

SPC584Bx

32-bit Power Architecture microcontroller for automotive ASIL-B applications

Features

- AEC-Q100 qualified
- High performance e200z420
 - 32-bit Power Architecture technology CPU
 - Core frequency as high as 120 MHz
 - Variable Length Encoding (VLE)
- 2112 KB (2048 KB code flash + 64 KB data flash) on-chip flash memory: supports read during program and erase operations, and multiple blocks allowing EEPROM emulation
- 176 KB HSM dedicated flash memory (144 KB code + 32 KB data)
- 128 KB on-chip general-purpose SRAM (in addition to 64 KB core local data RAM
- Crossbar switch architecture for concurrent access to peripherals, Flash, or RAM from multiple bus masters with end-to-end ECC
- Multi-channel direct memory access controller (eDMA) with 64 channels
- 1 interrupt controller (INTC)
- Comprehensive new generation ASIL-B safety concept
 - ASIL-B of ISO 26262
 - FCCU for collection and reaction to failure notifications

- Memory Error Management Unit (MEMU) for collection and reporting of error events in memories
- Cyclic redundancy check (CRC) unit
- Enhanced low power support
 - Ultra low power STANDBY
 - Smart Wake-up Unit
- Fast wake-up and execute from RAM
- Enhanced modular IO subsystem (eMIOS): up to 64 timed I/O channels with 16-bit counter resolution
- Body cross triggering unit (BCTU)
 - Triggers ADC conversions from any eMIOS channel
 - Triggers ADC conversions from up to 2 dedicated PIT_RTIs
- Enhanced analog-to-digital converter system with:
 - 2 independent fast 12-bit SAR analog converters
 - 1 supervisor 12-bit SAR analog converter
 - 1 10-bit SAR analog converter with STDBY mode support
- Communication interfaces
 - 1 Ethernet controller 10/100 Mbps, compliant IEEE 802.3-2008
 - 8 MCAN interfaces with advanced shared memory scheme and ISO CAN-FD support
 - 14 LINFlexD modules
 - 7 Deserial Serial Peripheral Interface (DSPI) modules
- Dual phase-locked loops with stable clock domain for peripherals and FM modulation domain for computational shell
- Nexus Development Interface (NDI) per IEEE-ISTO 5001-2003 standard, with some support for 2010 standard

- Boot Assist Flash (BAF) supports factory programming using a serial bootload through the asynchronous CAN or LIN/UART
- Junction temperature range -40 °C to 150 °C

Package	Part number						
	1 MB	1.5 MB	2 MB				
eTQFP64	SPC584B60E1	SPC584B64E1	SPC584B70E1				
eTQFP100	SPC584B60E3	SPC584B64E3	SPC584B70E3				
eTQFP144	SPC584B60E5	SPC584B64E5	SPC584B70E5				
eLQFP176	SPC584B60E7	SPC584B64E7	SPC584B70E7				

Table 1. Device summary

Contents

1	Introd	luction
2	Descr	ription
	2.1	Device feature summary
	2.2	Block diagram
	2.3	Features overview
3	Packa	age pinouts and signal descriptions
4	Electr	rical characteristics
	4.1	Introduction
	4.2	Absolute maximum ratings
	4.3	Operating conditions
		4.3.1 Power domains and power up/down sequencing
	4.4	Electrostatic discharge (ESD) 20
	4.5	Electromagnetic compatibility characteristics
	4.6	Temperature profile
	4.7	Device consumption
	4.8	I/O pad specification
		4.8.1 I/O input DC characteristics 26
		4.8.2 I/O output DC characteristics
		4.8.3 I/O pad current specifications
	4.9	Reset pad (PORST) electrical characteristics
	4.10	PLLs
		4.10.1 PLL0
		4.10.2 PLL1
	4.11	Oscillators
		4.11.1 Crystal oscillator 40 MHz
		4.11.2 Crystal Oscillator 32 kHz
		4.11.3 RC oscillator 16 MHz
		4.11.4 Low power RC oscillator
	4.12	ADC system
		4.12.1 ADC input description

	4.12.2	SAR ADC 12 bit electrical specification	. 48
	4.12.3	SAR ADC 10 bit electrical specification	. 53
4.13	Tempera	ature sensor	56
4.14	LFAST	pad electrical characteristics	. 57
	4.14.1	LFAST interface timing diagrams	. 57
	4.14.2	LFAST LVDS interface electrical characteristics	. 58
	4.14.3	LFAST PLL electrical characteristics	. 61
4.15	Power r	nanagement	63
	4.15.1	Power management integration	. 63
	4.15.2	Voltage regulators	. 69
	4.15.3	Voltage monitors	. 70
4.16	Flash .		73
4.17	AC spee	cifications	. 77
	4.17.1	Debug and calibration interface timing	. 77
	4.17.2	DSPI timing with CMOS pads	. 83
	4.17.3	Ethernet timing	. 93
	4.17.4	CAN timing	. 99
	4.17.5	UART timing	100
	4.17.6	I2C timing	100
Packa	age info	ormation	102
5.1	•	64 package information	
0.1	5.1.1	Package mechanical drawings and data information	
5.2		100 package information	
0.2	5.2.1	Package mechanical drawings and data information	
5.3		144 package information	.112
0.0	5.3.1	Package mechanical drawings and data information	
5.4		176 package information	
0.4	5.4.1	Package mechanical drawings and data information	
5.5		e thermal characteristics	
0.0	i donag		
	551	el()FP64	123
	5.5.1 5.5.2	eTQFP64	
	5.5.2	eTQFP100	123
			123 124
	5.5.2 5.5.3	eTQFP100 eTQFP144	123 124 124

5

6	Ordering information	8
7	Revision history	0

1 Introduction

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also to the device reference manual and errata sheet.

