

2N6453, 2N6454 N-Channel JFET

Features

 InterFET N0132L Geometry Low noise: 1.0 nV/VHz typical

· High gain: 32mS typical

Low gate leakage: 750fA typical @10V

 Typical lpss: 25mA • Typical BVgss: -35V · High radiation tolerance

RoHS, REACH, CMR compliant

Custom test and binning options available

SMT, TH, and bare die package options

• Edge case SPICE modeling: InterFET SPICE

Industry Standard Crosses

2SK152, 2SK170, 2N3972, 2N4393, MMBF4393L

NSVJ3557SA3, NSVJ5908DSG5, NSVJ2394SA3

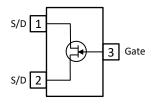
InterFET Similar Parts

- IF170D, IFN152
- SMP3972, SMP4393

InterFET Dual Parts

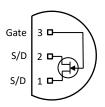
IF389D, IF1322, IF1322A

Applications


- General: Amplifiers; Switches; Voltage regulators; Oscillators; Signal mixers; Noise generators
- Military/Aero: Radar; Communications; Satellites; Missiles guidance; Hydrophone Preamplifiers
- Medical: Medical imaging systems; Medical monitors and recorders; Ultrasound equipment
- Audio: Tone control circuits; Headphone amplifiers; Audio filters; Electret Microphone

Description

The -25V InterFET 2N6453 and 2N6454 are targeted for sensitive amplifier stages for mid-frequencies designs. Gate leakages are typically 750fA at room temperatures. The InterFET proprietary JFET materials


TO-72 Bottom View Gate InterFE Case S/D

SOT23 Top View

TO-92 Bottom View

NOTE: S/D pins are interchangeable Source Drain connections

and processes result in highest radiation tolerance and lowest leakage JFETs on the market.

Ordering Information Custom Part and Binning Options Available

Part Number	Description	Case Packaging	
Part Number	Description	Case	Packaging
2N6453; 2N6454	Through-Hole	TO-72	Bulk
PN6453; PN6454	Through-Hole	TO-92	Bulk
SMP6453; SMP6454	Surface Mount	SOT23	Bulk
	7" Tape and Reel: Max 3,000 Pieces		Minimum 1,000 Pieces
SMP6453TR; SMP6454TR	13" Tape and Reel: Max 9,000 Pieces	SOT23	Tape and Reel
2N6453COT; 2N6454COT	Chip Orientated Tray (COT Waffle Pack)	СОТ	400/Waffle Pack
2N6453CFT; 2N6454CFT	Chip Face-up Tray (CFT Waffle Pack)	CFT	400/Waffle Pack

NOTICE: Please refer to the end of this document for information on product materials, compliance, safety, and legal statements.

Electrical Characteristics

Maximum Ratings (@ TA = 25°C, Unless otherwise specified)

	Parameters	TO-72	SOT-23	TO-92	Unit
V_{RGS}	Reverse Gate Source and Gate Drain Voltage	-20	-20	-20	V
I _{FG}	Continuous Forward Gate Current	10	10	10	mA
PD	Continuous Device Power Dissipation ¹	500	350	500	mW
Р	Power Derating ¹	3.3	2.8	4	mW/°C
Tı	Operating Junction Temperature	-65 to 175	-55 to 150	-55 to 150	°C
T _{STG}	Storage Temperature	-65 to 175	-55 to 150	-55 to 150	°C

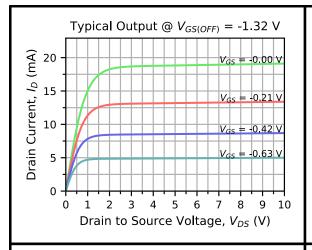
¹ Thermal power dissipation and derating values obtained with gate pin (substrate) thermally connected to pad and/or internal layer.

