI18: IN1 of LUT3 3 or Data of DEE6
	110		
	112		
	114		
	115		
E	116		
	117		IN2 of LUT3_3 or nRST (nSET) of DFF6
	118		
	119		
E	111 112 113 114 115 116 117 118 119		OUT19: IN2 of LUT3_3 or nRST (nSET) of DFF6

Datasheet

Revision 3.17

28-Feb-2023

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	120		
	121		
A Byte F 10 11 12 13 14	122		IN0 of LUT3 4 or CLK Input of DFF7
	124		_ '
	125		
A Byte F 10 11 12 13 14	126		
	127		
	128	LUT3 4 & DFF7	OUT21:
	129	-	INT OF LUT3_4 of Data of DFF7
Ad Byte F 10 11 12 13 14	130		
10	131		
	133		
	134		OUT22:
	135		IN2 of LUT3_4 or nRST (nSET) of DFF7
	136		
	137		
	130		
11	140		
	141		IN0 of LUT3_5 or CLK Input of DFF8
	142		
	143		
	144		
	145		
	146	LUT3_5 & DFF8	OUT24: IN1 of LUT3 5 or Data of DEE8
12	147		
	149		
	150		
	151		
	152		
Byte F 10 11 11 12 13 14	153		1112 01 LU 13_3 01 11K31 (13E1) 01 DFF8
	104		
13	156		
	157		
	158		OUT26:
	159		IN0 of LUT3_6 or CLK Input of DFF9
	160		
	161	LUT3_6 & DFF9	
	163		
14	164		OUT27: IN1 of LUT3_6 or Data of DFF9
	165		
	166		
	167		

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table of Register map (Continued)	Table 5	5: Regis	ter Map ((Continued)
-----------------------------------	---------	----------	-----------	-------------

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	168		
	169		
	170	LUT3 6 & DFF9	OUT28:
15	1/1	_	
	172		
	173		
	174		
	176		
	177		IN0 of LUT3_7 or CLK Input of DFF10
	178		
16	179		
	180		
	181		
	182		OUT30:
	183		IN1 of LUT3_7 or Data of DFF10
	184		
	185		
	180		
17	107		
	189		IN2 of LUT3 7 or nRST (nSET) of DFF10
	190		
	191		
	192		
	193		
	194		OUT32:
18	Register Bit Sig 168 169 170 170 170 171 171 172 173 174 175 173 174 175 177 178 177 178 177 178 177 178 180 181 182 100 181 182 183 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 9 204 205 206 207 208 209 210 213 214 215 100		IN0 of LUT3_8 or CLK Input of DFF11
10	196		
	197		
	198		
	199		
	200	LUT3_8 & DFF11	IN1 of LUT3 8 or Data of DFF11
	202		
	203		
19	204		
	205		
	206		OUT34:
	207		IN2 of LUT3_8 or nRST (nSET) of DFF11
	208		
	209		
16 17 18 19 1A	210		
1A	211		
	212	Multi_function4	IN0 of LUT3_12 or CLK Input of DFF16
	213		Delay4 Input (or Counter4 nRST Input)
16 17 18 19 1A	∠14 215		
	213		

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	216		
	217		OUT36
Address Byte Reg 22 1B 22 1B 22 1B 22 1C 22 1D 22 1D 22 1D 22 1E 22 1E 22 22 22 1D 22 22 22 1E 22 22 22 1E 22 22 22 24 22 25 22 26 22 27 22 28 22 29 22 20 22 20 22 20 22 20 22 20 22 20 22 21 22 22 22 23 24 24 25 25 26 26 27 27	218		IN1 of LUT3_12 or nRST (nSET) of DFF16
	219		Delay4 Input (or Counter4 nRST Input)
	220		
	221	Multi_function4	
	223		
	224		OUT37:
1B 1C 1D 1E	225		IN2 of LUT3_12 or Data of DFF16 Delay4 Input (or Counter4 nRST Input)
	226		
10	227		
	228		
	229		
	230		IN0 of LUT3 13 or CLK Input of DFF17
	231		Delay5 Input (or Counter5 nRST Input)
	232		
Add Byte 1B 1B 1C 1C 1D 20	234		
	235		
	236		
	237	Multi_tunction5	IN1 of LUT3_13 or nRST (nSET) of DFF17 Delay5 Input (or Counter5 nRST Input)
	238		
	239		
	240		
Byte 1B 1C 1C 1D 1E 1F 20	241		
	242		IN2 of LUT3 13 or Data of DFF17
1E	243		Delay5 Input (or Counter5 nRST Input)
	244		
	245		
	247		
	248		OUT41:
Act Byte 1B 1B 1C 1C 1D 1D 1E 1E 1E 20	249		Delav6 Input (or Counter6 nRST Input)
	250		,
	251		
	252		
	253		
	254	Multi_function6	IN1 of LUT3_14 or nRST (nSET) of DFF18
	255		Delay6 Input (or Counter6 nRST Input)
	200		
	258		
	259		
20	260		
	261		IN2 of LUT3_14 or Data of DFF18 Delay6 Input (or Counter6 nRST Input)
	262		
	263		

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	264		
	265		
Ad Byte 21 22 23 23 24 25 26	266		IN0 of LUT3 15 or CLK Input of DFF19
	267		Delay7 Input (or Counter7 nRST Input)
	268		
	269		
	270		
	271		OUT45:
	272	Multi_function7	IN1 of LUT3_15 or nRST (nSET) of DFF19
Ac Byte 21 21 22 23 23 24 25 26	273		Delay7 Input (or Counter7 nRS1 Input)
	275		
	276		
	277		
23	278		OUT46:
	279		IN2 of LUT3_15 or Data of DFF19
	280		
Add Byte Image: state in the	281		
	282		
	283		
	284		UVI47:
	285		CNT
	286		
	287		
A Byte 21 22 23 24 25 26	288		
	289		
	290	LUT3_16 & Pipe Delay (RIPP CNT)	IOUT48: IN1 of LUT3_16 or nRST of Pipe Delay or nSET of RIPP CNT
24	291		
21 22 23 24 25 25	292		
	293		
	295		
21 22 23 24 25	296		OUT49:
Byte 21 21 22 23 23 24 25 26	297		IN2 of LUT3_16 or Clock of Pipe
	298		
Ad Byte Image: state in the s	299		
25	300		
	301		
	302		OUT50:
	303		IN0 of LUT4_0 or CLK Input of DFF12
	304		
	305	LUT4 DFF12	
22 23 24 25	306	·· ··	
26	307		
_	308		OUT51:
	309		111 01 L014_0 01 Data 01 DFF 12
	310		
	311		

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	312		
	313		
A Byte 27 28 29 29 20 28 29 28 29 28 29 28 29 28 29 28 29 20 28 29 20 21 22 28 29 20 21 22 22 22 22 22 22 22 22 22 22 22 22 22 23 24 25 26 27 28 29 20 21 22 22 24 25 <td>314</td> <td></td> <td>OUT52:</td>	314		OUT52:
	315		
	310		
	317	LUT4_DFF12	
	310		
	320		
	321		IN3 of LUT4 0
	322		
Ac Byte 27 27 28 28 29 29 29 21 22 28 29 28 29 28 29 20 21 22 22 28 29 20 21 22 23 24 <td>323</td> <td></td> <td></td>	323		
	324		
	325		
А Вуtе 27 28 29 29 2А 28 28 29 22	326	Dragrammable delay	OLITEA: Drogrammable delay/adae dataat input
	327		00154. Programmable delay/edge detect input
	328		
Ad Byte - 27 - 28 - 28 - 29 - 29 - 29 - 21 - 22 - 23 - 24 - 25 - 26 - <td>329</td> <td></td> <td></td>	329		
	330		
	331		
	332	Filter/Edge Detect	OUT55: Filter/Edge detect input
	333		
	335		
	336		
	337		
27 28 29 2A 2B 2C	338		
	339	GPIO0	OUT56: GPIOU DOUT
ZA	340		
	341		
	342		
	343		
	344	GPIO1	OUT57: GPIO1 DOUT
Ad Byte 27 27 28 28 29 29 20 28 29 21 22 28 29 20 21 22 <td>345</td> <td></td> <td></td>	345		
	340		
2B	3/8		
	349		
	350		
	351		OUT58: GPIO2 DOUT
	352		
	353	CPIO2	
	354		
20	355		
20	356		OUT59: GPIO2 DOUT OE
	357		
	358		
	359		

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	360		
	361		
Add Byte 2D 2D 2E 30 31 32	362		OUT60: GPIO3 DOUT and Input of Power Switch ON0
	363		
	364		
	300	GPIO3 DOUT and Input of Power Switch ON0	
	367		
	368		
	369		OUT61: GPIO3 DOUT OE
	370		
A Byte 2D 2E 2F 30 31 32	371		
2E	372		
	373		
	374	CPO0 and Input of Power Switch ON1	OLIT62: GPO0 DOLIT and Input of Power Switch ON1
	375		
	376		
2F	377		
	378		
2F	379		
21	381		OUT63: GPIO4 DOUT
	382		
	383		
	384	GPIO4	
2D 2E 2F 30 31 32	385		
	386		OUT64: GPIO4 DOUT OE
	387		
	388		
	389		
	390		
	391		
2F 30	392		OUT65: GPIO5 DOUT
	393		
	394		
31	396	GPIO5	
	397		
	398		
	399		
	400		
	401	1	
	402		
32	403		
	404	GPIO6	OUT67: GPIO6 DOUT
	405		
	400		
	407		

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	408		
	409		
Add Byte 33 34 35 36 37 38	410	GPIO6	OUT68: GPIO6 DOUT OE
	411		
	413		
	414		
	415		
	416		
	417		OUT69: GPIO7 DOUT
	418		
24	419	CPIO7	
54	420	GFIOT	
	421		
	422		
	423		
35	424		
	425		
	420		
35	427		
	420	-	OUT71: GPIO8 DOUT
	430		
	431		
	432	-GPIO8	
	433		
33 34 35 36 37 38	434		
36	435		00172. GP108 D001 0E
33 34 35 36 37 38	436		
	437		
	438		
	439		
	440		OUT73: GPIO9 DOUT
	441		
	44Z 1/2		
37	443	GPIO9	
	445		
	446		
	447		OUT74: GPIO9 DOUT OE
	448		
	449		
	450		
38	451		
50	452		OUT75:
	453		PWR UP of ACMP0H
	454		
	455		

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	456		
	457		
Ac Byte 39 39 3A 3A 3B 3A 3B 3A 3A 3A 3A 3A 3A 3A 3B 3A 3B 3B <td>458</td> <td>ACMP1H</td> <td></td>	458	ACMP1H	
39	459		
	460		
	401		
	402		
	403		
	465	ACMP2L	IPWR UP of ACMP2L
AddByte39343A3A3B3C3D3D	466		
	467		
3A	468		
	469		
	470		OUT78:
	471	ACMP3L	PWR UP of ACMP3L
	472		
	473		
	474		
ЗB	475		
00	476	Temp Sensor	OUT79:
	477		Temp sensor, Vref Out_0, Vref Out_1 Power Up
39 ЗА ЗВ ЗС ЗД	478		
	479		
	480		
вуtе 39 3А 3А 3В 3С 3D 3Е	481		
	402	OSC0	OUT80: OSC0 ENABLE
3C	403		
	485		
	486		
	487		
	488		
Act Byte 39 39 3A 3A 3B 3A 3B	489		UUT81: USC1 ENABLE
	490		
20	491		
30	492		
	493		
	494	0502	OUT82: OSC2 ENABLE
	495	0002	
	496		
Byte 39 39 3A 3B 3B 3C 3D 3E	497		
	498		
Byte 39 3A 3B 3C 3D 3E	499		OUT83:
	500	Multi_function0	IN0 of LUT4_1 or CLK Input of DFF20
	507		Delay0 Input (or Counter0 nRST Input)
	502		
	505		

Datasheet

Revision 3.17

Table 55: Register Map (Continued)

Address			
Duto	Register	Signal Function	Register Bit Definition
Буге	Bit		
	504		
	505		OUT84:
Add Byte 3F 40 40 41 41 42 43 43 44	506		IN1 of LUT4_1 or nRST of DFF20
	507		Delay/Counter0 External CLK source
	508		
	509		
	510		
	511		IN2 of LUT4 1 or nSET of DEE20
	512	Multi_function0	Delay0 Input (or Counter0 nRST Input)
	513		Delay/Counter0 External CLK source
3F 40 41 42	515		REEF INput of FSIND
40	516		
	517		
	518		OUT86: UN3 of LUT4 1 or Data of DEE20
	519		Delay0 Input (or Counter0 nRST Input)
	520		UP Input of FSM0
	521		
	522		
11	523		
41	524		OUT87: IN0 of LUT3_9 or CLK Input of DFF13 Delay1 Input (or Counter1 nRST Input)
	525		
	526		
	527		
40 41 42	528		
	529		
	530	Multi function1	IN1 of LUT3 9 or nRST (nSET) of DFF13
3F 40 41 42 43 44	531		Delay1 Input (or Counter1 nRST Input)
	532		
	534		
	535		
	536		OUT89:
Add Byte I 3F I 40 I 40 I 40 I 41 I 42 I 42 I 43 I 44 I	537		IN2 of LUT3_9 or Data of DFF13
	538		
	539		
43	540		
	541		
	542		OUT90:
	543		Delay2 Input (or Counter2 nRST Input)
	544		
	545	Multi function2	
	546		
44	547		
	548		IN1 of LUT3 10 or nRST (nSET) of DFF14
	549		Delay2 Input (or Counter2 nRST Input)
	550		
	551		