2 Description

The SPC584Bx microcontroller is a member of the family of devices superseding the SPC560Bx family. SPC584Bx is built on the legacy of the SPC560Bx family, while introducing new features coupled with higher throughput to provide substantial reduction of cost per feature and significant power and performance improvement (MIPS per mW). On the SPC584Bx device, there is one processor core e200z420 and one e200z0 core embedded in the Hardware Security Module.

2.1 Device feature summary

Table 2 lists a summary of major features for the SPC584Bx device. The feature column represents a combination of module names and capabilities of certain modules. A detailed description of the functionality provided by each on-chip module is given later in this document.

Feature	Description			
SPC58 family	40 nm			
Number of Cores	1			
Local RAM	64 KB Data			
Single Precision Floating Point	Yes			
SIMD	No			
VLE	Yes			
Que a la c	8 KB Instruction			
Cache	4 KB Data			
MOLL	Core MPU: 24 per CPU			
MPU	System MPU: 24 per XBAR			
Semaphores	No			
CRC Channels	2 x 4			
Software Watchdog Timer (SWT)	2			
Core Nexus Class	3+			
Event Processor	4 x SCU			
Event Processor	4 x PMC			
Run control Module	Yes			
System SRAM	128 KB (full standby RAM)			
Flash	2048 KB code / 64 KB data			
Flash fetch accelerator	2 x 4 x 256-bit			
DMA channels	32			
DMA Nexus Class	3			

Table	2.	Features	list
IUNIC	_	i cutui co	1100

DS11701 Rev 4

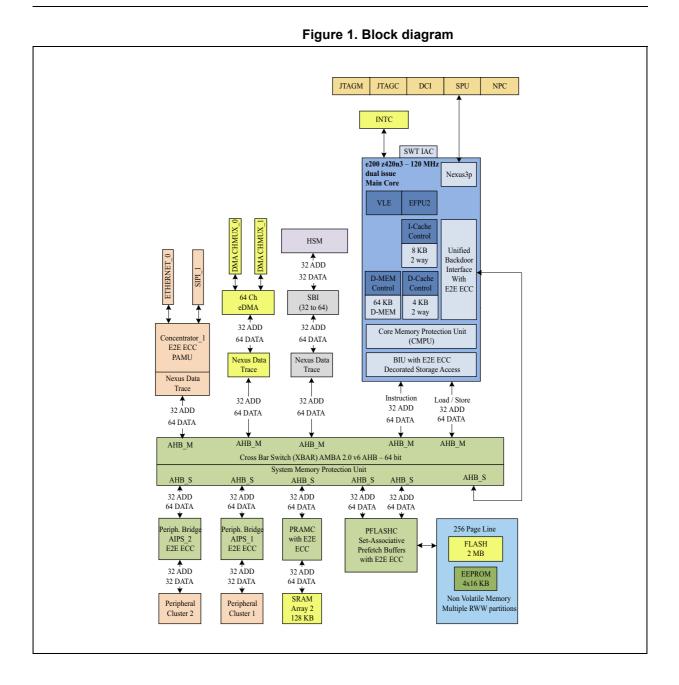
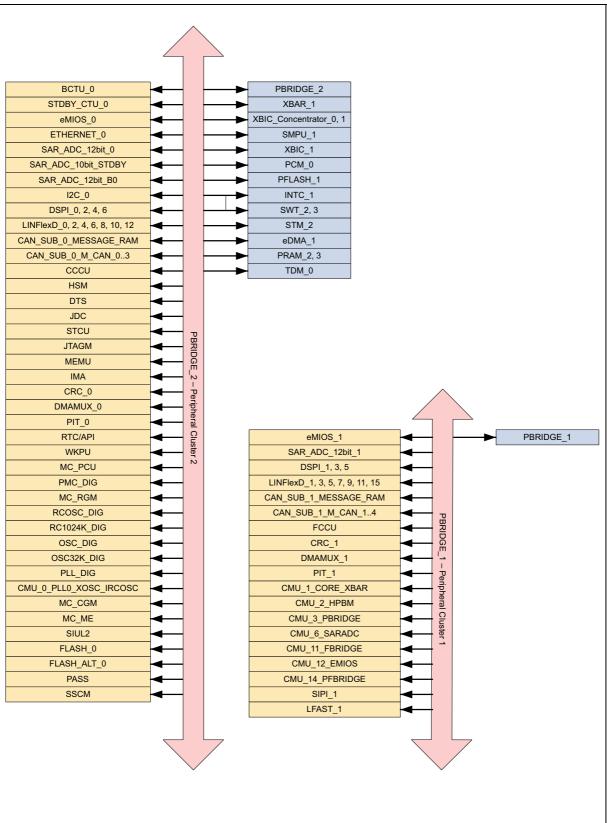

Table 2. Features list (continued)						
Feature	Description					
LINFlexD	14					
MCAN (ISO CAN-FD compliant)	8					
DSPI	7					
I2C	1					
Ethernet	1 MAC with Time Stamping, AVB and VLAN support					
SIPI / LFAST Debugger	High Speed					
	8 PIT channels					
System Timers	1 AUTOSAR® (STM)					
	RTC/API					
eMIOS	2 x 32 channels					
BCTU	64 channels					
ADC (SAR)	4					
Temp. sensor	Yes					
Self Test Controller	Yes					
PLL	Dual PLL with FM					
Integrated linear voltage regulator	Yes					
External Power Supplies	5 V, 3.3 V					
	HALT Mode					
Low Power Modes	STOP Mode					
	Smart Standby with output controller, analog and digital inputs					
	Standby Mode					

Table 2. Features list (continued)

2.2 Block diagram


The figures below show the top-level block diagrams.

