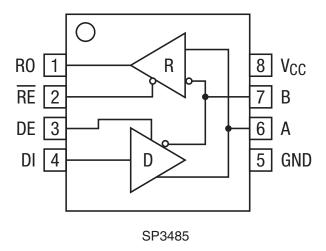


3.3V Low Power Half-Duplex RS-485 Transceiver with 10Mbps Data Rate

August 5, 2021

Description


The <u>SP3485</u> device is a 3.3V low power half-duplex transceiver that meets the specifications of the RS-485 and RS-422 serial protocols. This device is pin-to-pin compatible with the MaxLinear SP481, SP483 and SP485 devices as well as popular industry standards. The SP3485 can meet the electrical specifications of the RS-485 and RS-422 serial protocols up to 10Mbps under load.

FEATURES

- RS-485 and RS-422 transceiver
- Operates from a single 3.3V supply
- Interoperable with 5.0V logic
- Driver/receiver enable
- -7V to +12V common-mode input voltage range
- Allows up to 32 transceivers on the serial bus
- Compatibility with industry standard 75176 pinout
- Driver output short-circuit protection

Ordering Information - Back Page

Block Diagram

216DSR00 1 Rev. 2.0.2

Absolute Maximum Ratings

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{CC}		6.0V
Input Voltages		
	Logic	0.3V to 6.0V
	Drivers	0.3V to 6.0V
	Receivers	±15V
Outputs		
	Drivers	±15V
	Receivers	0.3V to 6.0V
Receiver Outpu	ut Current	±60mA

Storage Temperature65°C to	to 150°C
Maximum Junction Temperature, T _J	125°C
Power Dissipation	600mW
(derate 6.90mW/°C above 70°C)	

Operating Conditions

ESD Rating

Human Body Model (HBM).....±2kV

CAUTION:

ESD (ElectroStatic Discharge) sensitive device. Permanent damage may occur on anconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts.

Personnel should be properly grounded prior to handling his device. The protective foam should be discharged to the destination socket before devices are removed.

Electrical Characteristics

Unless otherwise noted: $T_{AMB} = T_{MIN}$ to T_{MAX} and $V_{CC} = 3.3V \pm 5\%$.

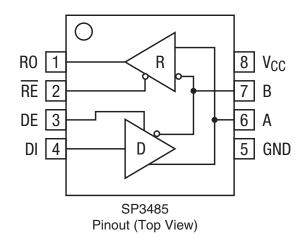
paded; R = $\infty\Omega$; Figure 1 n Load; R = 50Ω (RS-422); Figure 1 n Load; R = 27Ω (RS-485); Figure 1 27Ω or R = 50Ω ; Figure 1 27Ω or R = 50Ω ; Figure 1 lies to DE, DI, RE	
n Load; R = 50Ω (RS-422); Figure 1 n Load; R = 27Ω (RS-485); Figure 1 27Ω or R = 50Ω ; Figure 1 27Ω or R = 50Ω ; Figure 1 lies to DE, DI, RE	
Load; R = 27Ω (RS-485); Figure 1 27Ω or R = $50Ω$; Figure 1 27Ω or R = $50Ω$; Figure 1 lies to DE, DI, RE	
27Ω or R = 50Ω ; Figure 1 27Ω or R = 50Ω ; Figure 1 lies to DE, DI, RE	
27Ω or R = 50Ω; Figure 1	
lies to DE, DI, RE	
	
_	
lies to DE, DI, RE	
lies to DE, DI, RE	
≤ V _O ≤ +12V; Figure 8	
≤ V _O ≤ +12V; Figure 8	
$=$ V_{CC} , DE $=$ V_{CC}	
ıres 2 & 9	
ıres 2 & 9	
₁ - t _{DO2} , Figures 2 and 10	
n 10%-90%; Figures 3 and 10	
ires 4 and 11	
ires 5 and 11	
Figures 5 and 11	
ires 5 and 11	
res 5 and 11	
ires 4 and 11	

Electrical Characteristics (Continued)

Unless otherwise noted: T_{AMB} = T_{MIN} to $T_{MAX}~$ and V_{CC} = 3.3V $\pm 5\%.$