Datasheet

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	552		
	553		
	554	Multi function2	IN2 of LUT3 10 or Data of DEF14
45	555		Delay2 Input (or Counter2 nRST Input)
	556		
	557		
	558		
	559		
	560		IN0 of LUT3 11 or CLK Input of DFF15
	561		Delay3 Input (or Counter3 nRST Input)
	562		
46	563		
	564	-	
	505	-	OUT94:
	500	Multi_function3	IN1 of LUT3_11 or nRST (nSET) of DFF15
	569		Delay3 Input (or Counter3 nRST Input)
47	560		
	570		
	570		
	572		OUT95:
	573		IN2 of LUT3_11 or Data of DFF15
	574	-	Delay3 Input (or Counter3 nRST Input)
	575		
	576	Matrix Input 0	GND
	577	Matrix Input 1	LUT2 0/DFF0 output
	578	Matrix Input 2	LUT2 1/DFF1 output
40	579	Matrix Input 3	LUT2 2/DFF2 output
48	580	Matrix Input 4	LUT2 3/PGen output
	581	Matrix Input 5	LUT3 0/DFF3 output
	582	Matrix Input 6	LUT3_1/DFF4 output
	583	Matrix Input 7	LUT3_2/DFF5 output
	584	Matrix Input 8	LUT3_3/DFF6 output
	585	Matrix Input 9	LUT3_4/DFF7 output
	586	Matrix Input 10	LUT3_5/DFF8 output
10	587	Matrix Input 11	LUT3_6/DFF9 output
49	588	Matrix Input 12	LUT3_7/DFF10 output
	589	Matrix Input 13	LUT3_8/DFF11 output
	590	Matrix Input 14	CNT0 output
	591	Matrix Input 15	MF0_LUT4/DFF_OUT
	592	Matrix Input 16	CNT1 output
	593	Matrix Input 17	MF1_LUT3/DFF_OUT
	594	Matrix Input 18	CNT2 output
4A	595	Matrix Input 19	MF2_LUT3/DFF_OUT
	596	Matrix Input 20	CNT3 output
	597	Matrix Input 21	MF3_LUT3/DFF_OUT
	598	Matrix Input 22	CNT4 output
	599	Matrix Input 23	MF4_LUT3/DFF_OUT

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Durte	Register	Signal Function	Register Bit Definition
вуте	Bit		
	600	Matrix Input 24	CNT5 output
	601	Matrix Input 25	MF5_LUT3/DFF_OUT
	602	Matrix Input 26	CNT6 output
10	603	Matrix Input 27	MF6_LUT3/DFF_OUT
4D	604	Matrix Input 28	CNT7 output
	605	Matrix Input 29	MF7_LUT3/DFF_OUT
	606	Matrix Input 30	LUT3_16/Ripple CNT/Pipe Delay_out0
	607	Matrix Input 31	Ripple CNT/Pipe Delay_out1
	608	Matrix Input 32	GPIO0 digital input or I2C_virtual_0 Input
	609	Matrix Input 33	GPIO1 digital input or I2C_virtual_1 Input
	610	Matrix Input 34	I2C_virtual_2 Input
40	611	Matrix Input 35	I2C_virtual_3 Input
40	612	Matrix Input 36	I2C_virtual_4 Input
	613	Matrix Input 37	I2C_virtual_5 Input
	614	Matrix Input 38	I2C_virtual_6 Input
	615	Matrix Input 39	I2C_virtual_7 Input
	616	Matrix Input 40	Ripple CNT_out2
	617	Matrix Input 41	LUT4_0/DFF12 output
	618	Matrix Input 42	Programmable Delay Edge Detect Output
40	619	Matrix Input 43	Edge Detect Filter Output
40	620	Matrix Input 44	GPI0 Digital Input
	621	Matrix Input 45	GPIO2 Digital Input
	622	Matrix Input 46	Power Switch ON0, GPIO3 Digital Input
	623	Matrix Input 47	GPIO4 Digital Input
	624	Matrix Input 48	GPIO5 Digital Input
	625	Matrix Input 49	GPIO6 Digital Input
	626	Matrix Input 50	GPIO7 Digital Input
1E	627	Matrix Input 51	GPIO8 Digital Input
76	628	Matrix Input 52	GPIO9 Digital Input
	629	Matrix Input 53	OSC0 output 0
	630	Matrix Input 54	OSC1 output 0
	631	Matrix Input 55	OSC2 output
	632	Matrix Input 56	ACMP0H Output (normal speed)
	633	Matrix Input 57	ACMP1H Output (normal speed)
	634	Matrix Input 58	ACMP2L Output (low speed)
1E	635	Matrix Input 59	ACMP3L output (low speed)
41	636	Matrix Input 60	OSC0 output 1
	637	Matrix Input 61	OSC1 output 1
	638	Matrix Input 62	Matrix nRST
	639	Matrix Input 63	V _{DD}

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	640	BG CHOP OFF	0: CHOP enable 1: chopper off
	641	BG Chopper clock test enable	1: enable
	642	Bandgap internal voltage output to IO enable	1: enable
	643	Bandgap power-down control	0: always on 1: power-down if no function enable it (ACMP, Vref, TS)
50	644	ACMP1H external Vref0 source selection	0: from GPIO2 1: from GPO0
	645	ACMP2L external Vref1 source selection	0: from GPIO2 1: from GPO0
	646	ACMP3L external Vref1 source selection	0: from GPIO2 1: from GPO0
	647	ACMP3L wake sleep enable	1: enable 0: disable
	648	VrefO0 register Power-On/Off	1: on 0: off
	649	VrefO0 power-down selection	0: come from register [648] 1: come from matrix out92
	650	VrefO1 register Power-On/Off	1: on 0: off
51	651		00: 0 mV
	652	ACMP0H hysteresis	10: 64 mV 11: 192 mV
	653	Reserved	
	654	ACMP0_H input buffer enable	1: enable
	655	Reserved	
	656	ACMP0H input tie to V _{DD} enable	1: enable
	657	ACMP1_H positive input come from AC- MP0_H's input mux output enable; 1:enable	
	658	Reserved	
	659		00: 0 mV
52	660	ACMP1H hysteresis	101: 32 mV 10: 64 mV 11: 192 mV
	661	ACMP1H input buffer enable	1: enable
	662	Reserved	
	663	ACMP2L positive input come from ACMP0H's input mux output enable	1: enable
	664	ACMP2L positive input come from ACMP1H's input mux output enable	1: enable
	665		00: 0 mV
53	666	ACMP2L hysteresis	01: 32 mV 10: 64 mV 11: 192 mV
	667	Reserved	
	668	Reserved	
	669	ACMP3_L hysteresis	00: 0 mV 01: 32 mV 10: 64 mV
	671	Peserved	11: 192 mV
	0/1		

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	672	Reserved	
	673	ACMP3_L positive input come from ACMP2L's input mux output enable	1: enable
	674	Temp sensor register pdb control	0: Power-down 1: Power-On
F 4	675	Temp sensor register pdb select	0: come from register 1: come from Matrix
54	676	Temp sensor range select	0: range 1 (0.62V ~ 0.99V (TYP)) 1: range 2 (0.75V ~ 1.2V (TYP))
	677	Vref0 output OP	0: disable 1: enable
	678		
	679	Vref0 input selection	10: ACMP0H Vref 10: ACMP1H Vref 11: temp sensor
	680	Vref1 output OP	0: disable 1: enable
	681 682	Vref1 input selection	00: None 01: ACMP2L Vref 10: ACMP3L Vref
55	683		
00	684	- VBG fine tune selection	0000: 1.194, 0001:1.195, 0011:1.196, 0100:1.197, 0101:1.198, 0110:1.199, 0111:1.2, 1000:1.201, 1001:1.202
	685		1010:1.203, 1011:1.204, 1100:1.205, 1101:1.206,
	686		1110:1.207, 1111:1.208
	687	ACMP0H Wake/Sleep enable	
	688	ACMP1H Wake/Sleep enable	
	689	ACMP Wake/Sleep time selection	0: short time 1: normal w/s
	690	ACMP0H 100 uA current source enable	
	691	Reserve for ACMP	
56	692	Reserved	
	693	ACMP3L input come from Temp sensor output enable	
	694	VrefO1 power-down selection	0: come from register [650] 1: come from matrix OUT92
	695	ACMP2L wake sleep enable	0: disable 1: enable
	696		ACMP gain divider select:
	697	ACMP0H Gain divider	00: 1X 01:0.5x 10:0.33x 11:0.25x
57	698		
01	699		ACMP Vref select:
	700	ACMP0H Vref0	000000: 32mV ~
	701		111110: 2.016V/step = 32 mV 111111: External Vref
	702		
	703		

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	704 705	ACMP1H Gain divider	ACMP gain divider select: 00: 1x 01:0.5x 10:0.33x 11:0.25x
58	706		
00	707		ACMP Vref select:
	708	ACMP1H Vref0	$000000: 32 \text{ mV} \sim 1$
	709	-	111110: 2.0160/step = 32mv
	710	-	
	712		ACMP gain divider select:
	713	ACMP2L Gain divider	00: 1x 01:0.5x 10:0.33x 11:0.25x
50	714		
59	715		ACMP Vref select:
	716		000000: 32 mV ~ 111110: 2.016V/step = 32mV 111111: External Vref
	717		
	718		
	719		
	720	ACMP3L Gain divider	ACMP gain divider select: 00: 1x 01:0.5x 10:0.33x 11:0.25x
50	722		
JA	723		ACMP Vref select:
	724	ACMP3I Vref1	000000: 32 mV ~
	725		1111110: 2.016V/step = 32mV 111112: External Vref
	726		
	/2/		
OSC1			huhan na trivautant analyla had a sutral sinnal. A
	728	OSC1 turn on by register	0: auto on by delay cells 1: always on
	729	matrix power-down or on select	0: matrix down 1: matrix on
5B	730	external clock source enable	0: internal OSC1 1: external clock from GPIO2
	731		00: div 1
	732	post divider ratio control OSC1	10: div 4 11: div 8
	733		000. /1 001./2 010./4 011. /3 100. /8 101. /12 110. /34
	734	matrix divider ratio control OSC1, OUT0	111: /64
	735		
	736	matrix out enable OSC1, OUT0	U: disable 1: enable
5C	737	Reserved	
	730	Reserved	
	139	Reserved	

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
OSC2			
	740	OSC2 turn on by register	when matrix output enable/pd control signal = 0: 0: auto on by delay cells 1: always on
5C	741	matrix power-down or on select	0: matrix down 1: matrix on
	742	external clock source enable	0: internal OSC2 1: external clock from GPIO8
	743	matrix out enable	0: disable 1: enable
	744		00: div 1
	745	post divider ratio control OSC2	01: div 2 10: div 4 11: div 8
5D	746		000. /1 001./2 010./4 011. /2 100. /8 101. /12 110. /24
	747	matrix divider ratio control OSC2	1111: /64
	748		
	749	startup delay with 100 ns	0: enable 1: disable
OSC0			
5D	750	OSC0 turn on by register	when matrix output enable/pd control signal = 0: 0: auto on by delay cells 1: always on
	751	matrix power-down or on select	0: matrix down 1: matrix on
	752	external clock source enable	0: internal OSC0 1: external clock from GPIO
	753	matrix out enable OSC0, OUT0	0: disable 1: enable
	754	post divider ratio control OSC0	00: div 1
5E	755		10: div 4 11: div 8
	756		000. /1 001./2 010./4 011. /2 100. /8 101. /12 110. /24
	757	matrix divider ratio control OSC0, OUT0	111: /64
	758		
	759	enable OSC0 output gating by wake_sleep sig- nal (note: the wake_sleep clock is separated path, so it is not gated)	0: no gating 1: enable
	760		
	761	matrix divider ratio control OSC1, OUT1	1111: /64
	762		
5F	763	2nd output to matrix enable OSC1	0: disable 1: enable
	764		000: /1. 001:/2. 010:/4. 011: /3. 100: /8. 101: /12. 110: /24
	765	matrix divider ratio control OSC0, OUT1	111: /64
	166		0. disable
	767	2nd output to matrix enable OSC0, OUT1	1: enable