DS11701 Rev 4

2.3 Features overview

On-chip modules within SPC584Bx include the following features:

- One main CPU, dual issue, 32-bit CPU core complexes (e200z4)
 - Power Architecture embedded specification compliance
 - Instruction set enhancement allowing variable length encoding (VLE), encoding a mix of 16-bit and 32-bit instructions, for code size footprint reduction
 - Single-precision floating point operations
 - 64 KB local data RAM for Core_2
 - 8 KB I-Cache and 4 KB D-Cache for Core_2
- 2112 KB (2048 KB code flash + 64 KB data flash) on-chip flash memory
 - Supports read during program and erase operations, and multiple blocks allowing EEPROM emulation
- 176 KB HSM dedicated flash memory (144 KB code + 32 KB data)
- 128 KB on-chip general-purpose SRAM (+ 64 KB local data RAM: 64 KB included in the CPU)
- Multi channel direct memory access controllers
 - 32 eDMA channels
- One interrupt controller (INTC)
- Dual phase-locked loops with stable clock domain for peripherals and FM modulation domain for computational shell
- Crossbar switch architecture for concurrent access to peripherals, Flash, or RAM from multiple bus masters with end-to-end ECC
- Hardware security module (HSM) with HW cryptographic co-processor
- System integration unit lite (SIUL)
- Boot assist Flash (BAF) supports factory programming using a serial bootload through the asynchronous CAN or LIN/UART.
- Hardware support for safety ASIL-B level related applications
- Enhanced modular IO subsystem (eMIOS): up to 64 (2 x 32) timed I/O channels with 16-bit counter resolution
 - Buffered updates
 - Support for shifted PWM outputs to minimize occurrence of concurrent edges
 - Supports configurable trigger outputs for ADC conversion for synchronization to channel output waveforms
 - Shared or independent time bases
 - DMA transfer support available
- Body Cross Triggering Unit (BCTU)
 - Triggers ADC conversions from any eMIOS channel
 - Triggers ADC conversions from up to 2 dedicated PIT_RTIs
 - One event configuration register dedicated to each timer event allows to define the corresponding ADC channel
 - Synchronization with ADC to avoid collision
- Enhanced analog-to-digital converter system with:
 - Two independent fast 12-bit SAR analog converters

- One supervisor 12-bit SAR analog converter
- One 10-bit SAR analog converter with STDBY mode support
- Seven Deserial Serial Peripheral Interface (DSPI) modules
- Fourteen LIN and UART communication interface (LINFlexD) modules
 - LINFlexD_0 is a Master/Slave
 - All others are Masters
- Eight modular controller area network (MCAN) modules, all supporting flexible data rate (ISO CAN-FD compliant)
- One ethernet controller 10/100 Mbps, compliant IEEE 802.3-2008
 - IEEE 1588-2008 Time stamping (internal 64-bit time stamp)
 - IEEE 802.1AS and IEEE 802.1Qav (AVB-Feature)
 - IEEE 802.1Q VLAN tag detection
 - IPv4 and IPv6 checksum modules
- Nexus development interface (NDI) per IEEE-ISTO 5001-2003 standard, with some support for 2010 standard
- Device and board test support per Joint Test Action Group (JTAG) (IEEE 1149.1 and IEEE 1149.7), 2-pin JTAG interface
- Standby power domain with smart wake-up sequence

3 Package pinouts and signal descriptions

Refer to the SPC584Bx IO_ Definition document.

It includes the following sections:

- 1. Package pinouts
- 2. Pin descriptions
 - a) Power supply and reference voltage pins
 - b) System pins
 - c) LVDS pins
 - d) Generic pins

4 Electrical characteristics

4.1 Introduction

The present document contains the target Electrical Specification for the 40 nm family 32-bit MCU SPC584Bx products.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" (Controller Characteristics) is included in the "Symbol" column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" (System Requirement) is included in the "Symbol" column.

The electrical parameters shown in this document are guaranteed by various methods. To give the customer a better understanding, the classifications listed in *Table 3* are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design validation on a small sample size from typical devices.
D	Those parameters are derived mainly from simulations.

Table 3.	Parameter	classifications
	i urumotor	olussilloutions

4.2 Absolute maximum ratings

Table 4 describes the maximum ratings for the device. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Stress beyond the listed maxima, even momentarily, may affect device reliability or cause permanent damage to the device.

O. maked			Demonster		Value		l lmit	
Symbol		С	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD_LV}	SR	D	Core voltage operating life range ⁽¹⁾	_	-0.3	_	1.4	V
V _{DD_HV_IO_MAIN} VDD_HV_IO_ETH VDD_HV_OSC VDD_HV_FLA	SR	D	l/O supply voltage ⁽²⁾	_	-0.3	_	6.0	V
V _{SS_HV_ADV}	SR	D	ADC ground voltage	Reference to digital ground	-0.3	—	0.3	V
V _{DD_HV_ADV}	SR	D	ADC Supply voltage ⁽²⁾	Reference to V _{SS_HV_ADV}	-0.3	—	6.0	V
V _{SS_HV_ADR_S}	SR	D	SAR ADC ground reference	_	-0.3	_	0.3	V
V _{DD_HV_ADR_S}	SR	D	SAR ADC voltage reference ⁽²⁾	Reference to V _{SS_HV_ADR_S}	-0.3	_	6.0	V
V _{SS} -V _{SS_HV_ADR_S}	SR	D	V _{SS_HV_ADR_S} differential voltage	_	-0.3	_	0.3	V
V _{SS} -V _{SS_HV_ADV}	SR	D	V _{SS_HV_ADV} differential voltage	_	-0.3	_	0.3	V
			I/O input voltage	—	-0.3	—	6.0	
		_		Relative to V_{ss}	-0.3	—	—	İ I
V _{IN}	SR	D	range ⁽²⁾⁽³⁾ (4)	Relative to V _{DD_HV_IO} and V _{DD_HV_ADV}	_	_	0.3	V
T _{TRIN}	SR	D	Digital Input pad transition time ⁽⁵⁾		_	_	1	ms
I _{INJ}	SR	т	Maximum DC injection current for each analog/digital PAD ⁽⁶⁾	_	-5	_	5	mA