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS	
SP3485 Receiver DC Characteristics						
Differential input threshold	-0.2		0.2	Volts	-7V ≤ V _{CM} ≤ 12V	
Input hysteresis		20		mV	V _{CM} = 0V	
Output voltage HIGH	Vcc-0.4			Volts	V _{ID} = 200mV, -1.5mA	
Output voltage LOW			0.4	Volts	V _{ID} = -200mV, 2.5mA	
Three-state (high impedance) output current			±1	μA	$0V \le V_O \le V_{CC}$; $\overline{RE} = V_{CC}$	
Input resistance	12			kΩ	-7V ≤ V _{CM} ≤ 12V	
Input current (A, B); V _{IN} = 12V			1.0	mA	DE = 0V, V_{CC} = 0V or 3.6V, V_{IN} = 12V	
Input current (A, B); V _{IN} = -7V			-0.8	mA	DE = 0V, V_{CC} = 0V or 3.6V, V_{IN} = -7V	
SP3485 Receiver AC Characteristics						
Maximum data rate	10			Mbps	RE = 0V, DE = 0V	
Receiver input to output, t _{PLH}		40	100	ns	Figures 6 and 12	
Receiver input to output, t _{PLH}			70	ns	T _{AMB} = 25°C, Vcc = 3.3V, Figures 6 and 12	
Receiver input to output, tPHL		35	100	ns	Figures 6 and 12	
Receiver input to output, tPHL			70	ns	T _{AMB} = 25°C, Vcc = 3.3V, Figures 6 and 12	
Differential receiver skew		4		ns	$t_{RSKEW} = t_{RPHL} - t_{RPLH} ,$ Figures 6 and 12	
Receiver enable to output low		10	60	ns	Figures 7 and 13, S ₁ closed, S ₂ open	
Receiver enable to output high		10	60	ns	Figures 7 and 13, S ₂ closed, S ₁ open	
Receiver disable from low		10	60	ns	Figures 7 and 13, S ₁ closed, S ₂ open	
Receiver disable from high		10	60	ns	Figures 7 and 13, S ₂ closed, S ₁ open	
Receiver enable from shutdown to output high, tprsh			1800	ns	C_L = 15pF, R_L = 1k Ω .	
Receiver enable from shutdown to output low, t _{PRSL}			1800	ns	Figures 7 and 13	
Time to shutdown, t _{SHDN}	50	200	600	ns	Notes 1 and 2	
Power Requirements						
Supply current , no load		425	2000	μA	\overline{RE} , DI = 0V or V_{CC} ; DE = V_{CC}	
Supply current , no load		300	1500	μA	\overline{RE} = 0V, DI = 0V or V _{CC} , DE = 0V	

3



^{1.} The transceivers are put into shutdown by gringing RE high and DE low simultaneously for at least 600ns. If the control inputs are in this state for less than 50ns, the device is guaranteed to not enter shutdown. If the enable inputs are held in this state for at least 600ns, the device is assured to be in shutdown. Note that the receiver and driver times increase significantly when coming out of shutdown.

2. This spec is guaranteed by design and bench characterization.

Pin Functions

Pin	Name	Description		
1	RO	Receiver output		
2	RE	Receiver output enable active LOW		
3	DE	Driver output enable active HIGH		
4	DI	Driver input		
5	GND	Ground connection		
6	А	Non-inverting driver output / receiver input		
7	В	Inverting driver output / receiver input		
8	V _{CC}	Positive supply		

Test Circuits

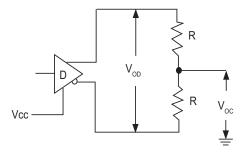


Figure 1: Driver DC Test Load Circuit

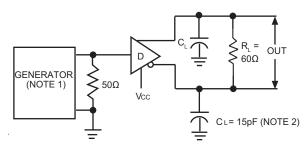


Figure 3: Driver Differential Output Delay and Transition Time Circuit.