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	768 769	Reserved	
	770	Reserved	
60	771	Reserved	
00	772	Reserved	
	773	Reserved	
	774	Reserved	
	775	Reserved	
	776	Reserved	
61	777	Reserved	
	778	IO fast Pull-up/down enable	0: disable 1: enable
GPI0			
	779 780	input mode configuration	00: digital without Schmitt Trigger 01: digital with Schmitt Trigger 10: low voltage digital in 11: analog IO
61	781		00: floating
01	782	Pull-up/down resistance selection	01: 10K 10: 100K 11: 1M
	783	Pull-up/down selection	0: Pull-down 1: Pull-up
GPIO)		
	784 785	input mode configuration	00: digital in without Schmitt Trigger 01: digital in with Schmitt Trigger (when register [2032] = 1) 10: low voltage digital in 11: Reserved
62	786 787	Pull-up/down resistance selection	00: floating 01: 10K 10: 100K
	788	Pull-up/down selection	0: Pull-down 1: Pull-up
	789	I ² C mode selection	0: I2C fast mode+ (3.2x drivability) 1: I2C standard/fast mode
	790	I/O selection	0: digital input 1: digital output (3.2x Open-Drain NMOS)
GPIO [,]	1		
62	791 792	input mode configuration	00: digital without Schmitt Trigger 01: digital in with Schmitt Trigger (when register [2032] = 1) 10: low voltage digital in
	793		11: Reserved
63	794	Pull-up/down resistance selection	01: 10K 10: 100K 11: 1M
	795	Pull-up/down selection	0: Pull-down 1: Pull-up
	796	I/O selection	0: digital input 1: digital output (3.2x Open-Drain NMOS)
	797	Reserved	

Datasheet

Revision 3.17

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
GPIO	2		
63	798 799	input mode configuration	00: digital without Schmitt Trigger 01: digital with Schmitt Trigger 10: low voltage digital in 11: analog IO
	800		00: Push-Pull 1x
	801	output mode configuration	10: 1x Open-Drain 11: 2x Open-Drain
64	802		00: floating
	803	Pull-up/down resistance selection	10: 100K 10: 100K 11: 1M
	804	Pull-up/down selection	0: Pull-down 1: Pull-up
GPIO	3		
64	805 806	input mode configuration	00: digital without Schmitt Trigger 01: digital with Schmitt Trigger 10: low voltage digital in 11: analog IO
	807		00: Push-Pull 1x
65	808	output mode configuration	01: Push-Pull 2x 10: 1x Open-Drain 11: 2x Open-Drain
	809		00: floating
65	810	Pull-up/down resistance selection	10: 100K 11: 10M
	811	Pull-up/down selection	0: Pull-down 1: Pull-up
GPO0	1		
	812 813	Reserved	
65	814		00: Push-Pull 1x
	815	output mode configuration	10: 1x Open-Drain 11: 2x Open-Drain
	816		00: floating
66	817	Pull-up/down resistance selection	10: 100K 11: 1M
	818	Pull-up/down selection	0: Pull-down 1: Pull-up
	819	output enable	0: output disable (input mode) 1: output enable
	820	4x drive	0: disable 1: enable
GPIO	4		

Datasheet

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
66	821 822	input mode configuration	00: digital without Schmitt Trigger 01: digital with Schmitt Trigger 10: low voltage digital in 11: analog IO
	823 824	output mode configuration	00: Push-Pull 1x 01: Push-Pull 2x 10: 1x Open-Drain 11: 2x Open-Drain
67	825 826	Pull-up/down resistance selection	00: floating 01: 10K 10: 100K 11: 1M
	827	Pull-up/down selection	0: Pull-down 1: Pull-up
	828	4x drive	0: disable 1: enable
GPIO	5		
67	829 830	input mode configuration	00: digital without Schmitt Trigger 01: digital with Schmitt Trigger 10: low voltage digital in 11: analog IO
	831 832	output mode configuration	00: Push-Pull 1x 01: Push-Pull 2x 10: 1x Open-Drain 11: 2x Open-Drain
68	833 834	Pull-up/down resistance selection	00: floating 01: 10K 10: 100K 11: 1M
	835	Pull-up/down selection	0: Pull-down 1: Pull-up
GPIO	6		
	836 837	input mode configuration	00: digital without Schmitt Trigger 01: digital with Schmitt Trigger 10: low voltage digital in 11: analog IO
00	838	output mode configuration	00: Push-Pull 1x 01: Push-Pull 2x
	839		10: 1x Open-Drain 11: 2x Open-Drain
	840		00: floating
69	841	Pull-up/down resistance selection	10: 100K 11: 1M
	842	Pull-up/down selection	0: Pull-down 1: Pull-up
GPIO	7		

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
69	843 844	input mode configuration	00: digital without Schmitt Trigger 01: digital with Schmitt Trigger 10: low voltage digital in 11: analog IO
	845 846	output mode configuration	00: Push-Pull 1x 01: Push-Pull 2x 10: 1x Open-Drain 11: 2x Open-Drain
6A	847 848	Pull-up/down resistance selection	00: floating 01: 10K 10: 100K 11: 1M
	849	Pull-up/down selection	0: Pull-down 1: Pull-up
GPIO	8		
	850 851	input mode configuration	00: digital without Schmitt Trigger 01: digital with Schmitt Trigger 10: low voltage digital in 11: analog IO
	852		00: Push-Pull 1x
6A	853	output mode configuration	01: Push-Pull 2x 10: 1x Open-Drain 11: 2x Open-Drain
	854		00: floating
	855	Pull-up/down resistance selection	01: 10K 10: 100K 11: 1M
6B	856	Pull-up/down selection	0: Pull-down 1: Pull-up
GPIO	9		
	857 858	input mode configuration	00: digital without Schmitt Trigger 01: digital with Schmitt Trigger 10: low voltage digital in 11: analog IO
6B	859 860	output mode configuration	00: Push-Pull 1x 01: Push-Pull 2x 10: 1x Open-Drain 11: 2x Open-Drain
	861 862	Pull-up/down resistance selection	00: floating 01: 10K 10: 100K 11: 1M
	863	Pull-up/down selection	0: Pull-down 1: Pull-up
	864	Reserved	
	865	Reserved	
	866	Reserved	
60	867	Reserved	
	868	Reserved	
	869	Reserved	
	870	Reserved	
	871	Reserved	

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	872	Reserved	
	873	Reserved	
	874	Reserved	
6D	875	Reserved	
	876	Reserved	
	877	Reserved	
	878	Reserved	
	879	Reserved	
	880	Reserved	
	881	Reserved	
	882	Reserved	
65	883	Reserved	
	884	Reserved	
	885	Reserved	
	886	Reserved	
	887	Reserved	
	888	Reserved	
	889	Reserved	
	890	Reserved	
eг	891	Reserved	
ог	892	Reserved	
	893	Reserved	
	894	Reserved	
	895	Reserved	
	896	Reserved	
	897	Reserved	
	898	Reserved	
70	899	Reserved	
70	900	Reserved	
	901	Reserved	
	902	Reserved	
	903	Reserved	
	904	Reserved	
	905	Reserved	
	906	Reserved	
	907	Reserved	
/1	908	Reserved	
	909	Reserved	
	910	Reserved	
	911	Reserved	
	912	Reserved	
	913	Reserved	
	914	Reserved	
	915	Reserved	
72	916	Reserved	
	917	Reserved	
	918	Reserved	
	919	Reserved	

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	920	Reserved	
	921	Reserved	
	922	Reserved	
73	923	Reserved	
	924	Reserved	
	925	Reserved	
	926	Reserved	
	927	Reserved	
	928	Reserved	
	929	Reserved	
	930	Reserved	
74	931	Reserved	
	932	Reserved	
	933	Reserved	
	934	Reserved	
	935	Reserved	
	936	Reserved	
	937	Reserved	
	938	Reserved	
75	939	Reserved	
	940	Reserved	
	941	Reserved	
	942	Reserved	
	943	Reserved	
	944	Reserved	
	945	Reserved	
	946	Reserved	
76	947	Reserved	
	948	Reserved	
	949	Reserved	
	950	Reserved	
	951	Reserved	
	952	Reserved	
	953	Reserved	
	954	Reserved	
77	955	Reserved	
	956	Reserved	
	957	Reserved	
	958	Reserved	
	909	Reserved	
	900	Reserved	
	901	Reserved	
	902	Reserved	
78	903	Reserved	
	904	Reserved	
	905	Reserved	
	900	Reserved	
1	907	IVE2EI AER	

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	968	Reserved	
	969	Reserved	
	970	Reserved	
79	971	Reserved	
15	972	Reserved	
	973	Reserved	
	974	Reserved	
	975	Reserved	
	976	Reserved	
	977	Reserved	
	978	Reserved	
70	979	Reserved	
10	980	Reserved	
	981	Reserved	
	982	Reserved	
	983	Reserved	
	984	Reserved	
	985	Reserved	
	986	Reserved	
78	987	Reserved	
7.0	988	Reserved	
	989	Reserved	
	990	Reserved	
	991	Reserved	
	992	Reserved	
	993	Reserved	
	994	Reserved	
70	995	Reserved	
10	996	Reserved	
	997	Reserved	
	998	Reserved	
	999	Reserved	
	1000	Reserved	
	1001	Reserved	
	1002	Reserved	
	1003	Reserved	
10	1004	Reserved	
	1005	Reserved	
	1006	Reserved	
	1007	Reserved	
	1008	Reserved	
	1009	Reserved	
	1010	Reserved	
7	1011	Reserved	
/ -	1012	Reserved	
	1013	Reserved	
	1014	Reserved	
	1015	Reserved	

Datasheet

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	1016	Reserved	
	1017	Reserved	
	1018	Reserved	
75	1019	Reserved	
11	1020	Reserved	
	1021	Reserved	
	1022	Reserved	
	1023	Reserved	
		Single 4-bit LUT	0000000: Matrix A - In3; Matrix B - In2; Matrix C - In1; Matrix D - In0 (DLY_IN - LOW)
		Single DFF w RST and SET	0010000: Matrix A - D; Matrix B - nSET; Matrix C - nRST; Matrix D - CLK (DLY_IN - LOW)
	1030:1024	Single CNT/DLY	0000001: Matrix A - UP (CNT); Matrix B - KEEP (CNT); Matrix C - EXT_CLK (CNT); Matrix D - DLY_IN (CNT) (DLY_OUT connected to LUT/DFF)
		$CNT/DLY \rightarrow LUT$	0000010: Matrix A - DLY_IN; Matrix B - In2; Matrix C - In1; Matrix D - In0 (DLY_OUT connected to In3)
		$CNT/DLY \rightarrow DFF$	0010010: Matrix A - DLY_IN; Matrix B - nSET; Matrix C - nRST; Matrix D - CLK (DLY_OUT connected to D)
		$CNT/DLY \rightarrow LUT$	0100010: Matrix A - DLY_IN; Matrix B - EXT_CLK (CNT); Matrix C - In1; Matrix D - In0 (DLY_OUT connected to In3; In2 - LOW)
80		$CNT/DLY \rightarrow DFF$	0110010: Matrix A - DLY_IN; Matrix B - EXT_CLK (CNT); Matrix C - nRST; Matrix D - CLK (DLY_OUT connected to D; nSET - HIGH)
		$CNT/DLY \rightarrow LUT$	1000010: Matrix A - DLY_IN; Matrix B - In2; Matrix C - EXT_CLK (CNT); Matrix D - In0 (DLY_OUT connected to In3; In1 - LOW)
		$CNT/DLY \rightarrow DFF$	1010010: Matrix A - DLY_IN; Matrix B - nSET; Matrix C - EXT_CLK (CNT); Matrix D - CLK (DLY_OUT connected to D; nRST - HIGH)
		$CNT/DLY \rightarrow LUT$	0000110: Matrix A - In3; Matrix B - DLY_IN; Matrix C - In1; Matrix D - In0 (DLY_OUT connected to In2)
		$CNT/DLY \rightarrow DFF$	0010110: Matrix A - D; Matrix B - DLY_IN; Matrix C - nRST; Matrix D - CLK (DLY_OUT connected to nSET)
		$CNT/DLY \rightarrow LUT$	1000110: Matrix A - In3; Matrix B - DLY_IN; Matrix C - EXT_CLK (CNT); Matrix D - In0 (DLY_OUT connected to In2; In1 - LOW)