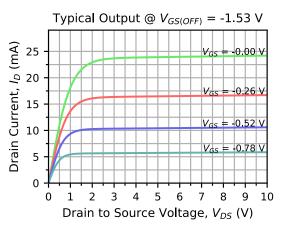
Static Characteristics (@ TA = 25°C, Unless otherwise specified)

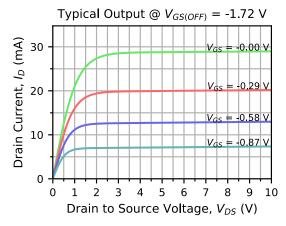
			2N6453		2N6454		
	Parameters	Conditions	Min	Max	Min	Max	Unit
V _{(BR)GSS}	Gate to Source Breakdown Voltage	$V_{DS} = 0V$, $I_{G} = -1\mu A$	-20		-25		V
I _{GSS}		$V_{GS} = -10V$, $V_{DS} = 0V$, $T_A = 25$ °C		-0.1			- A
	Gate to Source	$V_{GS} = -15V$, $V_{DS} = 0V$, $T_A = 25$ °C				-0.5	nA
	Reverse Current	$V_{GS} = -10V$, $V_{DS} = 0V$, $T_A = 125$ °C		-0.2			
		$V_{GS} = -15V$, $V_{DS} = 0V$, $T_A = 125$ °C				-1	μΑ
V _{GS(OFF)}	Gate to Source Cutoff Voltage	$V_{DS} = 10V, I_D = 0.5nA$	-0.75	-5	-0.75	-5	V
I _{DSS}	Drain to Source Saturation Current	$V_{GS} = 0V$, $V_{DS} = 10V$ (Pulsed)	15	50	15	50	mA

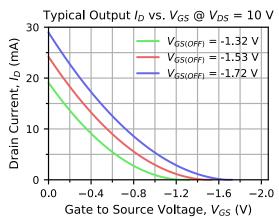
Dynamic Characteristics (@ TA = 25°C, Unless otherwise specified)

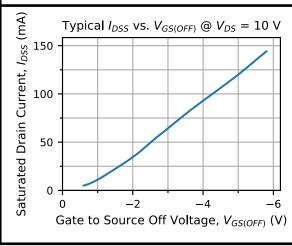
			2N6453		2N6454		
	Parameters	Conditions	Min	Max	Min	Max	Unit
GFS	Forward Transconductance	V _{DS} = 10V, I _D = 15mA, f = 1kHz	20	40	20	40	mS
Gos	Output Conductance	V _{DS} = 10V, I _D = 15mA, f = 1kHz		100		100	μS
Ciss	Input Capacitance	V _{DS} = 10V, I _D = 15mA, f = 1MHz		25		25	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 10V, I _D = 15mA, f = 1MHz		5		5	рF
e _n	Equivalent Circuit Input Noise Voltage	$V_{DS} = 10V$, $I_D = 5mA$, $f = 10Hz$ $V_{DS} = 10V$, $I_D = 5mA$, $f = 1kHz$		5 3		10 8	nV/√Hz
NF	Noise Figure	V_{DS} = 10V, I_D = 5mA, f = 10Hz R_G = 10 k Ω		1.5		2.5	dB