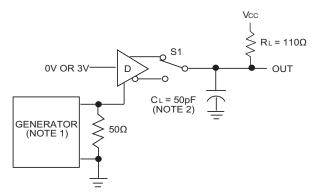


Figure 5: Driver Enable and Disable Timing Circuit,
Output Low

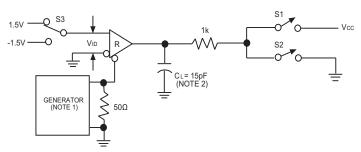


Figure 7: Receiver Enable and Disable Timing Circuit

NOTES

1: The input pulse is supplied by a generator with the following characteristics: PRR = 250kHz, 50% duty cycle, t_R < 6.0ns, Z_O = 50 Ω .

2: C_L includes probe and stray capacitance.

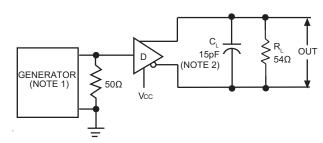


Figure 2: Driver Propagation Delay Test Circuit

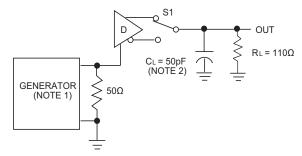


Figure 4: Driver Enable and Disable Timing Circuit, Output High

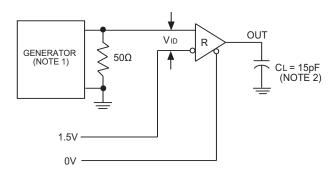


Figure 6: Receiver Propagation Delay Test Circuit

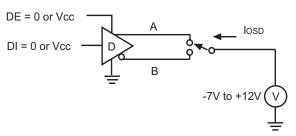


Figure 8: Driver Short Circuit Current Limit Test

Switching Waveforms

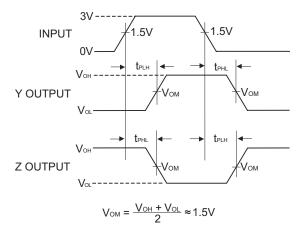


Figure 9: Driver Propagation Delay Waveforms

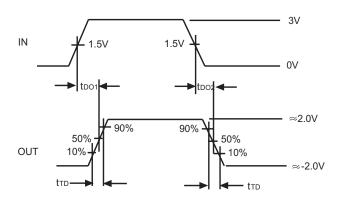


Figure 10: Driver Differential Output Delay and Transition Time Waveforms

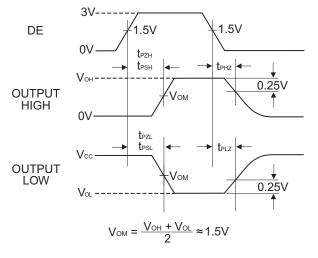


Figure 11: Driver Enable and Disable Timing Waveforms

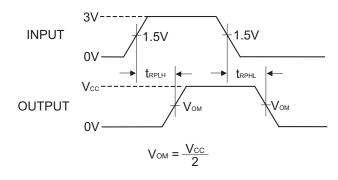


Figure 12: Receiver Propagation Delay Waveforms

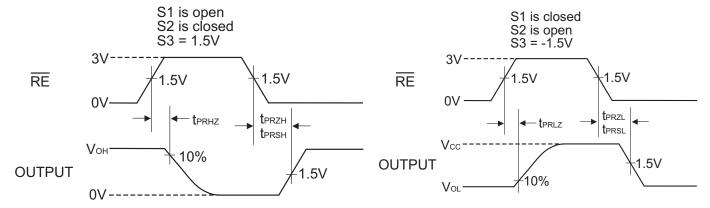


Figure 13: Receiver Enable and Disable Waveforms

Description

The SP3485 is a member in the family of 3.3V low power half-duplex transceivers that meet the electrical specifications of the RS-485 and RS-422 serial protocols. This device is pinto-pin compatible with the MaxLinear SP481, SP483 and SP485 devices as well as popular industry standards. The SP3485 feature MaxLinear's BiCMOS process allowing low power operation without sacrificing performance.

Driver

The driver outputs of the SP3485 are differential outputs meeting the RS-485 and RS-422 standards. The typical voltage output swing with no load will be 0 volts to 3.3 Volts. With a load of 54Ω across the differential outputs, the drivers can maintain greater than 1.5V voltage levels.

The driver of the SP3485 has a driver enable control line which is active HIGH. A logic HIGH on DE (pin 3) will enable the differential driver outputs. A logic LOW on the DE (pin 3) will tri-state the driver outputs.