Table	55:	Register	Мар	(Continued)
-------	-----	----------	-----	-------------

Address				
Byte	Register Bit	Signal Function	Register Bit Definition	
		$CNT/DLY \rightarrow DFF$	1010110: Matrix A - D; Matrix B - DLY_IN; Matrix C - EXT_CLK (CNT); Matrix D - CLK (DLY_OUT connected to nSET; nRST - HIGH)	
		CNT/DLY → LUT	0001010: Matrix A - In3; Matrix B - In2; Matrix C - DLY_IN; Matrix D - In0 (DLY_OUT connected to In1)	
		$CNT/DLY \rightarrow DFF$	0011010: Matrix A - D; Matrix B - nSET; Matrix C - DLY_IN; Matrix D - CLK (DLY_OUT connected to nRST)	
	1030:1024	CNT/DLY → LUT	0101010: Matrix A - In3; Matrix B - EXT_CLK (CNT); Matrix C - DLY_IN; Matrix D - In0 (DLY_OUT connected to In1; In2 - LOW)	
		$CNT/DLY \rightarrow DFF$	0111010: Matrix A - D; Matrix B - EXT_CLK (CNT); Matrix C - DLY_IN; Matrix D - CLK (DLY_OUT connected to nRST; nSET - HIGH)	
			CNT/DLY → LUT	0001110: Matrix A - In3; Matrix B - In2; Matrix C - In1; Matrix D - DLY_IN (DLY_OUT connected to In0)
80		$CNT/DLY \rightarrow DFF$	0011110: Matrix A - D; Matrix B - nSET; Matrix C - nRST; Matrix D - DLY_IN (DLY_OUT connected to CLK)	
00			CNT/DLY → LUT	0101110: Matrix A - In3; Matrix B - EXT_CLK (CNT); Matrix C - In1; Matrix D - DLY_IN (DLY_OUT connected to In0; In2 - LOW)
		$CNT/DLY \rightarrow DFF$	0111110: Matrix A - D; Matrix B - EXT_CLK (CNT); Matrix C - nRST; Matrix D - DLY_IN (DLY_OUT connected to CLK; nSET - HIGH)	
			CNT/DLY → LUT	1001110: Matrix A - In3; Matrix B - In2; Matrix C - EXT_CLK (CNT); Matrix D - DLY_IN (DLY_OUT connected to In0; In1 - LOW)
			$CNT/DLY \rightarrow DFF$	1011110: Matrix A - D; Matrix B - nSET; Matrix C - EXT_CLK (CNT); Matrix D - DLY_IN (DLY_OUT connected to CLK; nRST - HIGH)
		$LUT \rightarrow CNT/DLY$	0000011: Matrix A - In3; Matrix B - In2; Matrix C - In1; Matrix D - In0 (LUT_OUT connected to DLY_IN)	
		$DFF \to CNT/DLY$	0010011: Matrix A - D; Matrix B - nSET; Matrix C - nRST; Matrix D - CLK (DFF_OUT connected to DLY_IN)	
		LUT \rightarrow CNT/DLY	0100011: Matrix A - In3; Matrix B - EXT_CLK (CNT); Matrix C - In1; Matrix D - In0 (LUT_OUT connected to DLY_IN; In2 - LOW)	

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
		$DFF \to CNT/DLY$	0110011: Matrix A - D; Matrix B - EXT_CLK (CNT); Matrix C - nRST; Matrix D - CLK (DFF_OUT connected to DLY_IN; nSET - HIGH)
80	1030:1024	$LUT \rightarrow CNT/DLY$	1000011: Matrix A - In3; Matrix B - In2; Matrix C - EXT_CLK (CNT); Matrix D - In0 (LUT_OUT connected to DLY_IN; In1 - LOW)
		$DFF \to CNT/DLY$	1010011: Matrix A - D; Matrix B - nSET; Matrix C - EXT_CLK (CNT); Matrix D - CLK (DFF_OUT connected to DLY_IN; nRST - HIGH)
	1031		00: DLY
	1032	DLY/CNT0 Mode Selection	01: one shot 10: frequency det 11: CNT register [1040] = 0
	1033		00: both edge
	1034	DLY/CNT0 edge Mode Selection	101: falling edge 10: rising edge 11: High Level Reset (only in CNT mode)
	1035		Clock source sel[3:0]
	1036		[0000: 25M(OSC2); [0001: 25M/4:
	1037		0010: 2M(OSC1);
81	1038	DLY/CNT0 Clock Source Select	00111: 2M/8; 0100: 2M/64; 0101: 2M/512; 0110: 2K(OSC0); 0111: 2K/8; 1000: 2K/64; 1001: 2K/512; 1010: 2K/4096; 1011: 2K/32768; 1100: 2 K/262144; 1101: CNT7_END; 1110: External; 1111: Not used
	1039	FSM0 SET/RST Selection	0: Reset to 0 1: Set to data
	1040	CNT0 DLY EDET FUNCTION Selection	0: normal 1: DLY function edge detection (registers [1032:1031] = 00)
	1041	UP signal SYNC selection	0: bypass 1: after two DFF
	1042	Keep signal SYNC selection	0: bypass 1: after two DFF
	1043		00: bypass the initial
82	1044	CNT0 initial value selection	01: initial 0 10: initial 1 11: initial 1
	1045	Wake sleep power-down state selection	0: low 1: high
	1046	wake sleep mode selection	0: Default Mode 1: Wake Sleep Mode (registers [1032:1031] = 11)
	1047	CNT0 output pol selection	0: Default Output 1: Inverted Output

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

A	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
	1048	CNT0 CNT mode SYNC selection	0: bypass 1: after two DFF
		Single 3-bit LUT	00000: Matrix A - In2; Matrix B - In1; Matrix C - In0 (DLY_IN - LOW)
		Single DFF w RST and SET	10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DLY_IN - LOW)
		Single CNT/DLY	00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK (CNT); Matrix C - NC (DLY_OUT connected to LUT/DFF)
		$CNT/DLY \rightarrow LUT$	00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0 (DLY_OUT connected to In2)
	1052.1040	$CNT/DLY \rightarrow DFF$	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST; Matrix C - CLK (DLY_OUT connected to D)
83	1053:1049	$CNT/DLY \rightarrow LUT$	00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0 (DLY_OUT connected to In1)
		$CNT/DLY \rightarrow DFF$	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)
		CNT/DLY → LUT	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY_IN (DLY_OUT connected to In0)
		$CNT/DLY \rightarrow DFF$	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN (DLY_OUT connected to CLK)
		$LUT \to CNT/DLY$	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)
		$DFF \to CNT/DLY$	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DFF_OUT connected to DLY_IN)
	1054		0000: both edge Delay; 0001: falling edge delay:
	1055		0010: rising edge delay: 0011: beth edge One Shet
84	1057	CNT1 function and edge mode selection	0110: falling edge One Shot; 0101: rising edge One Shot; 0101: rising edge One Shot; 0111: falling edge freq detect; 1000: rising edge freq detect; 1001: both edge detect; 1010: falling edge detect; 1010: both edge reset CNT; 1101: falling edge reset CNT; 1111: high level reset CNT; 1111: high level reset CNT; 1111: high level reset CNT;
	1058		01: initial 0
	1059		10: initial 1 11: initial 1

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	1060		Clock source sel[3:0]
84	1061		0000: 25M(0SC2); 0001: 25M/4;
	1062		0010: 2M(OSC1);
	1063	DLY/CNT1 Clock Source Select	0110: 2M/64; 0101: 2M/512; 0110:2K(OSC0); 0111: 2K/8; 1000:2K/64; 1001: 2K/512; 1010: 2K/4096; 1011:2K/32768; 1100: 2K/262144; 1101: CNT0_END; 1110: External; 1111: Not used
	1064	CNT1 output pol selection	0: Default Output 1: Inverted Output
	1065	CNT1 CNT mode SYNC selection	0: bypass 1: after two DFF
	1066	CNT1 DLY EDET FUNCTION Selection	0: normal 1: DLY function edge detection (registers[1057:1054]=0000/0001/0010)
		Single 3-bit LUT	00000: Matrix A - In2; Matrix B - In1; Matrix C - In0 (DLY_IN - LOW)
		Single DFF w RST and SET	10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DLY_IN - LOW)
		Single CNT/DLY	00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK (CNT); Matrix C - NC (DLY_OUT connected to LUT/DFF)
85		$CNT/DLY \rightarrow LUT$	00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0 (DLY_OUT connected to In2)
		$CNT/DLY \rightarrow DFF$	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST; Matrix C - CLK (DLY_OUT connected to D)
	1071.1007	$CNT/DLY \rightarrow LUT$	00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0 (DLY_OUT connected to In1)
		$CNT/DLY \rightarrow DFF$	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)
		CNT/DLY → LUT	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY_IN (DLY_OUT connected to In0)
		$CNT/DLY \rightarrow DFF$	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN (DLY_OUT connected to CLK)
		$LUT \to CNT/DLY$	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)
		$DFF \to CNT/DLY$	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DFF_OUT connected to DLY_IN)

Table 55: Register Map (Continued)

Α	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
	1072		00: bypass the initial
	1073	CNT2 initial value selection	10: initial 1 11: initial 1 11: initial 1
	1074		0000: both edge Delay;
	1075		10010: rising edge delay;
	1076		0011: both edge One Shot;
86	1077	CNT2 function and edge mode selection	0100: falling edge One Shot; 0101: rising edge One Shot; 0110: both edge freq detect; 0111: falling edge freq detect; 1000: rising edge freq detect; 1001: both edge detect; 1011: rising edge detect; 1100: both edge reset CNT; 1101: falling edge reset CNT; 1110: rising edge reset CNT; 1111: high level reset CNT
	1078		Clock source sel[3:0]
	1079		10000: 25M(OSC2); 10001: 25M/4:
	1080		0010: 2M(OSC1);
87	1081	DLY/CNT2 Clock Source Select	0011:2M/8; 0100: 2M/64; 0101: 2M/512; 0110:2K(OSC0); 0111: 2K/8; 1000:2K/64; 1001: 2K/512; 1010: 2K/4096; 1011:2K/32768; 1100: 2K/262144; 1101: CNT1_END; 1110: External; 1111: Not used
	1082	CNT2 output pol selection	0: Default Output, 1: Inverted Output
	1083	CNT2 CNT mode SYNC selection	0: bypass; 1: after two DFF
	1084	CNT2 DLY EDET FUNCTION Selection	0: normal; 1: DLY function edge detection(regis- ters[1077:1074] = 0000/0001/0010)
	1085	CNT3 initial value selection	00 bypass the initial: 01: initial 0: 10: initial 1: 11: initial 1
	1086		
	1087	Multi3 register configure	refer to byte 88
	1088		0000: both edge Delay; 0001: falling edge delay:
	1089		0010: rising edge delay:
88	1090	CNT3 function and edge mode selection	0011: both edge One Shot; 0100: falling edge One Shot; 0101: rising edge One Shot; 0110: both edge freq detect; 0111: falling edge freq detect; 1000: rising edge freq detect; 1001: both edge detect; 1010: falling edge detect; 1010: falling edge detect; 1100: both edge reset CNT; 1101: falling edge reset CNT; 1111: high level reset CNT;

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Α	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
		Single 3-bit LUT	00000: Matrix A - In2; Matrix B - In1; Matrix C - In0 (DLY_IN - LOW)
		Single DFF w RST and SET	10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DLY_IN - LOW)
		Single CNT/DLY	00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK (CNT); Matrix C - NC (DLY_OUT connected to LUT/DFF)
		$CNT/DLY \rightarrow LUT$	00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0 (DLY_OUT connected to In2)
00	1087,	CNT/DLY → DFF	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST; Matrix C - CLK (DLY_OUT connected to D)
00	1095:1092, 1095:1094	$CNT/DLY \rightarrow LUT$	00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0 (DLY_OUT connected to In1)
	1000	$CNT/DLY \rightarrow DFF$	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)
		CNT/DLY → LUT	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY_IN (DLY_OUT connected to In0)
		$CNT/DLY \rightarrow DFF$	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN (DLY_OUT connected to CLK)
		$LUT \rightarrow CNT/DLY$	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)
		$DFF \to CNT/DLY$	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DFF_OUT connected to DLY_IN)
	1096		Clock source sel[3:0] 10000: 25M(OSC2): 0001: 25M/4:
	1097		0010: 2M(OSC1); 0011:2M/8;
89	1099	DLY/CNT3 Clock Source Select	0100: 2M/64; 0101: 2M/512; 0110:2K(OSC0); 0111: 2K/8; 1000:2K/64; 1001: 2K/512; 1010: 2K/4096; 1011:2K/32768; 1100: 2K/262144; 1101: CNT2_END; 1110: External; 1111: Not used
	1100	CNT3 output pol selection	0: Default Output 1: Inverted Output
	1101	CNT3 CNT mode SYNC selection	0: bypass 1: after two DFF
	1102	CNT3 DLY EDET FUNCTION Selection	0: normal 1: DLY function edge detection (registers[1091:1088]=0000/0001/0010)
	1103	CNT4 CNT mode SYNC selection	0: bypass 1: after two DFF

GreenPAK Programmable Mixed-Signal Matrix

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	1104 1105	CNT4 initial value selection	00: bypass the initial 01: initial 0 10: initial 1 11: initial 1
	1106	CNT4 DLY EDET FUNCTION Selection	0: normal 1: DLY function edge detection (registers[1119:1116]=0000/0001/0010)
		Single 3-bit LUT	00000: Matrix A - In2; Matrix B - In1; Matrix C - In0 (DLY_IN - LOW)
		Single DFF w RST and SET	10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DLY_IN - LOW)
		Single CNT/DLY	00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK (CNT); Matrix C - NC (DLY_OUT connected to LUT/DFF)
8A		$CNT/DLY \rightarrow LUT$	00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0 (DLY_OUT connected to In2)
	1111:1107	$CNT/DLY \rightarrow DFF$	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST; Matrix C - CLK (DLY_OUT connected to D)
		$CNT/DLY \rightarrow LUT$	00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0 (DLY_OUT connected to In1)
		$CNT/DLY \rightarrow DFF$	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)
		CNT/DLY → LUT	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY_IN (DLY_OUT connected to In0)
		$CNT/DLY \rightarrow DFF$	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN (DLY_OUT connected to CLK)
		$LUT \rightarrow CNT/DLY$	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)
		$DFF \to CNT/DLY$	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DFF_OUT connected to DLY_IN)
	1112		Clock source sel[3:0] 0000: 25M(OSC2);
	1113		0001: 25M/4; 0010: 2M(QSC1):
			0011:2M/8; 10100: 2M/64:
8B	1115	DLY/CNT4 Clock Source Select	0101: 2M/512; 0110:2K(OSC0); 0111: 2K/8; 1000:2K/64; 1001: 2K/4096; 1011: 2K/4096;
			11011.2rx/32/06; 1100: 2K/262144; 1101: CNT3_END; 1110: External; 1111: Not used

