

3 Pin Microprocessor Supervisor Circuit

APPLICATIONS

FEATURES

Portable Electronic Devices

Ultra Low Supply Current 1µA (typ)

Guaranteed Reset valid to V_{cc} = 0.9V

140ms Power-On Reset Pulse Width

2.3V, 2.6V, 2.9V, 3.1V, 4.4V, 4.6V

1.5% Voltage Threshold Tolerance

Internally Fixed Threshold

• 3 Pin SOT-23 Package

Electrical Power Meters

Digital Still Cameras

µP Power Monitoring

Rev. 2.0.2

GENERAL DESCRIPTION

The SP809/SP810 are low power microprocessor (μ P) supervisory circuits used to monitor power supplies in μ P and digital systems.

They provide applications with benefits of circuit reliability and low cost by eliminating external components. If the VCC supply voltage falls below preset threshold then a reset signal is asserted for at least 140ms after V_{CC} has risen above the reset threshold.

Both the SP809 and SP810 were designed with a reset comparator to help identify invalid signals, which last less than 140ms. The only difference between them is that they have an active-low RESET output and active-high RESET output, respectively. Low supply current (1µA) makes SP809/SP810 ideal for portable equipment.

The devices are available in 3 pin SOT-23 package.

Part Number	Output Type		
SP809N	Open Drain Active Low		
SP809	Push-Pull Low		
SP810	Push-Pull Active High		

TYPICAL APPLICATION DIAGRAM

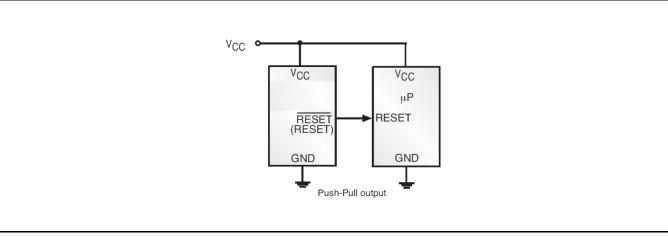


Fig. 1: SP809 / SP810 Application Diagram

3 Pin Microprocessor Supervisor Circuit

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{CC}	0.3V to 6.5V
RESET, RESET	-0.3V to V _{CC} +0.3V
Output Current (RESET, RESET)	20mA
Power Dissipation (T _A =70°C)	320mW
Junction Temperature	125°C
Storage Temperature	65°C to 150°C

ELECTRICAL SPECIFICATIONS

Specifications with standard type are for an Operating Temperature of $T_A = 25^{\circ}$ C only; limits applying over the full Operating Temperature range are denoted by a "•". Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_A = 25^{\circ}$ C, and are provided for reference purposes only. Unless otherwise indicated, $T_A = 25^{\circ}$ C.

Parameter	Min.	Тур.	Max.	Units		Conditions
Operating Voltage Range V _{CC}	0.9		6.0	V		
Supply Current Icc		1.0	3.0	μΑ		$V_{CC} = V_{TH} + 0.1V$
	2.265	2.3	2.335			$T_A = +25^{\circ}C$
	2.254		2.346		•	$T_A = -40^{\circ}C$ to $85^{\circ}C$
	2.561	2.6	2.639			$T_A = +25^{\circ}C$
	2.548		2.652		•	$T_A=-40^{\circ}C$ to $85^{\circ}C$
	2.857	2.9	2.944			$T_A = +25^{\circ}C$
Reset Threshold V _{TH}	2.842		2.958	V	•	$T_A=-40^{\circ}C$ to $85^{\circ}C$
	3.054	3.1	3.147	V		$T_A = +25^{\circ}C$
	3.038		3.162		•	$T_A=-40^{\circ}C$ to $85^{\circ}C$
	4.334	4.4	4.466			$T_A = +25^{\circ}C$
	4.312		4.488		•	$T_A=-40^{\circ}C$ to $85^{\circ}C$
	4.531	4.6	4.669			$T_A = +25^{\circ}C$
	4.508		4.692		•	$T_A = -40^{\circ}C$ to $85^{\circ}C$
Vcc Reset Delay trrip		20		μs		V _{CC} =V _{TH} to (V _{TH} - 0.1V), V _{TH} =3.1V
Reset Active Timeout Period t _{RP}	140	230	560			$T_A = +25^{\circ}C$
	100		1030	ms	•	T _A =-40°C to 85°C
RESET Output Voltage V _{OH}	0.8Vcc			M		$V_{CC}=V_{TH}$ - 0.1V, I_{SOURCE} = 1.2mA
RESET Output Voltage VoL			0.3	V		$V_{CC} = V_{TH} + 0.1V$, $I_{SINK} = 1.2mA$
RESET Output Voltage VOH	0.8V _{CC}			M		$V_{CC} = V_{TH} + 0.1V$, $I_{SOURCE} = 1.2mA$
RESET Output Voltage Vol			0.3	V		$V_{CC} = V_{TH} - 0.1V$, $I_{SINK} = 1.2mA$

Note 1: RESET output is for SP809; RESET output is for SP810.

