onsemi

ESD Protection Diode Array, 5-Line

SMS05C, SMS12C, SMS15C, SMS24C

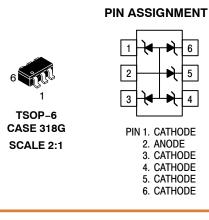
This 5-line surge protection array is designed for application requiring transient voltage protection capability. It is intended for use in over-transient voltage and ESD sensitive equipment such as computers, printers, automotive electronics, networking communication and other applications. This device features a monolithic common anode design which protects five independent lines in a single TSOP-6 package.

Features

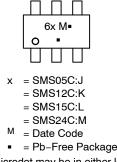
- Protects up to 5 Lines in a Single TSOP-6 Package
- Peak Power Dissipation 350 W (8 \times 20 µs Waveform)
- ESD Rating of Class 3B (Exceeding 8.0 kV) per Human Body Model and Class C (Exceeding 400 V) per Machine Model
- Compliance with IEC 61000-4-2 (ESD) 15 kV (Air), 8.0 kV (Contact)
- Flammability Rating of UL 94 V-0
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These are Pb–Free Devices

Applications

- Hand-Held Portable Applications
- Networking and Telecom
- Automotive Electronics
- Serial and Parallel Ports
- Notebooks, Desktops, Servers


Symbol	Rating	Value	Unit				
P _{PK} 1	Peak Power Dissipation 8 \times 20 μs Double Exponential Waveform (Note 1)	350	W				
TJ	Operating Junction Temperature Range	-40 to 150	°C				
T _{STG}	Storage Temperature Range	–55 to 150	°C				
TL	Lead Solder Temperature (10 s)	260	°C				
ESD	Human Body Model (HBM) Machine Model (MM) IEC 61000-4-2 Air (ESD) IEC 61000-4-2 Contact (ESD)	>8000 >400 >15000 >8000	V				

MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Non-repetitive current pulse per Figure 3.

TSOP-6 FIVE SURGE PROTECTION 350 W PEAK POWER

MARKING DIAGRAM

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]	
SMS05CT1G			
SMS12CT1G	TSOP-6	3000 / Tape & Reel	
SMS15CT1G	(Pb-Free)	Soud / Tape & Heel	
SMS24CT1G SZSMS24CT1G			

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SMS05C, SMS12C, SMS15C, SMS24C

SMS05C ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

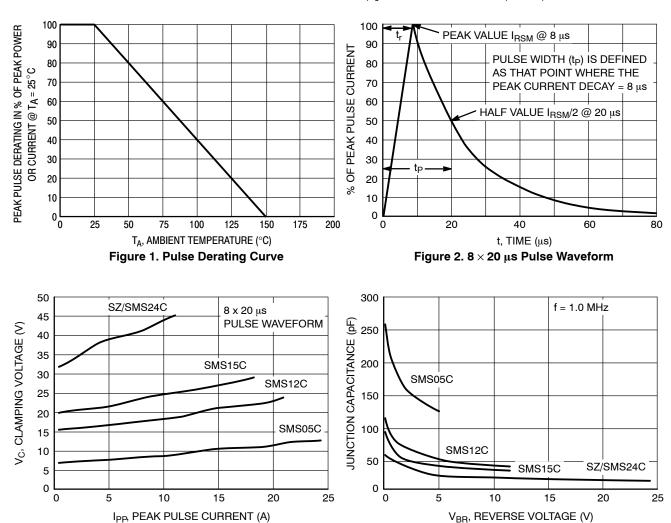
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	(Note 2)			5.0	V
Breakdown Voltage	V _{BR}	I _T = 1.0 mA (Note 3)	6.2		7.2	V
Reverse Leakage Current	I _R	V _{RWM} = 5.0 V			5.0	μA
Clamping Voltage	V _C	I_{PP} = 5.0 A (8 \times 20 μs Waveform)			9.8	V
Clamping Voltage	V _C	I_{PP} = 24 A (8 \times 20 μ s Waveform)			14.5	V
Maximum Peak Pulse Current	I _{PP}	8 $ imes$ 20 μ s Waveform			24	А
Capacitance	CJ	$V_R = 0 V$, f = 1.0 MHz (Line to GND)		260	400	pF

SMS12C ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Reverse Working Voltage	V _{RWM}	(Note 2)			12	V
Breakdown Voltage	V _{BR}	I _T = 1.0 mA (Note 3)	13.3		15	V
Reverse Leakage Current	I _R	V _{RWM} = 12 V		0.001	1.0	μA
Clamping Voltage	V _C	I_{PP} = 5.0 A (8 \times 20 μs Waveform)			19	V
Clamping Voltage	V _C	I_{PP} = 15 A (8 \times 20 μs Waveform)			23	V
Maximum Peak Pulse Current	I _{PP}	8 \times 20 μs Waveform			15	А
Capacitance	CJ	V_R = 0 V, f = 1.0 MHz (Line to GND)		120	150	pF

SMS15C ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$, unless otherwise specified) (See Note 4)