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	1116 1117 1118		0000: both edge Delay; 0001: falling edge delay; 0010: rising edge delay: 0011: both edge One Shot;
8B	1119	CNT4 function and edge mode selection	0100: falling edge One Shot; 0101: rising edge One Shot; 0110: both edge freq detect; 0111: falling edge freq detect; 1000: rising edge freq detect; 1001: both edge detect; 1010: falling edge detect; 1100: both edge reset CNT; 1101: falling edge reset CNT; 1110: rising edge reset CNT; 1111: high level reset CNT
	1120	CNT4 output pol selection	0: Default Output 1: Inverted Output
	1121		0000: both edge Delay; 0001: falling edge delay;
	1122		0010: rising edge delay:
	1124	CNT5 function and edge mode selection	0100: falling edge One Shot; 0101: rising edge One Shot; 0101: rising edge One Shot; 0110: both edge freq detect; 1000: rising edge freq detect; 1001: both edge detect; 1010: falling edge detect; 1011: rising edge detect; 1100: both edge reset CNT; 1101: falling edge reset CNT; 1110: rising edge reset CNT; 1111: high level reset CNT
	1125	CNT5 output pol selection	0: Default Output 1: Inverted Output
8C		Single 3-bit LUT	00000: Matrix A - In2; Matrix B - In1; Matrix C - In0 (DLY_IN - LOW)
		Single DFF w RST and SET	10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DLY_IN - LOW)
		Single CNT/DLY	00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK (CNT); Matrix C - NC (DLY_OUT connected to LUT/DFF)
	1134, 1127·1126	$CNT/DLY \rightarrow LUT$	00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0 (DLY_OUT connected to In2)
	1133:1132	$CNT/DLY \rightarrow DFF$	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST; Matrix C - CLK (DLY_OUT connected to D)
		$CNT/DLY \rightarrow LUT$	00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0 (DLY_OUT connected to In1)
		$CNT/DLY \rightarrow DFF$	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)
		$CNT/DLY \rightarrow LUT$	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY_IN (DLY_OUT connected to In0)

Datasheet

A	ddress		Register Bit Definition
Byte	Register Bit	Signal Function	
	1101	$CNT/DLY \rightarrow DFF$	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN (DLY_OUT connected to CLK)
8C	1127:1126, 1133:1132	$LUT \to CNT/DLY$	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)
		$DFF \to CNT/DLY$	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DFF_OUT connected to DLY_IN)
	1128		Clock source sel[3:0]
	1129		0001: 25M/4;
	1130		0010: 2M(OSC1);
8D	1131	DLY/CNT5 Clock Source Select	0110: 2M/64; 0101: 2M/512; 0110:2K(OSCO); 0111: 2K/8; 1000: 2K/64; 1001: 2K/512; 1010: 2K/4096; 1011:2K/32768; 1100: 2K/262144; 1101: CNT4_END; 1110: External; 1111: Not used
	1135	CNT5 DLY EDET FUNCTION Selection	0: normal; 1: DLY function edge detection (registers[1124:1121]=0000/0001/0010)
	1136	CNT5 CNT mode SYNC selection	0: bypass; 1: after two DFF
	1137		00: bypass the initial
	1138	CNT5 initial value selection	10: initial 1 11: initial 1
	1139		0000: both edge Delay;
	1140		10001: falling edge delay; 10010: rising edge delay:
8E	1141	CNT6 function and edge mode selection	0011: both edge One Shot; 0100: falling edge One Shot; 0101: rising edge One Shot; 0101: rising edge One Shot; 0110: both edge freq detect; 1000: rising edge freq detect; 1001: falling edge detect; 1010: falling edge detect; 1100: both edge reset CNT; 1101: falling edge reset CNT; 1101: falling edge reset CNT; 1111: nising edge reset CNT; 1111: high level reset CNT; 1111: high level reset CNT; 1111: high level reset CNT;
	1143	CNT6 output pol selection	1: Inverted Output

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	1144		Clock source sel[3:0]
	1145		10000: 25M(OSC2); 10001: 25M/4:
	1146		0010: 2M(OSC1):
	1147	DLY/CNT6 Clock Source Select	0011:2M/8; 0100: 2M/64; 0101: 2M/512; 0110:2K(OSCO); 0111: 2K/8; 1000:2K/64; 1001: 2K/512; 1010: 2K/4096; 1011:2K/32768; 1100: 2K/262144; 1101: CNT5_END; 1110: External; 1111: Not used
		Single 3-bit LUT	00000: Matrix A - In2; Matrix B - In1; Matrix C - In0 (DLY_IN - LOW)
8F		Single DFF w RST and SET	10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DLY_IN - LOW)
	1152, 1149:1148, 1151:1150	Single CNT/DLY	00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK (CNT); Matrix C - NC (DLY_OUT connected to LUT/DFF)
		$CNT/DLY \rightarrow LUT$	00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0 (DLY_OUT connected to In2)
		$CNT/DLY \rightarrow DFF$	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST; Matrix C - CLK (DLY_OUT connected to D)
		$CNT/DLY \rightarrow LUT$	00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0 (DLY_OUT connected to In1)
		$CNT/DLY \rightarrow DFF$	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)
		CNT/DLY → LUT	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY_IN (DLY_OUT connected to In0)
		$CNT/DLY \rightarrow DFF$	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN (DLY_OUT connected to CLK)
		$LUT \to CNT/DLY$	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)
		$DFF \to CNT/DLY$	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DFF_OUT connected to DLY_IN)
	1153	CNT6 DLY EDET FUNCTION Selection	0: normal 1: DLY function edge detection (registers[1142:1139]=0000/ 0001/0010)
90	1154	CNT6 CNT mode SYNC selection	0: bypass 1: after two DFF
	1155		00: bypass the initial
	1156	CNT6 initial value selection	10: initial 0 10: initial 1 11: initial 1
	1157		00: bypass the initial
90	1158	CNT7 initial value selection	U1: Initial U 10: initial 1 11: initial 1
	1159	CNT7 CNT mode SYNC selection	U: bypass 1: after two DFF

Datasheet

Revision 3.17

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	1160	CNT7 DLY EDET FUNCTION Selection	0: normal 1: DLY function edge detection (registers [1174:1171]=0000/ 0001/0010)
		Single 3-bit LUT	00000: Matrix A - In2; Matrix B - In1; Matrix C - In0 (DLY_IN - LOW)
		Single DFF w RST and SET	10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DLY_IN - LOW)
	1161, 1165:1162	Single CNT/DLY	00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK (CNT); Matrix C - NC (DLY_OUT connected to LUT/DFF)
		$CNT/DLY \rightarrow LUT$	00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0 (DLY_OUT connected to In2)
91		$CNT/DLY \rightarrow DFF$	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST; Matrix C - CLK (DLY_OUT connected to D)
		$CNT/DLY \rightarrow LUT$	00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0 (DLY_OUT connected to In1)
		$CNT/DLY \rightarrow DFF$	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)
		CNT/DLY → LUT	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY_IN (DLY_OUT connected to In0)
		$CNT/DLY \rightarrow DFF$	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN (DLY_OUT connected to CLK)
		$LUT \rightarrow CNT/DLY$	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)
		$DFF \to CNT/DLY$	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DFF_OUT connected to DLY_IN)

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
91	1166		Clock source sel[3:0]
	1167		0001: 25M/4;
	1169	DLY/CNT7 Clock Source Select	0010: 2M(OSC1); 0011:2M/8; 0100: 2M/64; 0101: 2M/512; 0110:2K(OSC0); 0111: 2K/8; 1000:2K/64; 1001: 2K/512; 1010: 2K/4096; 1011: 2K/32768; 1100: 2K/262144; 1101: CNT6_END; 1110: External; 1111: Not used
	1170	CNT7 output pol selection	0: Default Output 1: Inverted Output
92	1171		0000: both edge Delay;
	1172		0001: falling edge delay; 0010: rising edge delay: 0011: both edge One Shot; 0100: falling edge One Shot; 0101: rising edge One Shot; 0111: falling edge freq detect; 0111: falling edge freq detect; 1000: rising edge freq detect; 1001: both edge detect; 1010: falling edge detect; 1010: falling edge detect; 1100: both edge reset CNT; 1101: falling edge reset CNT; 1111: rising edge reset CNT; 1111: high level reset CNT
	1173		
	1174	CNT7 function and edge mode selection	
	1175	Reserved	
	1176		
	1177		
	1170		
93	1180		[15]:1 UT4_1 [15]/DEE20 or LATCH Select
	1181		
	1182		0: DFF function, 1: LATCH function
	1183	Multi0 LUT4 DFF setting	I[14]:LU14_1 [14]/DFF20 Output Select 0: Q output, 1: QB output
	1184		[13]:LUT4_1 [13]/DFF20 Initial Polarity Select
	1186		[12:0]:LUT4_1 [12:0]
	1187		
94	1188		
	1189	1	
	1190		
	1191		

D	а	ta	s	h	e	e	t
-	-		-		-	-	•

© 2023 Renesas Electronics Corporation

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address				
Byte	Register Bit	Signal Function	Register Bit Definition	
	1192			
	1193			
	1194			
95	1195			
	1196			
	1197			
	1198			
	1200	REG_CNT0_D[15:0]	Data[15:0]	
	1200			
	1201			
	1202			
96	1204			
	1205			
	1206			
	1207			
-	1208		IZI: LIT3 0 IZI/DEE13 or LATCH Soloot	
	1209		0: DFF function, 1: LATCH function	
	1210		 [6]:LUT3_9 [6]/DFF13 Output Select 0: Q output, 1: QB output [5]:LUT3_9 [5]/DFF13 0: nRST from Matrix Output, 1: nSET from Matrix Output [4]:LUT3_9 [4]/DFF13 Initial Polarity Select 0: Low, 1: High 	
97	1211	Multi1 LUT3 DEE setting		
	1212			
	1213			
	1214		[3:0]:LUT3 9 [3:0]	
	1215			
	1210			
	1217		Data[7:0]	
	1210	- REG_CNT1_D[7:0]		
98	1210			
	1221			
	1222			
	1223			
	1224		[7]:11173 10 [7]/DEE14 or 1 ATCH Soloct	
	1225		0: DFF function, 1: LATCH function	
	1226		[6]:LUT3_10[6]/DFF14 Output Select	
99	1227	Multi2 LUT3 DFF setting	ISI:LUT3 10 ISI/DFF14	
	1228		0: nRST from Matrix Output, 1: nSET from Matrix Output	
	1229		[[4]:LUT3_10 [4]/DFF14 Initial Polarity Select	
	1230		[3:0]:LUT3_10 [3:0]	
	1231			
	1232			
	1234			
	1235			
9A	1236	REG_CNT2_D[7:0]	Data[7:0]	
	1237			
	1238			
	1239	1		

Datasheet

Revision 3.17

Address				
Byte	Register Bit	Signal Function	Register Bit Definition	
	1240		I71:LUT3 11 I71/DFF15 or LATCH Select	
	1241		0: DFF function, 1: LATCH function	
9B	1242		[[6]:LU13_11[6]/DFF15 Output Select	
	1243	Multi3_LUT3_DFF setting	[5]:LUT3_11 [5]/DFF15	
	1244		0: nRST from Matrix Output, 1: nSET from Matrix Output	
	1240		0: Low. 1: High	
	1240		[3:0]:LUT3_11 [3:0]	
	1247			
	1240			
	1250			
	1250			
9C	1252	REG_CNT3_D[7:0]	Data[7:0]	
	1253			
	1254			
	1255			
	1256			
9D	1257		0: DFF function, 1: LATCH function	
	1258		[6]:LUT3_12[6]/DFF16 Output Select	
	1259	Multid LLIT3 DEE setting	0: Q output, 1: QB output	
	1260	Mulli4_LOT3_DFF Setting	0: nRST from Matrix Output, 1: nSET from Matrix Output	
	1261		[4]:LUT3_12 [4]/DFF16 Initial Polarity Select	
	1262		U: Low, 1: High I3:01:1 UT3 12 I3:01	
	1263		[0:0]:2010_12[0:0]	
	1264			
	1265			
	1266			
9E	1207	REG_CNT4_D[7:0]	Data[7:0]	
	1200			
	1209			
	1270			
	1272		+	
	1273		[7]:LUT3_13 [7]/DFF17 or LATCH Select	
	1274		[6]:LUT3 13[6]/DFF17 Output Select	
05	1275		0: Q output, 1: QB output	
96	1276	Mullib_LUT3_DFF selling	0: nRST from Matrix Output. 1: nSET from Matrix Output	
	1277		[4]:LUT3_13 [4]/DFF17 Initial Polarity Select	
	1278		0: Low, 1: High	
	1279			
	1280			
	1281			
	1282			
A0	1283	REG_CNT5_D[7:0]	Data[7:0]	
	1284			
	1205			
	1200			
L	1201			