Table 4	Absolute	maximum	ratings
	Absolute	maximum	raungs

Symbol .		с	Deremeter	Conditions	Value			Unit
Symbol		L L	Parameter		Min	Тур	Max	Unit
T _{STG}	SR	т	Maximum non- operating Storage temperature range	_	-55	_	125	°C
T _{PAS}	SR	С	Maximum nonoperating temperature during passive lifetime	_	-55	_	150 ⁽⁷⁾	°C
T _{STORAGE}	SR	_	Maximum storage time, assembled part programmed in ECU	No supply; storage temperature in range –40 °C to 60 °C	_	_	20	years
T _{SDR}	SR	т	Maximum solder temperature Pb- free packaged ⁽⁸⁾	_	_	_	260	°C
MSL	SR	т	Moisture sensitivity level ⁽⁹⁾	_	_	_	3	_
T _{XRAY} dose	SR	т	Maximum cumulated XRAY dose	Typical range for X-rays source during inspection:80 ÷ 130 KV; 20 ÷ 50 μΑ	_	_	1	grey

 V_{DD_LV}: allowed 1.335 V - 1.400 V for 60 seconds cumulative time at the given temperature profile. Remaining time allowed 1.260 V - 1.335 V for 10 hours cumulative time at the given temperature profile. Remaining time as defined in *Section 4.3*: Operating conditions.

 V_{DD_HV}: allowed 5.5 V – 6.0 V for 60 seconds cumulative time at the given temperature profile, for 10 hours cumulative time with the device in reset at the given temperature profile. Remaining time as defined in Section 4.3: Operating conditions.

- 3. The maximum input voltage on an I/O pin tracks with the associated I/O supply maximum. For the injection current condition on a pin, the voltage will be equal to the supply plus the voltage drop across the internal ESD diode from I/O pin to supply. The diode voltage varies greatly across process and temperature, but a value of 0.3 V can be used for nominal calculations.
- 4. Relative value can be exceeded if design measures are taken to ensure injection current limitation (parameter IINJ).
- 5. This limitation applies to pads with digital input buffer enabled. If the digital input buffer is disabled, there are no maximum limits to the transition time.
- 6. The limits for the sum of all normal and injected currents on all pads within the same supply segment can be found in *Section 4.8.3: I/O pad current specifications*.
- 7. 175 °C are allowed for limited time. Mission profile with passive lifetime temperature >150 °C have to be evaluated by ST to confirm that are granted by product qualification.
- 8. Solder profile per IPC/JEDEC J-STD-020D.
- 9. Moisture sensitivity per JDEC test method A112.

4.3 Operating conditions

Table 5 describes the operating conditions for the device, and for which all the specifications in the data sheet are valid, except where explicitly noted. The device operating conditions must not be exceeded or the functionality of the device is not guaranteed.

Symbol		с	Parameter	Conditions	Value ⁽¹⁾			Unit
Symbol			Parameter	Conditions	Min	Тур	Max	Unit
F _{SYS}	SR	Ρ	Operating system clock frequency ⁽²⁾	_	_	_	120	MHz
T _{A_125 Grade} ⁽³⁾	SR	D	Operating Ambient temperature	_	-40	_	125	°C
T _{J_125 Grade} ⁽³⁾	SR	Ρ	Junction temperature under bias	T _A = 125 °C	-40	_	150	°C
T _{A_105 Grade} ⁽³⁾	SR	D	Ambient temperature under bias	_	-40	_	105	°C
T _{J_105} Grade ⁽³⁾	SR	D	Operating Junction temperature	T _A = 105 °C	-40	_	130	°C
V _{DD_LV}	SR	Р	Core supply voltage ⁽⁴⁾	_	1.14	1.20	1.26 ^{(5) (6)}	V
V _{DD_HV_IO_MAIN} V _{DD_HV_IO_ETH} V _{DD_HV_FLA} V _{DD_HV_OSC}	SR	Ρ	IO supply voltage	_	3.0	_	5.5	V
V _{DD_HV_ADV}	SR	Р	ADC supply voltage	_	3.0	_	5.5	V
V _{SS_HV_ADV} - V _{SS}	SR	D	ADC ground differential voltage		-25	_	25	mV
V _{DD_HV_ADR_S}	SR	Р	SAR ADC reference voltage	_	3.0	_	5.5	V
V _{DD_HV_ADR_S} - V _{DD_HV_ADV}	SR	D	SAR ADC reference differential voltage	_	_	_	25	mV
V _{SS_HV_ADR_S}	SR	Ρ	SAR ADC ground reference voltage	_	N	/ss_hv_adv		V

Symbol		с	Parameter	Conditions		Value ⁽¹⁾		
Symbol		C	Parameter	Conditions	Min	Тур	Max	Unit
V _{SS_HV_ADR_S} - V _{SS_HV_ADV}	SR	D	V _{SS_HV_ADR_S} differential voltage	_	-25	_	25	mV
V _{RAMP_HV}	SR	D	Slew rate on HV power supply	_	_	_	100	V/ms
V _{IN}	SR	Р	I/O input voltage range	_	0	_	5.5	V
I _{INJ1}	SR	т	Injection current (per pin) without performance degradation ⁽⁷⁾ (8) (9)	Digital pins and analog pins	-3.0	_	3.0	mA
I _{INJ2}	SR	D	Dynamic Injection current (per pin) with performance degradation ⁽⁹⁾ (10)	Digital pins and analog pins	-10	_	10	mA

Table 5. Operating conditions (continued)

1. The ranges in this table are design targets and actual data may vary in the given range.

2. Maximum operating frequency is applicable to the cores and platform of the device. See the Clock Chapter in the Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device.