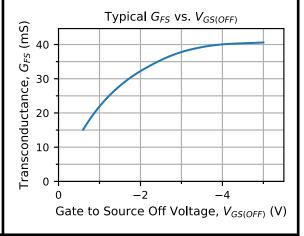


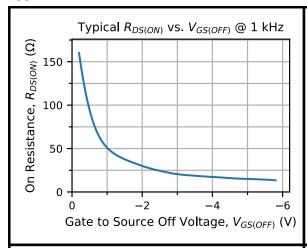


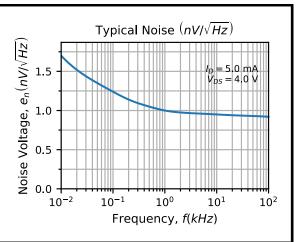


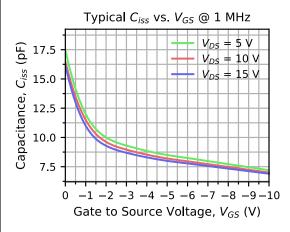


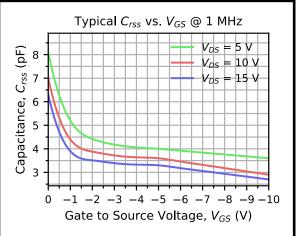

Typical 2N6453, 2N6454 Characteristics

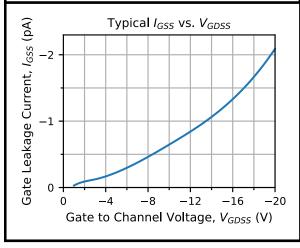




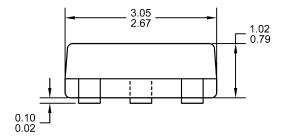


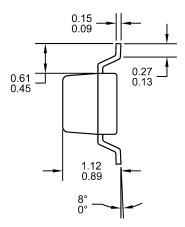





Typical 2N6453, 2N6454 Characteristics (Continued)

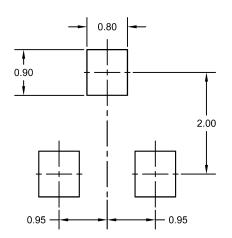






SOT23 (TO-236AB) Mechanical and Layout Data

Package Outline Data

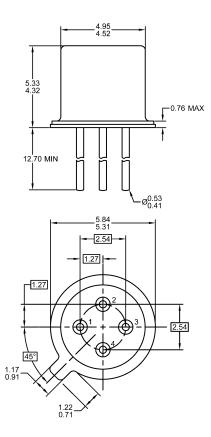


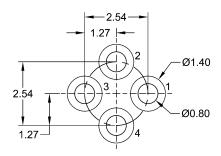
- 1. All linear dimensions are in millimeters.
- 2. Package weight approximately 0.12 grams
- 3. Molded plastic case UL 94V-0 rated
- For Tape and Reel specifications refer to InterFET CTC-021 Tape and Reel Specification, Document number: IF39002
- Bulk product is shipped in standard ESD shipping material
- 6. Refer to JEDEC standards for additional information.

Suggested Pad Layout

- 1. All linear dimensions are in millimeters.
- 2. The suggested land pattern dimensions have been provided for reference only. A more robust pattern may be desired for wave soldering.

2N6453-4 Document Number: IF35055 Rev A01




TO-72 Mechanical and Layout Data

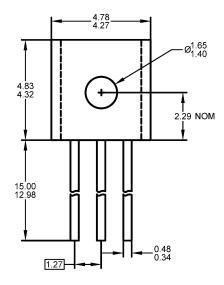
Package Outline Data

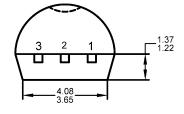
- All linear dimensions are in millimeters.
- 2. Four leaded device. Not all leads are shown in drawing views.
- Package weight approximately 0.31 grams
- Bulk product is shipped in standard ESD shipping material
- 5. Refer to JEDEC standards for additional information.

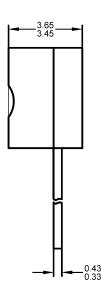
Suggested Through-Hole Layout

- All linear dimensions are in millimeters.
- The suggested land pattern dimensions have been provided as a straight lead reference only. A more robust pattern may be desired for wave soldering and/or bent lead configurations.

6 of 8 2N6453-4 InterFET Corporation https://www.InterFET.com Document Number: IF35055 Rev A01 May, 2023

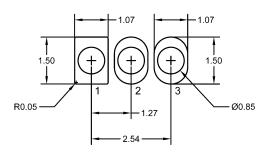






TO-92 Mechanical and Layout Data

Package Outline Data



- 1. All linear dimensions are in millimeters.
- 2. Package weight approximately 0.19 grams
- 3. Molded plastic case UL 94V-0 rated
- Bulk product is shipped in standard ESD shipping material
- 5. Refer to JEDEC standards for additional information.

Suggested Through-Hole Layout

- 1. All linear dimensions are in millimeters.
- The suggested land pattern dimensions have been provided as a straight lead reference only. A more robust pattern may be desired for wave soldering and/or bent lead configurations.