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	1288		I71:I UT3 14 I71/DEE18 or I ATCH Select
A1	1289		0: DFF function, 1: LATCH function
	1290		[6]:LUT3_14[6]/DFF18 Output Select
	1291	Multi6 LUT3 DFF setting	[5]:LUT3 14 [5]/DFF18
	1292	0	0: nRST from Matrix Output, 1: nSET from Matrix Output
	1293		[[4]:LU13_14 [4]/DFF18 Initial Polarity Select
	1294		[3:0]:LUT3_14 [3:0]
	1295		
	1290		
	1297		
	1290		
A2	1299	REG_CNT6_D[7:0]	Data[7:0]
	1301		
	1302		
	1303		
	1304		
	1305		[7]:LUT3_15 [7]/DFF19 or LATCH Select
	1306		 [6]:LUT3_15[6]/DFF19 Output Select 0: Q output, 1: QB output [5]:LUT3_15 [5]/DFF19 0: nRST from Matrix Output, 1: nSET from Matrix Output [4]:LUT3_15 [4]/DFF19 Initial Polarity Select 0: Low, 1: High
4.0	1307		
A3	1308	Multi7_LUT3_DFF setting	
	1309		
	1310		
	1311		
	1312		Data[7:0]
	1313		
	1314	REG_CNT7_D[7:0]	
A4	1315		
	1316		
	1317		
	1318		
	1319		
	1320		
	1321		
	1323		
A5	1324		
	1325		
	1326		
	1327		
<u> </u>	1328	CINIU (1601ts) Counted Value	i virtuai input
	1329		
	1330		
46	1331		
AU	1332		
	1333		
	1334		
	1335	1	

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Puto	Register	Signal Function	Register Bit Definition
Dyte	Bit		
A7	1336		
	1337		
	1338		
	1339	CNT6 (8bits) Counted Value	Virtual Input
	1340		
	1341		
	1342		
	1343		
	1344		
	1345		
	1340		
A8	13/18	CNT7 (8bits) Counted Value	Virtual Input
	1349	-	
	1350		
	1351		
	1352		[7]:LUT3 1 [7]/DFF4 or LATCH Select
	1353	•	0: DFF function, 1: LATCH function
	1354		0: Q output, 1: QB output
	1355		[5]:LUT3_1 [5]/DFF4 Initial Polarity Select
A9	1356	LUI3_1_DFF4 setting	0: Low, 1: High [4]1 UT3 1 [4]/DEE4
	1357		0: nRST from Matrix Output, 1: nSET from Matrix Output
	1358		[3]:LUT3_1 [3]/DFF4 Active level selection for RST/SET
	1359		[2:0]: LUT3_1 [2:0]
	1360		[7]:LUT3_2 [7]/DFF5 or LATCH Select
	1361		[6]:LUT3 2 [6]/DFF5 Output Select
	1362		0: Qoutput, 1: QB output
AA	1303	LUT3 2 DFF5 setting	0: Low. 1: High
	1365		[4]:LUT3_2[4]/DFF5
	1366	-	U: nRST from Matrix Output, 1: nSET from Matrix Output [3]:1 UT3 2 [3]/DEE5 Active level selection for RST/SET
	1367		0: Active low level reset/set, 1: Active high level reset/set
	1269		[[2:0]: L013_2 [2:0] [[7]:1] IT3_3 [7]/DEE6 or LATCH Soloot
	1369		0: DFF function, 1: LATCH function
	1370	-	[6]:LUT3_3 [6]/DFF6 Output Select
	1371		[5]:LUT3 3 [5]/DFF6 Initial Polarity Select
AB	1372	LUT3_3_DFF6 setting	
	1373		[[4]:LU13_3 [4]/DFF6 0: nRST from Matrix Output_1: nSFT from Matrix Output
	1374	1	[3]:LUT3_3 [3]/DFF6 Active level selection for RST/SET
	1375		U: Active low level reset/set, 1: Active high level reset/set [2:0]: LUT3_3 [2:0]

Address			
Byte	Register	Signal Function	Register Bit Definition
5,10	Bit		
AC	1376		[7]:LUT3_4 [7]/DFF7 or LATCH Select
	1377		[6]:LUT3 4 [6]/DFF7 Output Select
	1378		0: Q output, 1: QB output
	1379	LUT3 4 DFF7 setting	0: Low, 1: High
	1300		[4]:LUT3_4 [4]/DFF7
	1382		0: nRST from Matrix Output, 1: nSET from Matrix Output [3]:LUT3_4 [3]/DFF7 Active level selection for RST/SET
	1383		0: Active low level reset/set, 1: Active high level reset/set [2:0]: LUT3_4 [2:0]
	1384		
	1385	I UT2 3 VAL or PGen data	UUT2_3[3:0] or PGen 4bit counter data[3:0]
	1386		
	1387		
AD	1388	LUT3_1 or DFF4 Select	0: LUT3_1 1: DFF4
	1389	LUT3_2 or DFF5 Select	0: LUT3_2 1: DFF5
	1390	LUT3_3 or DFF6 Select	0: LUT3_3 1: DFF6
	1391	LUT3_4 or DFF7 Select	0: LUT3_4 1: DFF7
	1392		
	1393		
	1394		
AE	1395		
	1396		
	1397		
	1390		
	1/00	PGen data	PGen Data[15:0]
	1400		
	1402		
	1403		
AF	1404		
	1405		
	1406		
	1407		

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	1408	LUT2_3 or PGen Select	0: LUT2_3 1: PGen
	1409	Active level selection for RST/SET for LUT2_3 or PGen	0: Active low level reset/set 1: Active high level reset/set
	1410	Active level selection for RST/SET for LUT3_16 or Pipe Delay/RIPP CNT	0: Active low level reset/set 1: Active high level reset/set
BO	1411	Out of LUT3_16 or Out0 of Pipe Delay/RIPP CNT Select	0: LUT3_16 1: OUT0 of Pipe Delay or RIPP CNT
DU	1412	PIPE_RIPP_CNT_S	0: Pipe delay mode selection 1: Ripple Counter mode selection
	1413	Pipe Delay OUT1 Polarity Select	0: Non-inverted 1: Inverted
	1414	LUT4_0 or DFF12 Select	0: LUT4_0 1: DFF12
	1415	LUT3_0 or DFF3 Select	0: LUT3_0 1: DFF3
	1416		
	1417		[7:4]: LUT3 8 [7:4]/REG S1[3:0] pipe delay out1 sel
	1418		[3:0]: LUT3_8 [3:0]/REG_S0[3:0] pipe delay out0 sel
D1	1419	LUT value or pipe delay out sel or nSET/END	at RIPP CNT mode: bit[1418:1416] is the nSET value bit[1421:1419] is the END value bit[1422] is the range control: 0 full cycle, 1 range cycle bit[1423] Not used
	1420	value	
	1421	1	
	1422		
	1423		
	1424		
	1425		
	1426		
B2	1427		0: DFF function 1: LATCH function
	1428		[14]:LUT4_0 [14]/DFF12 Output Select
	1429		0: Q output, 1: QB output
	1430		0: Low, 1: High
	1432	LUT4_0_DFF12 setting	[12]:LUT4_0 [12]/DFF12 stage selection
	1433		U: Q OT TIRST DEF; 1 Q OT SECOND DEF
	1434		0: nRST from Matrix Output, 1: nSET from Matrix Output
	1435		[10]:LUT4_0 [10]/DFF12 Active level selection for RST/SET
B3	1436		[9:0]: LUT4_0 [9:0]
	1437		
	1438		
	1439		
	1440		[7]:LUT3_0 [7]/DFF3 or LATCH Select
	1441		U: DFF function, 1: LATCH function
	1442		0: Q output, 1: QB output
	1443		[5]:LUT3_0 [5]/DFF3 Initial Polarity Select
B4	1444	LUT3 0 DFF3 setting	[4]:LUT3 0 [4]/DFF3stage selection
	1445		0: Q of first DFF; 1 Q of second DFF
	1446		0: nRST from Matrix Output: 1: nSFT from Matrix Output
	1447		[2]:LUT3_0 [2]/DFF3 Active level selection for RST/SET 0: Active low level reset/set, 1: Active high level reset/set [1:0]: LUT3_0 [1:0]

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	1448	Filter or Edge Detector selection	0, filter 1, edge det
	1449	Output Polarity Select	0: output non-invert 1: output invert
	1450		00: Rising Edge Det
DE	1451	Select the edge mode	10: Both Edge Det 11: Both Edge DLY
50	1452		00: 125 ns
	1453	Edge Detector	10: 375 ns 11: 500 ns
	1454	O de et the Edge Mede ef Decemente et la Delevi	00: Rising Edge Detector
	1455	& Edge Detector	11: Failing Edge Detector 10: Both Edge Detector 11: Both Edge Delay
	1456		[7]:LUT3_5 [7]/DFF8 or LATCH Select
	1457		[6]:LUT3 5 [6]/DFF8 Output Select
	1458		0: Q output, 1: QB output
B6	1459	LUT3 5 DFF8 setting	0: Low. 1: High
	1400		[4]:LUT3_5 [4]/DFF8
	1462	-	0: nRS1 from Matrix Output, 1: nSE1 from Matrix Output [3]:LUT3_5 [3]/DEF8 Active level selection for RST/SET
	1463		0: Active low level reset/set, 1: Active high level reset/set [2:0]: LUT3 5 [2:0]
	1464		[7]:LUT3_6 [7]/DFF9 or LATCH Select
	1465		0: DFF function, 1: LATCH function
	1466		0: Q output, 1: QB output
P 7	1467	LUT3 6 DEE0 sotting	[5]:LUT3_6 [5]/DFF9 Initial Polarity Select
57	1468	LOTS_0_DFF9 setting	[4]:LUT3 6 [4]/DFF9
	1469		0: nRST from Matrix Output, 1: nSET from Matrix Output
	1470		0: Active low level reset/set, 1: Active high level reset/set
	1/72		[2.0]. L013_0 [2.0] [7]:11173_7 [7]/DEE10 or LATCH Select
	1472		0: DFF function, 1: LATCH function
	1474		[6]:LUT3_7 [6]/DFF10 Output Select
	1475		[5]:LUT3 7 [5]/DFF10 Initial Polarity Select
B8	1476	LUT3_7_DFF10 setting	0: Low, 1: High
	1477		0: nRST from Matrix Output, 1: nSET from Matrix Output
	1478		[3]:LUT3_7 [3]/DFF10 Active level selection for RST/SET
	1479		[2:0]: LUT3_7 [2:0]
	1480		[7]:LUT3_8 [7]/DFF11 or LATCH Select
	1481		[6]:LUT3 8 [6]/DFF11 Output Select
	1482		0: Q output, 1: QB output
B9	1483	LUT3 8 DFF11 setting	נסוגניט איזעענאט נאטער די די וחווימו אסומרונץ Select 0: Low, 1: High
	1404		[4]:LUT3_8 [4]/DFF11
	1486		13:LUT3 8 [3]/DFF11 Active level selection for RST/SFT
	1487		0: Active low level reset/set, 1: Active high level reset/set [2:0]: LUT3_8 [2:0]

Datasheet

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
BA	1488	LUT2_0 or DFF0 Select	0: LUT2_0 1: DFF0
	1489	LUT2_1 or DFF1 Select	0: LUT2_1 1: DFF1
	1490	LUT2_2 or DFF2 Select	0: LUT2_2 1: DFF2
	1491	Reserved	
	1492	LUT3_5 or DFF8 Select	0: LUT3_5 1: DFF8
	1493	LUT3_6 or DFF9 Select	0: LUT3_6 1: DFF9
	1494	LUT3_7 or DFF10 Select	0: LUT3_7 1: DFF10
	1495	LUT3_8 or DFF11 Select	0: LUT3_8 1: DFF11
	1496		[3]:LUT2_0 [3]/DFF0 or LATCH Select
	1497		[2]:LUT2 0 [2]/DFF0 Output Select
	1498	LUT2_0/DFF0 setting	0: Q output, 1: QB output
	1499		0: Low, 1: High [0]:LUT2_0 [0]
DD	1500		[3]:LUT2_1 [3]/DFF1 or LATCH Select
	1501		U: DFF function, 1: LATCH function
	1502	LUT2_1/DFF1 setting	0: Q output, 1: QB output
	1503		[1]:LUT2_1 [1]/DFF1 Initial Polarity Select 0: Low, 1: High [0]:LUT2_1 [0]
	1504		[3]:LUT2_2 [3]/DFF2 or LATCH Select
	1505	LUT2_2/DFF2 setting	0: DFF function, 1: LATCH function
	1506		0: Q output, 1: QB output
BC	1507		[1]:LUT2_2 [1]/DFF2 Initial Polarity Select 0: Low, 1: High [0]:LUT2 2 [0]
	1508		
	1509		
	1510		
	1511		
	1512		
	1513	Reserved	
BD	1514		
	1515	•	
	1510		
	1517		
	1519	-	
1		1	