- 3. In order to evaluate the actual difference between ambient and junction temperatures in the application, refer to *Section 5.5: Package thermal characteristics*.
- 4. Core voltage as measured on device pin to guarantee published silicon performance.
- 5. Core voltage can exceed 1.26 V with the limitations provided in Section 4.2: Absolute maximum ratings, provided that HVD134_C monitor reset is disabled.
- 1.260 V 1.290 V range allowed periodically for supply with sinusoidal shape and average supply value below or equal to 1.236 V at the given temperature profile.
- 7. Full device lifetime. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See Section 4.2: Absolute maximum ratings for maximum input current for reliability requirements.
- 8. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pins is above the supply rail, current will be injected through the clamp diode to the supply rails. For external RC network calculation, assume typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature.
- 9. The limits for the sum of all normal and injected currents on all pads within the same supply segment can be found in *Section 4.8.3: I/O pad current specifications*.
- 10. Positive and negative Dynamic current injection pulses are allowed up to this limit. I/O and ADC specifications are not granted. See the dedicated chapters for the different specification limits. See the Absolute Maximum Ratings table for maximum input current for reliability requirements. Refer to the following pulses definitions: Pulse1 (ISO 7637-2:2011), Pulse 2a(ISO 7637-2:2011 5.6.2), Pulse 3a (ISO 7637-2:2011 5.6.3), Pulse 3b (ISO 7637-2:2011 5.6.3).

4.3.1 Power domains and power up/down sequencing

The following table shows the constraints and relationships for the different power domains. Supply1 (on rows) can exceed Supply2 (on columns), only if the cell at the given row and column is reporting 'ok'. This limitation is valid during power-up and power-down phases, as well as during normal device operation.

18/142

DS11701 Rev 4

		Supply2									
		V _{DD_LV}	V _{DD_HV_IO_ETH}	V _{DD_HV_IO_MAIN} V _{DD_HV_FLA} V _{DD_HV_OSC}	V _{DD_HV_ADV}	V _{DD_HV_ADR}					
	V _{DD_HV_IO_ETH}	ok		not allowed	ok	ok					
Supply1	V _{DD_HV_IO_MAIN} V _{DD_HV_FLA} V _{DD_HV_OSC}	ok	ok		ok	ok					
Sup	V _{DD_HV_ADV}	ok	ok	not allowed		ok					
	V _{DD_HV_ADR}	ok	ok	not allowed	not allowed						

Table 6. Device supply relation during power-up/power-down sequence

During power-up, all functional terminals are maintained in a known state as described in the device pinout Microsoft Excel file attached to the IO_Definition document.

4.4 Electrostatic discharge (ESD)

The following table describes the ESD ratings of the device:

- All ESD testing are in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
- Device failure is defined as: "If after exposure to ESD pulses, the device does not meet the device specification requirements, which include the complete DC parametric and functional testing at room temperature and hot temperature, maximum DC parametric variation within 10 % of maximum specification".

Parameter	С	Conditions	Value	Unit
ESD for Human Body Model (HBM) ⁽¹⁾	Т	All pins	2000	V
ESD for field induced Charged Device Model (CDM) ⁽²⁾	Т	All pins	500	V
	Т	Corner pins	750	V

Table 7. ESD ratings

1. This parameter tested in conformity with ANSI/ESD STM5.1-2007 Electrostatic Discharge Sensitivity Testing.

2. This parameter tested in conformity with ANSI/ESD STM5.3-1990 Charged Device Model - Component Level.

4.5 Electromagnetic compatibility characteristics

EMC measurements at IC-level IEC standards are available from STMicroelectronics on request.

4.6 Temperature profile

The device is qualified in accordance to AEC-Q100 Grade1 requirements, such as HTOL 1,000 h and HTDR 1,000 hrs, T_J = 150 °C.

4.7 Device consumption

Symbol		с	Parameter	Conditions Value ⁽¹⁾			Unit	
Symbol		C	Parameter	Conditions	Min	Тур	Max	Unit
		С		T _J = 40 °C	—	_	7	
		D		T _J = 25 °C	—	1.5	5	
(2).(3)	сс	D	Leakage current on the	T _J = 55 °C		—	10	m ^
I _{DD_LKG} ^{(2),(3)}		D	V _{DD_LV} supply	T _J = 95 °C		_	25	mA
		D		T _J = 120 °C	_	_	45	
		Р		T _J = 150 °C	_	_	90	
I _{DD_LV} ⁽³⁾	сс	Ρ	Dynamic current on the V _{DD_LV} supply, very high consumption profile ⁽⁴⁾	_	_	_	125	mA
I _{DD_HV}	сс	Ρ	Total current on the V _{DD_HV} supply ⁽⁴⁾	f _{MAX}	_	_	55	mA
IDD_LV_GW	сс	т	Dynamic current on the V _{DD_LV} supply, gateway profile ⁽⁵⁾	_	_	_	98	mA
IDD_HV_GW	сс	т	Dynamic current on the V _{DD_HV} supply, gateway profile ⁽⁵⁾	_	_	_	22	mA
IDD_LV_BCM	сс	т	Dynamic current on the V _{DD_LV} supply, body profile ⁽⁶⁾	_	_	_	79	mA
I _{DD_HV_BCM}	сс	т	Dynamic current on the V _{DD_HV} supply, body profile ⁽⁶⁾	_	_	_	29	mA
I _{DD_HSM_AC}	сс	т	HSM platform dynamic operating current ⁽⁷⁾	f _{MAX} /2	_	_	15	mA
I _{DDHALT} ⁽⁸⁾	сс	т	Dynamic current on the V _{DD_LV} supply +Total current on the V _{DD_HV} supply	_	_	54	63	mA
I _{DDSTOP} ⁽⁹⁾	сс	т	Dynamic current on the V _{DD_LV} supply +Total current on the V _{DD_HV} supply	_	_	18	24	mA
		D		T _J = 25 °C	_	55	120	
		С	Total standby mode	T _J = 40 °C	—	_	180	μA
IDDSTBY8	сс	D	current on V _{DD_LV} and V אין אין supply. 8 KB	T _J = 55 °C	—	_	280	
		D	V _{DD_HV} supply, 8 KB RAM ⁽¹⁰⁾	T _J = 120 °C	—	0.8	1.65	m۸
		Ρ		T _J = 150 °C	—	1.8	3.8	mA