OPERATING RATINGS

Input Voltage Range Vcc	0.9V to 6V
Junction Temperature Range40	D°C to 85°C

3 Pin Microprocessor Supervisor Circuit

BLOCK DIAGRAM

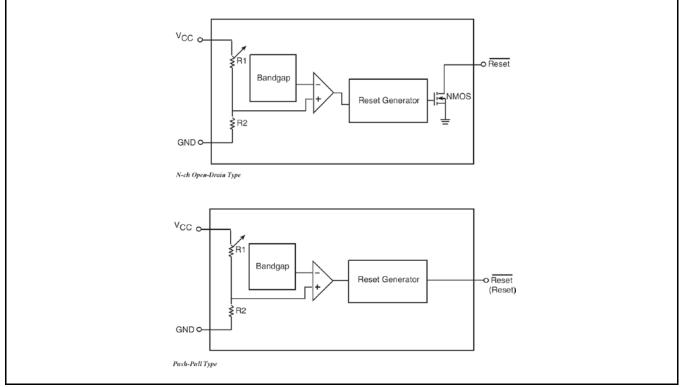


Fig. 2: SP809 / SP810 Block Diagram

PIN ASSIGNMENT

Fig. 3: SP809 / SP810 Pin Assignment

PIN DESCRIPTION

Name	Pin Number	Description
GND	1	Ground Signal
RESET	2	Active Low Output Pin. RESET Output remains high while VCC is below the reset threshold
RESET	Z	Active High Output Pin. RESET Output remains high while VCC is below the reset threshold
V _{CC}	3	Supply Voltage

3 Pin Microprocessor Supervisor Circuit

ORDERING INFORMATION⁽¹⁾

Part Number	Operating Temperature Range	Lead-Free	Package	Packing Method
SP809EK-L-2-3/TR				
SP809EK-L-2-6/TR				
SP809EK-L-2-9/TR	-40°C≤T₄≤+85°C			
SP809EK-L-3-1/TR ⁽³⁾				
SP809EK-L-4-6/TR ⁽³⁾		Yes ⁽²⁾	SOT23-3	Tape & Reel
SP809NEK-L-2-3/TR ⁽³⁾				
SP809NEK-L-2-9/TR ⁽³⁾				
SP809NEK-L-3-1/TR				
SP809NEK-L-4-6/TR ⁽³⁾				
SP810EK-L-4-4/TR ⁽³⁾				

NOTES:

1. Refer to <u>www.exar.com/SP809</u> and <u>www.exar.com/SP810</u> for most up-to-date Ordering Information.

2. Visit <u>www.exar.com</u> for additional information on Environmental Rating.

3. NRND – Not Recommended for New Designs.

3 Pin Microprocessor Supervisor Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

All data taken at $T_A = 25$ °C, unless otherwise specified - Schematic and BOM from Application Information section of this datasheet.

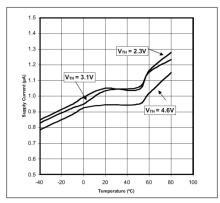


Fig. 4: Supply Current versus Temperature

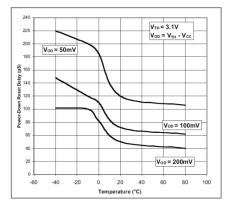


Fig. 6: Power-Down Reset Delay versus Temperature

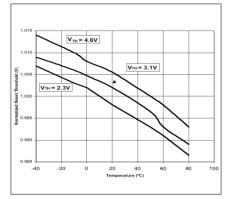


Fig. 8: Normalized Reset Threshold versus Temperature

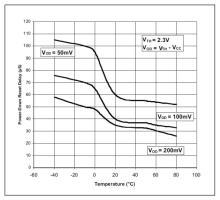


Fig. 5: Power-Down Reset Delay versus Temperature

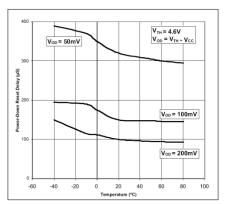


Fig. 7: Power-Down Reset Delay versus Temperature

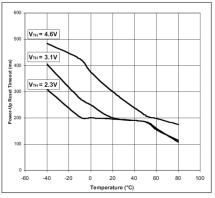


Fig. 9: Power-Up Reset Time-out versus Temperature

THEORY OF OPERATION

 μ P will be activated at a valid reset state. These μ P supervisory circuits assert reset to prevent code execution errors during powerup, power-down, or brownout conditions.