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
BE	1520	Reserved	
	1521	Reserved	
	1522	Reserved	
	1523	Reserved	
	1524	Reserved	
	1525		
	1526		
	1527		
	1528	Reserved	
	1529	Reserved	
	1530	Reserved	
BF	1531	Reserved	
	1532	Reserved	
	1533	Reserved	
	1534	Reserved	
	1535	Reserved	
	1536	Reserved	
	1537	Reserved	
	1538	Reserved	
C0	1539	Reserved	
	1540	Reserved	
	1541	Reserved	
	1542	Reserved	
	1543	Reserved	
	1044	Reserved	
	1545	Reserved	
	1540	Reserved	
C1	1547	Reserved	
	15/0	Reserved	
	1550	Reserved	
	1551	Reserved	
	1552	Reserved	
	1553	Reserved	
	1554	Reserved	
	1555	Reserved	
C2	1556	Reserved	
	1557	Reserved	
	1558	Reserved	
	1559	Reserved	
	1560	Reserved	
	1561	Reserved	
C3	1562	Reserved	
	1563	Reserved	
	1564	Reserved	
	1565	Reserved	
	1566	Reserved	
	1567	Reserved	

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	1568	Reserved	
	1569	Reserved	
	1570	Reserved	
C4	1571	Reserved	
01	1572	Reserved	
	1573	Reserved	
	1574	Reserved	
	1575	Reserved	
	1576	Reserved	
	1577	Reserved	
	1578	Reserved	
C5	1579	Reserved	
00	1580	Reserved	
	1581	Reserved	
	1582	Reserved	
	1583	Reserved	
	1584	Reserved	
	1585	Reserved	
	1586	Reserved	
CG	1587	Reserved	
00	1588	Reserved	
	1589	Reserved	
	1590	Reserved	
	1591	Reserved	
	1592	Reserved	
	1593	Reserved	
	1594	Reserved	
C7	1595	Reserved	
07	1596	Reserved	
	1597	Reserved	
	1598	Reserved	
	1599	Reserved	
	1600	Reserved	
	1601	Reserved	
	1602	Reserved	
<u></u>	1603	Reserved	
0	1604	Reserved	
	1605	Reserved	
	1606	Reserved	
	1607	Reserved	
	1608	Reserved	
	1609	Reserved	
C9	1610	Reserved	
	1611	Reserved	
	1612	Reserved	
	1613	Reserved	
	1614	Reserved	
	1615	Reserved	

Datasheet

Revision 3.17
GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address				
Byte	Register Bit	Signal Function	Register Bit Definition	
	1616	Reserved		
	1617	Reserved		
	1618	Reserved		
CA	1619	Reserved		
07	1620	Reserved		
	1621	Reserved		
	1622	Reserved		
	1623	Reserved		
	1624	Reserved		
	1625	Reserved		
	1626	Reserved		
CP	1627	Reserved		
CB	1628	Reserved		
	1629	Reserved		
	1630	Reserved		
	1631	Reserved		
	1632	Reserved		
	1633	Reserved		
	1634	Reserved		
66	1635	Reserved		
	1636	Reserved		
Byte CA CB CC CD CD CE	1637	Reserved		
	1638	Reserved		
	1639	Reserved		
	1640	Reserved		
	1641	Reserved		
	1642	Reserved		
	1643	Reserved		
CD	1644	Reserved		
	1645	Reserved		
	1646	Reserved		
	1647	Reserved		
	1648	Reserved		
	1649	Reserved		
	1650	Reserved		
05	1651	Reserved		
CE	1652	Reserved		
	1653	Reserved		
	1654	Reserved		
	1655	Reserved		
	1656	Reserved		
	1657	Reserved		
	1658	Reserved		
~-	1659	Reserved		
CF	1660	Reserved		
	1661	Reserved		
	1662	Reserved		
	1663	Reserved		

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address				
Byte	Register Bit	Signal Function	Register Bit Definition	
	1664	Reserved		
	1665	Reserved		
	1666	Reserved		
חם	1667	Reserved		
	1668	Reserved		
	1669	Reserved		
	1670	Reserved		
	1671	Reserved		
	1672	Reserved		
	1673	Reserved		
	1674	Reserved		
1 ח	1675	Reserved		
	1676	Reserved		
	1677	Reserved		
	1678	Reserved		
	1679	Reserved		
	1680	Reserved		
	1681	Reserved		
	1682	Reserved		
20	1683	Reserved		
	1684	Reserved		
D2	1685	Reserved		
	1686	Reserved		
	1687	Reserved		
	1688	Reserved		
	1689	Reserved		
	1690	Reserved		
D2	1691	Reserved		
03	1692	Reserved		
	1693	Reserved		
	1694	Reserved		
	1695	Reserved		
	1696	Reserved		
	1697	Reserved		
	1698	Reserved		
	1699	Reserved		
D4	1700	Reserved		
	1701	Reserved		
	1702	Reserved		
	1703	Reserved		
	1704	Reserved		
	1705	Reserved		
	1706	Reserved		
D 2	1707	Reserved		
D5	1708	Reserved		
	1709	Reserved		
	1710	Reserved		
	1711	Reserved		

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address				
Byte	Register Bit	Signal Function	Register Bit Definition	
	1712	Reserved		
	1713	Reserved		
	1714	Reserved		
D6	1715	Reserved		
	1716	Reserved		
	1717	Reserved		
	1718	Reserved		
	1719	Reserved		
	1720	Reserved		
	1721	Reserved		
	1722	Reserved		
D7	1723	Reserved		
	1724	Reserved		
	1725	Reserved		
	1726	Reserved		
	1727	Reserved		
	1728	Reserved		
	1729	Reserved		
	1730	Reserved		
D8	1731	Reserved		
	1732	Reserved		
	1733	Reserved		
	1734	Reserved		
	1/35	Reserved		
	1/36	Reserved		
	1/3/	Reserved		
	1/38	Reserved		
D9	1739	Reserved		
	1740	Reserved		
	1741	Reserved		
	1742	Reserved		
	1743	Reserved		
	1744	Reserved		
	1740	Reserved		
	1/40	Reserved		
DA	1747	Reserved		
	1740	Reserved		
	1749	Reserved		
	1750	Reserved		
	1751	Reserved		
	1752	Reserved		
	1754	Reserved		
	1755	Reserved		
DB	1750	Reserved		
	1757	Reserved		
	1750	Reserved		
	1750	Received		
1	1109	IVESEINER		

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address				
Byte	Register Bit	Signal Function	Register Bit Definition	
	1760	Reserved		
	1761	Reserved		
	1762	Reserved		
DC	1763	Reserved		
20	1764	Reserved		
	1765	Reserved		
	1766	Reserved		
	1767	Reserved		
	1768	Reserved		
	1769	Reserved		
	1770	Reserved		
DD	1771	Reserved		
	1772	Reserved		
	1773	Reserved		
	1774	Reserved		
	1775	Reserved		
	1776	Reserved		
	1777	Reserved		
	1778	Reserved		
DF	1779	Reserved		
	1780	Reserved		
	1781	Reserved		
	1782	Reserved		
	1783	Reserved		
	1784	Reserved		
	1785	Reserved		
	1786	Reserved		
DF	1787	Reserved		
	1788	Reserved		
	1789	Reserved		
	1790	Reserved		
	1791	Reserved		
	1792	Reserved		
	1793	Reserved		
	1794	Reserved		
E0	1795	Reserved		
	1796	Reserved		
	1797	Reserved		
	1798	Reserved		
	1799	Reserved		
	1800	Reserved		
	1801	Reserved		
	1802	Reserved		
E1	1803	Reserved		
	1804	Reserved		
	1805	Reserved		
	1806	Reserved		
	1807	Reserved		

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address				
Byte	Register Bit	Signal Function	Register Bit Definition	
	1808	Reserved		
A Byte E2 E3 E4 E5 E6 E7	1809	Reserved		
	1810	Reserved		
F2	1811	Reserved		
	1812	Reserved		
	1813	Reserved		
	1814	Reserved		
	1815	Reserved		
	1816	Reserved		
	1817	Reserved		
	1818	Reserved		
E3	1819	Reserved		
	1820	Reserved		
	1821	Reserved		
	1822	Reserved		
	1823	Reserved		
	1824	Reserved		
	1825	Reserved		
	1826	Reserved		
F4	1827	Reserved		
- ·	1828	Reserved		
	1829	Reserved		
	1830	Reserved		
	1831	Reserved		
	1832	Reserved		
	1833	Reserved		
	1834	Reserved		
F5	1835	Reserved		
	1836	Reserved		
	1837	Reserved		
	1838	Reserved		
	1839	Reserved		
	1840	Reserved		
	1841	Reserved		
	1842	Reserved		
F6	1843	Reserved		
	1844	Reserved		
	1845	Reserved		
	1846	Reserved		
	1847	Reserved		
	1848	Reserved		
	1849	Reserved		
	1850	Reserved		
F7	1851	Reserved		
	1852	Reserved		
	1853	Reserved		
	1854	Reserved		
	1855	Reserved		

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address				
Byte	Register Bit	Signal Function	Register Bit Definition	
	1856	Reserved		
A Byte E8 E9 EA EB EC	1857	Reserved		
	1858	Reserved		
E8	1859	Reserved		
	1860	Reserved		
	1861	Reserved		
	1862	Reserved		
	1863	Reserved		
	1864	Reserved		
	1865	Reserved		
	1866	Reserved		
E9	1867	Reserved		
	1868	Reserved		
	1869	Reserved		
	1870	Reserved		
	18/1	Reserved		
	1872	Reserved		
	1873	Reserved		
	1874	Reserved		
EA	1875	Reserved		
	1876	Reserved		
EA	1877	Reserved		
	1878	Reserved		
	1879	Reserved		
	1001	Reserved		
	1001	Reserved		
	1002	Reserved		
EB	1000	Reserved		
	1004	Reserved		
	1996	Reserved		
	1000	Reserved		
	1007	Pasarvad		
	1880	Reserved		
	1800	Reserved		
	1801	Reserved		
EC	1802	Reserved		
	1803	Reserved		
	1894	Reserved		
	1895	Reserved		
	1896	Reserved		
	1897	Reserved		
	1898	Reserved		
	1899	Reserved		
ED	1900	Reserved		
	1901	Reserved		
	1902	Reserved		
	1903	Reserved		

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address				
Byte	Register Bit	Signal Function	Register Bit Definition	
	1904	Reserved		
	1905	Reserved		
Byte Byte EE F0 F1 F2 F3	1906	Reserved		
FF	1907	Reserved		
	1908	Reserved		
	1909	Reserved		
	1910	Reserved		
	1911	Reserved		
	1912	Reserved		
	1913	Reserved		
	1914	Reserved		
EE	1915	Reserved		
L1	1916	Reserved		
	1917	Reserved		
	1918	Reserved		
	1919	Reserved		
	1920	Reserved		
	1921	Reserved		
	1922	Reserved		
FO	1923	Reserved		
FU	1924	Reserved		
EF F0 F1	1925	Reserved		
	1926	Reserved		
	1927	Reserved		
	1928	Reserved		
	1929	Reserved		
	1930	Reserved		
E 1	1931	Reserved		
F I	1932	Reserved		
	1933	Reserved		
	1934	Reserved		
	1935	Reserved		
	1936	Reserved		
	1937	Reserved		
	1938	Reserved		
го	1939	Reserved		
F2	1940	Reserved		
	1941	Reserved		
	1942	Reserved		
	1943	Reserved		
	1944	Reserved		
	1945	Reserved		
	1946	Reserved		
F 2	1947	Reserved		
гJ	1948	Reserved		
	1949	Reserved		
	1950	Reserved		
	1951	Reserved		

Datasheet

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Α	ddress			
Byte	Register Bit	Signal Function	Register Bit Definition	
	1952	GPO0 I2C output expander data		
Add Byte I F4 I F4 I F5 I F5 I F6 I F7 I F8 I F8 I	1953	GPO0 I2C output expander select	0: GPO0 output come from matrix 1: GPO0 output is register	
	1954	GPIO6 I2C output expander data		
F4	1955	GPIO6 I2C output expander select	0: GPIO6 output come from matrix 1: GPIO6 output is register	
	1956	GPIO7 I2C output expander data		
	1957	GPIO7 I2C output expander select	0: GPIO7 output come from matrix 1: GPIO7 output is register	
	1958	GPIO8 I2C output expander data		
	1959	GPIO8 I2C output expander select	0: GPIO8 output come from matrix 1: GPIO8 output is register	
	1960	I2C reset bit with reloading NVM into Data register (soft reset)	0: Keep existing condition 1: Reset execution	
	1961	IO Latching Enable During I2C Write Interface	0: Disable 1: Enable	
	1962	Reserved		
55	1963	Protect mode enable	0: Disable 1: Enable	
гJ	1964	Reserved		
	1965	Register protection mode bit 0	000: all open read/write (mode 0);	
	1966	Register protection mode bit 1	010: partly lock read (mode 1);	
	1967	Register protection mode bit 2	011: partly lock read2/write (mode 3); 100: all lock read (mode 4); 101: all lock write (mode 5); 110: all lock read/write (mode 6).	
	1968			
Byte I Byte I F4 I F5 I F5 I F6 I F7 I F8 I	1969			
	1970			
F6	1971	I ² C write mask bits	1: mask	
	1972		U: overwrite	
	1973			
	1974			
	1975			
	1970			
	1978	-		
	1979			
F7	1980	Reserved		
	1981	-		
	1982			
	1983			
	1984			
	1985			
	1986		PO0 output come from matrix PO0 output is register PIO6 output is register PIO7 output come from matrix PIO7 output come from matrix PIO8 output is register PIO8 output is register eep existing condition eset execution isable nable isable nable all open read/write (mode 0); partly lock read2 (mode 1); partly lock read2 (mode 2); partly lock read2 (mode 3); all lock read/write (mode 6). nask verwrite	
F8	1987	Reserved		
	1988			
	1989			
	1001			
1	1331			