Table 8. Device consumption

Symbol		с	Deremeter	Conditions		Unit		
		C	Parameter	Conditions	Min	Тур	Max	Shirt
		D		T _J = 25 °C	_	60	130	
		С	Total standby mode	T _J = 40 °C	_		200	μA
IDDSTBY32	СС	D	Current on V _{DD_LV} and	T _J = 55 °C	_		300	
		D	V _{DD_HV} supply, 32 KB RAM ⁽¹⁰⁾	T _J = 120 °C	_	_	1.8	mA
		Ρ		T _J = 150 °C	_		4.1	mA
		D		T _J = 25 °C	_	90	160	μA
IDDSTBY128	сс	С	Total standby mode current on V _{DD_LV} and V _{DD_HV} supply, 128 KB RAM ⁽¹⁰⁾	T _J = 40 °C	_		250	μA
		D		T _J = 55 °C	_	_	370	μA
		D		T _J = 120 °C	_	1.2	2.2	mA
		Р		T _J = 150 °C	_	2.8	5.0	ША
I _{DDSSWU1}	СС	D	SSWU running over all STANDBY period with OPC/TU commands execution and keeping ADC off ⁽¹¹⁾	T _J = 40 °C	_	1.0	3.5	mA
I _{DDSSWU2}	СС	D	SSWU running over all STANDBY period with OPC/TU/ADC commands execution and keeping ADC on ⁽¹²⁾	T _J = 40 °C	_	3.5	5.0	mA

Table 8. Device consumption (continued)

1. The ranges in this table are design targets and actual data may vary in the given range.

- 2. The leakage considered is the sum of core logic and RAM memories. The contribution of analog modules is not considered, and they are computed in the dynamic I_{DD LV} and I_{DD HV} parameters.
- I_{DD_LKG} (leakage current) and I_{DD_LV} (dynamic current) are reported as separate parameters, to give an indication of the consumption contributors. The tests used in validation, characterization and production are verifying that the total consumption (leakage+dynamic) is lower or equal to the sum of the maximum values provided (I_{DD_LKG} + I_{DD_LV}). The two parameters, measured separately, may exceed the maximum reported for each, depending on the operative conditions and the software profile used.
- 4. Use case: 1 x e200Z4 @120 MHz, HSM @60 MHz, all IPs clock enabled, Flash access with prefetch disabled, Flash consumption includes parallel read and program/erase, all SARADC in continuous conversion, DMA continuously triggered by ADC conversion, 2 DSPI / 8 CAN / 2 LINFlex transmitting, RTC and STM running, 1 x EMIOS running (4 channels in OPWMT mode), FIRC, SIRC, FXOSC, PLL0-1 running. The switching activity estimated for dynamic consumption does not include I/O toggling, which is highly dependent on the application. Details of the software configuration are available separately. The total device consumption is I_{DD_LV} + I_{DD_HV} + I_{DD_LKG} for the selected temperature.
- 5. Gateway use case: One core running at 120 MHz, HSM 40 MHz, DMA, PLL, FLASH read only 25%, 8xCAN, 1xSARADC.
- 6. BCM use case: One Core running at 80 MHz, HSM 40 MHz, DMA, PLL, FLASH read only 25%, 1xCAN, 3xSARADC.
- 7. Dynamic consumption of the HSM module, including the dedicated memories, during the execution of Electronic Code Book crypto algorithm on 1 block of 16 byte of shared RAM.
- Flash in Low Power. Sysclk at 120 MHz, HSM 60 MHz, PLL0_PHI at 400 MHz, XTAL at 40 MHz, FIRC 16 MHz ON, RCOSC1M off. FlexCAN: instances: 0, 1, 2, 3, 4, 5, 6, 7 ON (configured but no reception or transmission), Ethernet ON (configured but no reception or transmission), ADC ON (continuously converting). All others IPs clock-gated.
- 9. Sysclk = RC16 MHz, RC16 MHz ON, RC1 MHz ON, PLL OFF. All possible peripherals off and clock gated. Flash in power down mode.
- 10. STANDBY mode: device configured for minimum consumption, RC16 MHz off, RC1 MHz on.

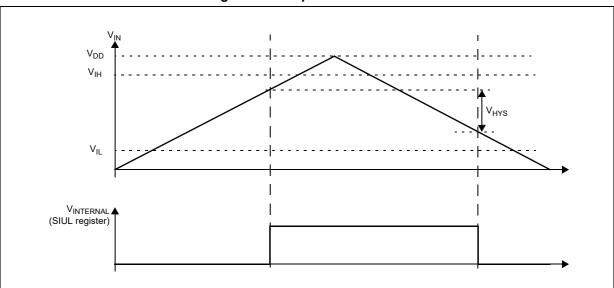
- 11. SSWU1 mode adder: FIRC = ON, SSWU clocked at 8 MHz and running over all STANDBY period, ADC off. The total standby consumption can be obtained by adding this parameter to the IDDSTBY parameter for the selected memory size and temperature.
- 12. SSWU2 mode adder: FIRC = ON, SSWU clocked at 8 MHz and running over all STANDBY period, ADC on in continuous conversion. The total standby consumption can be obtained by adding this parameter to the IDDSTBY parameter for the selected memory size and temperature.

4.8 I/O pad specification

The following table describes the different pad type configurations.