Reset is guaranteed to be a logic low for $V_{TH} > V_{CC} > 0.9V$. Once V_{CC} exceeded the reset threshold, an internal timer keeps RESET low for the reset timeout period; after this interval, RESET goes high.

If a brownout condition occurs (V_{cc} drops below the reset threshold), RESET goes low. Any time V_{cc} goes below the reset threshold, the internal timer resets to zero, and RESET goes low. The internal timer is activated after V_{cc} returns above the reset threshold, and RESET remains low for the reset timeout period.

BENEFIT OF HIGHLY ACCURATE RESET THRESHOLD

SP809/810 with specified voltage as $5V\pm10\%$ or $3V\pm10\%$ are ideal for systems using a

APPLICATION INFORMATION

NEGATIVE GOING VCC TRANSIENTS

In addition to issuing a reset to the μ P during power-up, power-down, and brownout conditions, SP809 series are relatively resistant to short-duration negative-going V_{CC} transient.

ENSURING A VALID RESET OUTPUT DOWN TO $V_{cc}=0$

When V_{cc} falls below 0.9V, SP809 RESET output no longer sinks current; it becomes an open circuit. In this case, high-impedance CMOS logic inputs connecting to RESET can drift to undetermined voltages. Therefore, SP809/810 with CMOS is perfect for most applications of V_{cc} down to 0.9V.

However in applications where RESET must be valid down to OV, adding a pull-down resistor to RESET causes any leakage currents to flow to ground, holding RESET low.

3 Pin Microprocessor Supervisor Circuit

 $5V\pm5\%$ or $3V\pm5\%$ power supply. The reset is guaranteed to assert after the power supply falls below the minimum specified operating voltage range of the system ICs. The pretrimmed thresholds are reducing the range over which an undesirable reset may occur.

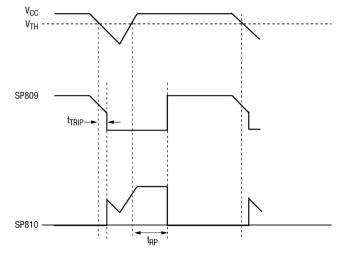


Fig. 10: Timing Waveforms

Interfacing to μP with Bidirectional Reset Pins

The RESET output on the SP809N is open drain, this device interfaces easily with μ Ps that have bidirectional reset pins. Connecting the μ P supervisor's RESET output directly to the microcontroller's RESET pin with a single pullup resistor allows either device to assert reset.

TEST CIRCUIT

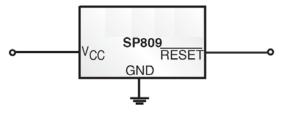


Fig. 11: Test Circuit

3 Pin Microprocessor Supervisor Circuit

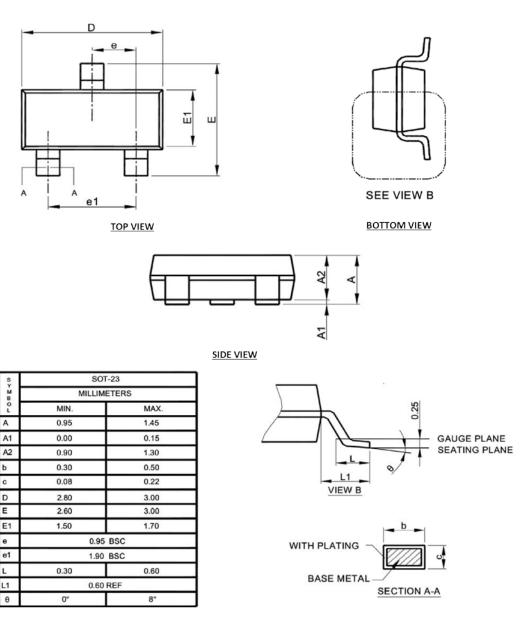
PACKAGE SPECIFICATION

SYMBOL

А

b

с


D Е

E1

e1

L1

3-PIN SOT23

TERMINAL DETAILS

1. Refer to Jedec MO-178

2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10mils per side.

3. Dimension "E1" does not include inter-lead flash or protursions.

4. All dimensions are milimeters.

Drawing No. : POD - 00000128

Revision: A