Datasheet

Revision 3.17

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	1992	Reserved	
	1993	Reserved	
	1994	Reserved	
F9	1995		
	1996		
	1997	Reserved	
	1998		
	1999		
	2000		
	2001		
	2002		
FA	2003	Reserved	
	2004		
	2005		
	2000		
	2007		
	2000		
	2009		
	2010		
FB	2011	Reserved	
	2012		
	2010		
	2015		
	2016		
	2017		
	2018		
-0	2019		
FC	2020	Keserved	
	2021		
	2022		
	2023		
	2024		
	2025	I ² C slave address	
	2026		
	2027		
FD	2028	Slave address selection bit0	0: from register [2024] 1: from GPI0
	2029	Slave address selection bit1	0: from register [2025] 1: from GPIO2
	2030	Slave address selection bit2	0: from register [2026] 1: from GPIO4
	2031	Slave address selection bit3	0: from register [2027] 1: from GPIO5

Datasheet

Revision 3.17

RENESAS

GreenPAK Programmable Mixed-Signal Matrix

Table 55: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
A Byte	2032	I2C operation disable bit	0: I2C operation enable; matrix in 32(33) select I2C_virtu- al_0(1) Input 1: I2C operation disable; matrix in 32(33) select GPIO0(GPIO1) digital input
	2033	Reserved	
FF	2034	Reserved	
	2035	Reserved	
	2036	Reserved	
	2037	Reserved	
	2038	Reserved	
	2039	Reserved	
	2040		
	2041		
	2042		
FF	2043	Reserved	
FF	2044		
	2045		
	2046		
	2047		

GreenPAK Programmable Mixed-Signal Matrix

18 Package Top Marking Definitions

18.1 STQFN 14L 1.6 MM X 2 MM 0.4P FC, BEFORE FEBRUARY 1, 2021

18.2 STQFN 14L 1.6 MM X 2 MM 0.4P FC, AFTER FEBRUARY 1, 2021

		PPP	Part Code
		NWR	Date Code + Revision
Pin 1 Identifier	0	NN	Serial Number Code

GreenPAK Programmable Mixed-Signal Matrix

19 Package Information

19.1 PACKAGE OUTLINES FOR STQFN 14L 1.6 MM X 2.0 MM X 0.55 MM 0.4P FC PACKAGE

JEDEC MO-220 IC Net Weight: 0.0045 g

Unit: mm								
Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max	
Α	0.50	0.55	0.60	D	1.95	2.00	2.05	
A1	0.005	-	0.050	E	1.55	1.60	1.65	
A2	0.10	0.15	0.20	L	0.25	0.30	0.35	
b	0.13	0.18	0.23	L1	0.35	0.40	0.45	
е	e 0.40 BSC				0.21 REF			

GreenPAK Programmable Mixed-Signal Matrix

19.2 STQFN HANDLING

Be sure to handle STQFN package only in a clean, ESD-safe environment. Tweezers or vacuum pick-up tools are suitable for handling. Do not handle STQFN package with fingers as this can contaminate the package pins and interface with solder reflow.

19.3 SOLDERING INFORMATION

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 2.64 mm³ (nominal) for STQFN 14L Package. More information can be found at www.jedec.org.

GreenPAK Programmable Mixed-Signal Matrix

20 Ordering Information

Part Number	Туре
SLG46855V	14-pin STQFN
SLG46855VTR	14-pin STQFN - Tape and Reel (3k units)

Note 1 Use SLG46855V to order. Shipments are automatically in Tape and Reel.

Note 2 "TR" suffix is no longer used. It is a legacy naming convention shown here only for informational purposes.

20.1 TAPE AND REEL SPECIFICATIONS

# 66		Nominal	Max Units		Reel &	Leader (min)		Trailer (min)		Таре	Part
Package Type	Pins	Package Size (mm)	per Reel	per Box	Hub Size (mm)	Pockets	Length (mm)	Pockets	Length (mm)	Width (mm)	Pitch (mm)
STQFN 14L 1.6 mm x 2 mm 0.4P FC Green	14	1.6x2.0x0.55	3000	3000	178/60	100	400	100	400	8	4

20.2 CARRIER TAPE DRAWING AND DIMENSIONS

Package Type	PocketBTM Length (mm)	PocketBTM Width (mm)	Pocket Depth (mm)	Index Hole Pitch (mm)	Pocket Pitch (mm)	Index Hole Diameter (mm)	Index Hole to Tape Edge (mm)	Index Hole to Pocket Center (mm)	Tape Width (mm)
	A0	B0	K0	P0	P1	D0	E	F	W
STQFN 14L 1.6 mm x 2 mm 0.4P FC Green	1.9	2.3	0.76	4	4	1.5	1.75	3.5	8

GreenPAK Programmable Mixed-Signal Matrix

21 Layout Guidelines

21.1 STQFN 14L 1.6 MM X 2.0 MM X 0.55 MM 0.4P FC PACKAGE

Unit: μm

	_	4	_		_	- 4	L
U	а	τa	S	n	е	eι	

GreenPAK Programmable Mixed-Signal Matrix

Glossary

Α		
ACK	Acknowledge bit	
ACMP	Analog Comparator	
ACMPH	Analog Comparator High Speed	
ACMPL	Analog Comparator Low Power	
В		
BG	Bandgap	
С		
CLK	Clock	
СМО	Connection matrix output	
CNT	Counter	
_		
D		
DFF		
DLY	Delay	
F		
	Electrostatic discharge	
ΓV		
F		
FSM	Finite State Machine	
G		
GPI	General Purpose Input	
GPIO	General Purpose Input/Output	
GPO	General Purpose Output	
I		
IN	Input	
Ю	Input/Output	
L		
LPF	Low Pass Filter	
LSB	Least Significant Bit	
LUT	Look Up Table	
Datasheet		R

GreenPAK Programmable Mixed-Signal Matrix

LV	Low Voltage
	g.

Μ

MSB	Most Significant Bit
MUX	Multiplexer

Ν

NPR	Non-Volatile Memory Read/Write/Erase Protection
nRST	Reset
NVM	Non-Volatile Memory

0

OD	Open-Drain
OE	Output Enable
OSC	Oscillator
OTP	One Time Programmable
OUT	Output

Ρ

PD	Power-down
PGen	Pattern Generator
POR	Power-On Reset
PP	Push-Pull
PWR	Power
P DLY	Programmable Delay

R

S

SCL	I ² C Clock Input
SDA	I ² C Data Input/Output
SLA	Slave Address
SMT	With Schmitt Trigger
SV	nSET Value

т

ΤS Temperature Sensor

Datasheet	Revision 3.17	
	197 of 201	

GreenPAK Programmable Mixed-Signal Matrix

V

Vref Voltage Reference

W

WOSMT	Without Schmitt Trigger
WS	Wake and Sleep Controller

GreenPAK Programmable Mixed-Signal Matrix

Revision History

Revision	Date	Description		
3.17	28-Feb-2023	Added notes to section Ordering Information		
3.16	7-Mar-2022	Updated R _{PULL} in section Electrical Characteristics Renesas rebranding Added IC Net Weight in Package Information section Updated bytes 5B, 5C, 5D, 5E and 5F in the Register map Added information about SCL and SDA Pins' Schmitt Trigger		
3.15	23-Jul-2021	Updated section GPIO8 Source for Oscillator 2 (25 MHz) t _{start} updated in table ACMP Specifications Updated section Wake and Sleep Controller Corrected Wake and Sleep Controller Block Diagram Corrected figure 4-bit LUT1 or CNT/DLY0 Added parameter Vref Errors in ACMP Spec table		
3.14	4-Feb-2021	t _{start} updated in table ACMP Specifications at T = -40 °C to +85 °C, V _{DD} = 2.3 V to 5.5 V Unless Otherwise Noted Corrected figure GPIO with I ² C Mode IO Structure DiagramUpdated section Package Top Marking System Definition Updated figure Internal Macrocell States During POR Sequence Updated figure POR Sequence Updated figure 4-bit LUT1 or CNT/DLY0 Corrected information in Matrix Input Table Corrected information in Register Map table for registers [591], [593], [595], [597], [599], [601], [603], [605]		
3.13	13-Aug-2020	Updated information for GPIO0 and GPIO1 in tables Functional Pin Description and Register Map Corrected POR Initialization and Power Down sections Corrected 3-Bit LUT or DFF/Latch with 8-Bit Counter/Delay Macrocells section Fixed typos		
3.12	26-May-2020	Added description for Internal 100 µA current source Updated registers [1522:1520] Corrected Read/Write Protection Options table Updated information in section Analog Comparators Corrected Figure TS Output vs Temperature Updated section CNT/DLY/FSM Timing Diagrams Corrected section Package Top Marking Definitions Added note for CNTs		
3.11	10-Feb-2020	Corrected Wake/Sleep Timing Diagrams, Normal and Short Wake Mode, Counter Set i Used Corrected Pattern Generator Block Diagram Corrected CNTs Clock Source Select (CNTx_end) registers Corrected Reset Command Timing figure Corrected ACMP Characteristics Corrected 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells section Corrected Wake/Sleep Controller Diagram Corrected Deglitch Filter/Edge Detector Diagram Updated Typical Counter/Delay Offset Table Corrected EC of the I ² C Pins Table Updated 4-Bit LUT or DFF/Latch with 16-Bit Counter/Delay Macrocell Block Diagram		
3.10	16-Oct-2019	Corrected GPIO with I ² C Mode IO Structure Updated registers [1967:1965], register [1963], register [1961] and register [1960] Corrected registers [1447:1440] Corrected 4-bit LUT1 or CNT/DLY0 Diagram Corrected 3-bit LUT16/Pipe Delay/Ripple Counter Diagram Updated 4-bit LUT1 or CNT/DLY0 Diagram		

Datasheet

RENESAS

SLG46855

GreenPAK Programmable Mixed-Signal Matrix

Revision	Date	Description		
3.9	7-Aug-2019	Updated section 4-Bit LUT or DFF/Latch with 16-Bit Counter/Delay Macrocell Updated section 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells Corrected Edge Detection Mode Timing Diagram Corrected Delayed Edge Detection Mode Timing Diagram Corrected ACMPs hysteresis selection options Fixed typos Corrected Matrix Output Table		
3.8	4-Jul-2019	Updated according to new template Push-Pull 4x added to table Absolute Maximum Ratings Corrected registers [705:704], [711:706], [785:784], [789], [790], [792:791], [796], [2032] Corrected Pin Description		
3.7	31-May-2019	Updated Figures in Oscillators Power-On Delay Section Updated Oscillators Power-On Delay Table Updated Oscillators Frequency limit data Updated figures in Oscillators Accuracy Section Updated subsection Reading Counter Data via I ² C Fixed typos Corrected Oscillators names Changed I ² C Serial Communications Macrocell section structure		
3.6	3-Apr-2019	Corrected 2-bit LUT3 or PGen Figure Updated according to Dialog's Writing Guideline Updated "Typical Current Estimated for Each Macrocell" table Added new subsection Electrostatic Discharge Ratings Fixed typos		
3.5	1-Mar-2019	Fixed formatting error Updated Voltage Reference Block Diagram, registers [677], [680] Removed information about SCL and SDA Pins' Schmitt Trigger Fixed typos Added ACMPs' hysteresis information		
3.4	17-Dec-2018	Added graph for ACMP Input Current Source Updated Input Current Source Spec Added graphs to Oscillators Accuracy section Corrected Absolute Maximum Ratings Added section ACMP Typical Performance Added section IO Typical Performance Updated Table Typical Delay Estimated for Each Macrocell Updated ACMP section Fixed typos Updated 4x Drive Pins Structure Diagram		
3.3	5-Oct-2018	Updated IO Pins Structure Diagrams Fixed typos Updated Matrix OE IO 4x Drive Structure Diagram Updated GPO Register OE 4x Drive Structure Diagram Updated Analog Temperature Sensor Structure Diagram		
3.2	14-Sept-2018	Fixed typos Updated Oscillator Startup Diagram Updated Example of I ² C Byte Write Bit Masking		
3.1	9-Aug-2018	Updated section STQFN Handling Fixed typos Updated R _{PULL} in Electrical Spec		
3.0	15-May-2018	Final version		

GreenPAK Programmable Mixed-Signal Matrix

Status Definitions

Revision	Datasheet Status	Product Status	Definition
1. <n></n>	Target	Development	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
2. <n></n>	Preliminary	Qualification	This datasheet contains the specifications and preliminary characterization data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.
3. <n></n>	Final	Production	This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Major specification changes are communicated via Customer Product Notifications. Datasheet changes are communicated via www.renesas.com.
4. <n></n>	Obsolete	Archived	This datasheet contains the specifications for discontinued products. The information is provided for reference only.

RoHS Compliance

Renesas Electronics Corporation's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.