The driver of the SP3485 operates up to 10Mbps. The 250mA I_{SC} maximum limit on the driver output allows the SP3485 to withstand an infinite short circuit over the $\,$ -7.0V to 12V common mode range without catastrophic damage to the IC.

Receiver

The SP3485 receiver has differential inputs with an input sensitivity of $\pm 200 \text{mV}$. Input impedance of the receiver is $12 \text{k}\Omega$ minimum. A wide common mode range of -7V to 12V allows for large ground potential differences between systems. The receiver is equipped with a fail-safe feature that guarantees the receiver output will be in a HIGH state when the input is left unconnected. The receiver of the SP3485 operates up to 10Mbps.

The receiver of the SP3485 has an enable control line which is active LOW. A logic LOW on RE (pin 2) will enable the differential receiver. A logic HIGH on RE (pin 2) of the SP3485 will disable the receiver.

Low Power Shutdown Mode

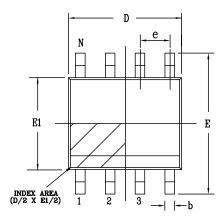
Low-power shutdown mode is initiated by bringing both $\overline{\text{RE}}$ high and DE low. In shutdown, the devices typically draw only 50nA of supply current. $\overline{\text{RE}}$ and DE can be driven simultaneously; the part is guaranteed not to enter shutdown if $\overline{\text{RE}}$ is high and DE is low for less than 50ns. If the inputs are in this state for at least 600ns, the parts are guaranteed to enter shutdown.

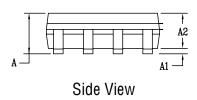
Enable times t_{PRZH}, t_{PZH}, t_{PRZL} and t_{PZL} assume the part was not in a low-power shutdown state. Enable times t_{PRSH}, t_{PSH}, t_{PRSL} and t_{PSL} assume the parts were shut down. It takes drivers and receivers longer to become enabled from low-power shutdown mode (t_{PRSH}, t_{PSH}, t_{PSL}, t_{PSL}) than from driver/receiver-disable mode (t_{PRZH}, t_{PZH}, t_{PZL}, t_{PZL}).

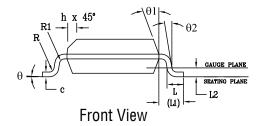
	INPUTS	OUTPUTS			
RE	DE	DI	В	А	
Х	1	1	0	1	
Х	1	0	1	0	
0	0	Х	High-Z		
1	0	Х	Shutdown		

Table 1: Transmit Function Truth Table

	INPUTS		OUTPUTS
RE	DE	V _A - V _B	RO
0	X	-50mV	1
0	X	-200mV	0
Х	Х	Open/Shorted	1
1	1	Х	High-Z
1	0	Х	Shutdown


Table 2: Receive Function Truth Table




Mechanical Dimensions

NSOIC8

Top View

PACKAGE OUTLINE NSOIC .150" BODY JEDEC MS-012 VARIATION AA						
	COMMON DIMENSIONS IN MM			COMMON DIMENSIONS IN INCH		
SYMBOLS	_ '	ontrol Unit)		(Reference Unit)		
	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	_	1.75	0.053	_	0.069
A1	0.10	_	0.25	0.004	_	0.010
A2	1.25	_	1.65	0.049	_	0.065
b	0.31	0.31 — 0.51			_	0.020
С	0.17	_	0.25	0.007	_	0.010
Ε		6.00 BSC)	0.236 BSC		
E1	3.90 BSC			0.154 BSC		
е		1.27 BS0		0.050 BSC		
h	0.25	_	0.50	0.010	_	0.020
L	0.40	_	1.27	0.016		0.050
L1	1.04 REF 0.0				041 REF	
L2		0.25 BS0)	0.010 BSC		
R	0.07	_	_	0.003	_	_
R1	0.07	_	_	0.003	_	_
q	0,	_	8°	0,	_	8°
q.	5°	_	15°	5°	_	15°
q2	0. — —		_	0		_
D	4.90 BSC 0.193 BSC				SC	
N	8					

Drawing No: POD-00000108

Revision: A

8