Pad type	Description
Weak configuration	Provides a good compromise between transition time and low electromagnetic emission.
Medium configuration	Provides transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
Strong configuration	Provides fast transition speed; used for fast interface.
Very strong configuration	Provides maximum speed and controlled symmetric behavior for rise and fall transition. Used for fast interface including Ethernet interface requiring fine control of rising/falling edge jitter.
Differential configuration	A few pads provide differential capability providing very fast interface together with good EMC performances.
Input only pads	These low input leakage pads are associated with the ADC channels.
Standby pads	 These pads (LP pads) are active during STANDBY. They are configured in CMOS level logic and this configuration cannot be changed. Moreover, when the device enters the STANDBY mode, the pad-keeper feature is activated for LP pads. It means that: if the pad voltage level is above the pad keeper high threshold, a weak pull-up resistor is automatically enabled if the pad voltage level is below the pad keeper low threshold, a weak pull-down resistor is automatically enabled. For the pad-keeper high/low thresholds, consider(VDD_HV_IO_MAIN / 2) +/-20 %.

Table 9. I/O pad specification descriptions


Note: Each I/O pin on the device supports specific drive configurations. See the signal description table in the device reference manual for the available drive configurations for each I/O pin. PMC_DIG_VSIO register has to be configured to select the voltage level (3.3 V or 5.0 V) for each IO segment.

Logic level is configurable in running mode while it is CMOS not-configurable in STANDBY for LP (low power) pads, so if a LP pad is used to wakeup from STANDBY, it should be configured as CMOS also in running mode in order to prevent device wrong behavior in STANDBY.

4.8.1 I/O input DC characteristics

The following table provides input DC electrical characteristics, as described in *Figure 3*.

Figure 3. I/O	input	electrical	characteristics
		010001100	

			Table 10.	I/O input electrical cl	naracteristics	5		
C. makes		~	Devenueter	Conditions		Value		11
Symbo	1	С	Parameter	Conditions	Min	Тур	Max	Unit
				TTL				
V _{ihttl}	SR	Ρ	Input high level TTL	_	2	_	V _{DD_HV_IO} + 0.3	V
V _{ilttl}	SR	Р	Input low level TTL	_	-0.3	—	0.8	V
V _{hysttl}	сс	С	Input hysteresis TTL	—	0.3	—	_	V
			·	CMOS				
V _{ihcmos}	SR	Ρ	Input high level CMOS	_	0.65 * V _{DD}	—	V _{DD_HV_IO} + 0.3	V
V _{ilcmos}	SR	Ρ	Input low level CMOS	_	-0.3	_	0.35 * V _{DD}	V
V _{hyscmos}	сс	С	Input hysteresis CMOS	_	0.10 * V _{DD}	_	_	V
			·	COMMON				
I _{LKG}	СС	Ρ	Pad input leakage	INPUT-ONLY pads T _J = 150 °C		_	200	nA
I _{LKG}	сс	Ρ	Pad input leakage	STRONG pads T _J = 150 °C	_	—	1,000	nA
I _{LKG}	сс	Ρ	Pad input leakage	VERY STRONG pads, T _J = 150 °C	_	_	1,000	nA

Table 40 1/0 im ut alactrical ch octoricti

C. make		с	Devenuetev	Conditions	Value			Unit	
Symbo	1	U U	Parameter	Conditions	Min	Тур	Max		
C _{P1}	СС	D	Pad capacitance	—	_	—	10	pF	
V _{drift}	сс	D	Input V _{il} /V _{ih} temperature drift	In a 1 ms period, with a temperature variation <30 °C		_	100	mV	
W _{FI}	SR	С	Wakeup input filtered pulse ⁽¹⁾	—	_	—	20	ns	
W _{NFI}	SR	с	Wakeup input not filtered pulse ⁽¹⁾	_	400	_	_	ns	

Table 10. I/O input electrical characteristics (continued)

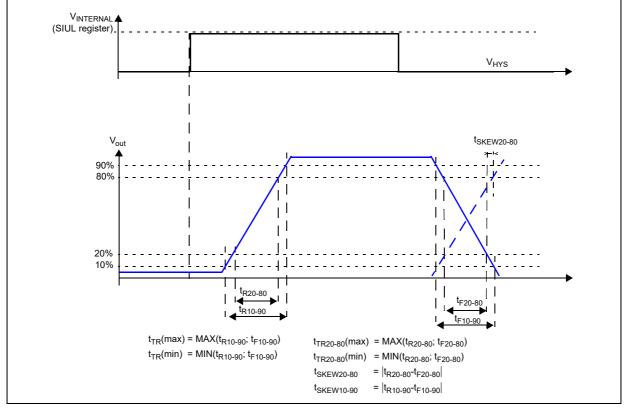
In the range from W_{FI} (max) to W_{NFI} (min), pulses can be filtered or not filtered, according to operating temperature and voltage. Refer to the device pinout IO definition excel file for the list of pins supporting the wakeup filter feature.

Cumhal	I	~	Deveneter	Conditions		Value		11
Symbol		С	Parameter	Conditions	Min	Тур	Max	- Unit
		Т	Weak pull-up	$V_{IN} = 1.1 V^{(1)}$	—	—	130	
I _{WPU}	I _{WPU} CC	Ρ	current absolute value	V _{IN} = 0.69 * V _{DD_HV_IO} ⁽²⁾	15	_		μA
R _{WPU}	сс	D	Weak Pull-up resistance	V _{DD_HV_IO} = 5.0 V ± 10%	33	_	93	KΩ
R _{WPU}	сс	D	Weak Pull-up resistance	V _{DD_HV_IO} = 3.3 V ± 10%	19	_	62	KΩ
	00	Т	Weak pull-	V _{IN} = 0.69 * V _{DD_HV_IO} ⁽¹⁾	_	—	130	•
I _{WPD}	CC	Ρ	down current absolute value	V _{IN} = 0.9 V ⁽²⁾	15	—		- μΑ
R _{WPD}	сс	D	Weak Pull- down resistance	V _{DD_HV_IO} = 5.0 V ± 10%	29	_	60	KΩ
R _{WPD}	сс	D	Weak Pull- down resistance	V _{DD_HV_IO} = 3.3 V ± 10%	19	_	60	KΩ