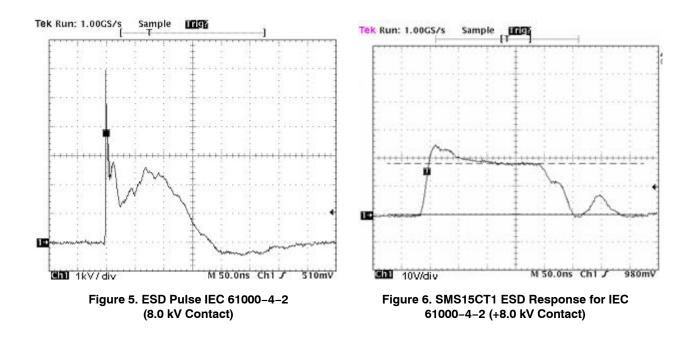
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	(Note 2)			15	V
Breakdown Voltage	V _{BR}	I _T = 1.0 mA (Note 3)	17		19	V
Reverse Leakage Current	I _R	V _{RWM} = 15 V		0.05	1.0	μA
Clamping Voltage	V _C	I_{PP} = 5.0 A (8 \times 20 μs Waveform)			24	V
Clamping Voltage	V _C	I_{PP} = 12 A (8 \times 20 μs Waveform)			29	V
Maximum Peak Pulse Current	I _{PP}	8 \times 20 μs Waveform			12	А
Capacitance	CJ	$V_R = 0 V$, f = 1.0 MHz (Line to GND)		95	125	pF


SZ/SMS24C ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	(Note 2)			24	V
Breakdown Voltage	V _{BR}	I _T = 1.0 mA (Note 3)	26.7		32	V
Reverse Leakage Current	I _R	V _{RWM} = 24 V		0.001	1.0	μA
Clamping Voltage	V _C	I_{PP} = 5.0 A (8 \times 20 μs Waveform)			40	V
Clamping Voltage	V _C	I_{PP} = 8 A (8 \times 20 μ s Waveform)			44	V
Maximum Peak Pulse Current	I _{PP}	8 \times 20 μs Waveform			8.0	А
Capacitance	CJ	$V_R = 0 V$, f = 1.0 MHz (Line to GND)		60	75	pF

2. Surge protection devices are normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal or greater than the DC or continuous peak operating voltage level.

3. V_{BR} is measured at pulse test current I_T. 4. Parametrics are the same for the Pb–Free packages, which are suffixed with a "G".


SMS05C, SMS12C, SMS15C, SMS24C

TYPICAL PERFORMANCE CURVES (T_{.1} = 25°C unless otherwise specified)

Figure 3. Clamping Voltage vs. Peak Pulse Current

SMS05C, SMS12C, SMS15C, SMS24C

TYPICAL COMMON ANODE APPLICATIONS

A 5 surge protection junction common anode design in a TSOP–6 package protects four separate lines using only one package. This adds flexibility and creativity to PCB design

especially when board space is at a premium. A simplified example of SMS05C Series Device applications is illustrated below.

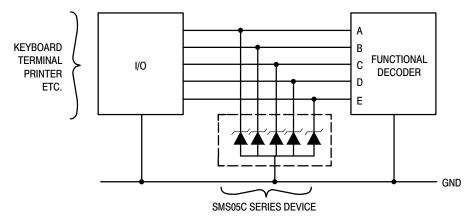
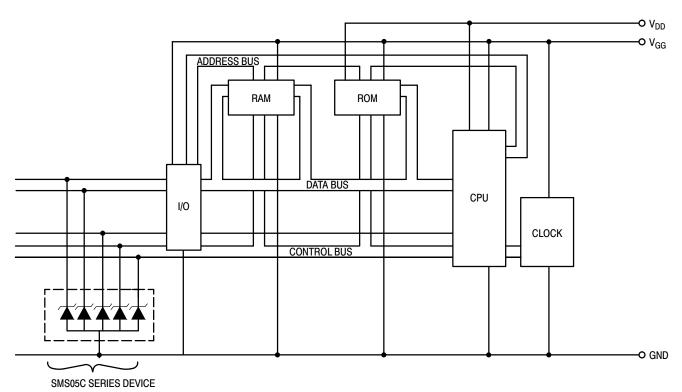
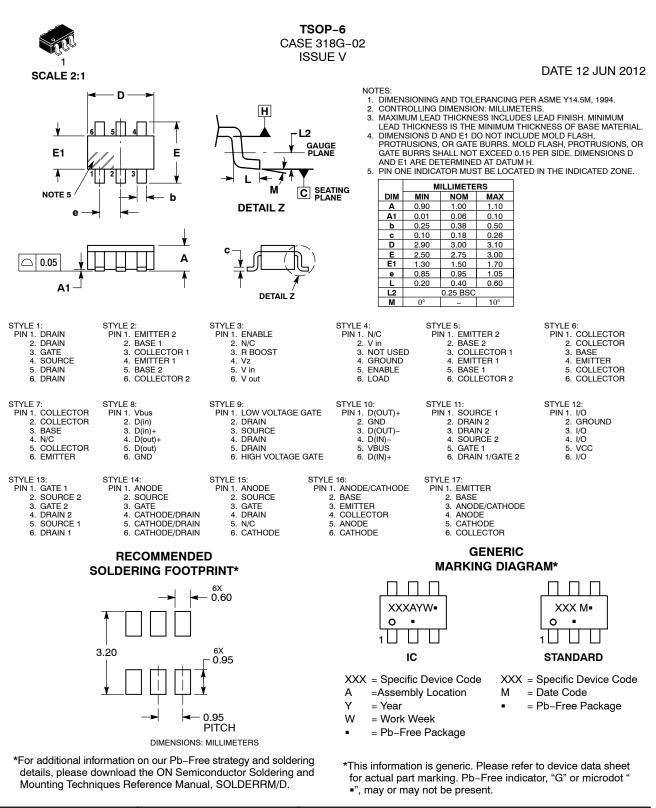




Figure 7. Computer Interface Protection

IT NUMBER: 98ASB14888C Electronic versions are uncontrolled except when accessed directly from the Doc Printed versions are uncontrolled except when stamped "CONTROLLED COPY"				
TSOP-6		PAGE 1 OF 1		
_		98ASB14888C Printed versions are uncontrolled except when stamped "CONTROLLED "		

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights for dhers.