Table 11. I/O pull-up/pull-down electrical characteristics

1. Maximum current when forcing a change in the pin level opposite to the pull configuration.

2. Minimum current when keeping the same pin level state than the pull configuration.


Note: When the device enters into standby mode, the LP pads have the input buffer switched-on. As a consequence, if the pad input voltage VIN is $V_{SS} < V_{IN} < V_{DD_HV}$, an additional consumption can be measured in the VDD_HV domain. The highest consumption can be seen around mid-range (VIN ~=VDD_HV/2), 2-3 mA depending on process, voltage and temperature.

This situation may occur if the PAD is used as a ADC input channel, and $V_{SS} < V_{IN} < V_{DD_HV}$. The applications should ensure that LP pads are always set to VDD_HV or VSS, to avoid the extra consumption. Refer to the device pinout IO definition excel file to identify the low-power pads which also have an ADC function.

4.8.2 I/O output DC characteristics

Figure 4 provides description of output DC electrical characteristics.

Figure 4. I/O output DC electrical characteristics definition

The following tables provide DC characteristics for bidirectional pads:

- *Table 12* provides output driver characteristics for I/O pads when in WEAK/SLOW configuration.
- *Table 13* provides output driver characteristics for I/O pads when in MEDIUM configuration.
- *Table 14* provides output driver characteristics for I/O pads when in STRONG/FAST configuration.
- Table 15 provides output driver characteristics for I/O pads when in VERY STRONG/VERY FAST configuration.

Note:

10 %/90 % is the default condition for any parameter if not explicitly mentioned differently.

Symbol	1	с	Parameter	Conditions		Value		Unit	
Symbol		C	Parameter	Conditions	Min	Тур	Мах	Unit	
V _{ol_W}	сс	D	Output low voltage for Weak type PADs	I _{ol} = 0.5 mA V _{DD} = 5.0 V ± 10 % V _{DD} = 3.3 V ± 10 %	_	_	0.1*V _{DD}	V	
V _{oh_W}	сс	D	Output high voltage for Weak type PADs	loh = 0.5 mA V _{DD} = 5.0 V ± 10 % V _{DD} = 3.3 V ± 10 %	0.9*V _{DD}	_	_	V	
P	6	Б	Output	V_{DD} = 5.0 V \pm 10 %	380		1040		
R_W	СС	Р	impedance for Weak type PADs	V_{DD} = 3.3 V ± 10 %	250	—	700	Ω	
		с т	Maximum output frequency for Weak type PADs	CL = 25 pF V _{DD} = 5.0 V ± 10 % V _{DD} = 3.3 V ± 10 %			2	MHz	
F _{max_W}				CL = 50 pF V _{DD} = 5.0 V ± 10 % V _{DD} = 3.3 V ± 10 %	_	_	1	MHz	
t _{TR_W}		т	т	Transition time output pin weak	CL = 25 pF V _{DD} = 5.0 V + 10 % V _{DD} = 3.3 V + 10 %	25	_	120	ns
			configuration, 10%-90%	CL = 50 pF V _{DD} = 5.0 V ± 10 % V _{DD} = 3.3 V ± 10 %	50	_	240	ns	
t _{skew_w}	сс	т	Difference between rise and fall time, 90%-10%	_	_	_	25	%	
I _{DCMAX_W}	сс	D	Maximum DC current	V _{DD} = 5.0 V ± 10 % V _{DD} = 3.3 V ± 10 %	_	_	0.5	mA	

Table 13. MEDIUM I/O output characteristics

Symbol	Symbol C		Devenueter	Conditions		Unit		
Symbol			Parameter		Min	Тур	Max	Unit
V _{ol_M}	сс	D	Output low voltage for Medium type PADs	I _{ol} = 2.0 mA V _{DD} =5.0 V ± 10 % V _{DD} =3.3 V ± 10 %	_		0.1*V _{DD}	V
V _{oh_M}	сс	D	Output high voltage for Medium type PADs	I _{oh} =2.0 mA V _{DD} = 5.0 V ± 10 % V _{DD} = 3.3 V ± 10 %	0.9*V _{DD}		_	V

Symbol		с	Parameter	Conditions		Value		Unit
Symbol				Conditions	Min	Тур	Мах	Unit
			Output	V_{DD} = 5.0 V ± 10 %	90	—	260	
R_M	СС	Ρ	impedance for Medium type PADs	V _{DD} = 3.3 V ± 10 %	60	_	170	Ω
E	<u> </u>	сс т	Maximum output frequency for	CL = 25 pF V _{DD} = 5.0 V ± 10 % V _{DD} = 3.3 V ± 10 %	_	_	12	MHz
F _{max_M}			Medium type PADs	CL = 50 pF V _{DD} = 5.0 V ± 10 % V _{DD} = 3.3 V ± 10 %	_	_	6	MHz
	<u> </u>		Transition time output pin	CL = 25 pF V _{DD} = 5.0 V ± 10 % V _{DD} = 3.3 V ± 10 %	8	_	30	ns
۲R_M	t _{TR_M} CC		T MEDIUM configuration, 10%-90%	CL = 50 pF V _{DD} = 5.0 V ± 10 % V _{DD} = 3.3 V ± 10 %	12	_	60	ns
Itskew_M	сс	т	Difference between rise and fall time, 90%-10%	_	_	_	25	%
I _{DCMAX_M}	сс	D	Maximum DC current	V _{DD} = 5.0 V ± 10 % V _{DD} = 3.3 V ± 10 %	_	_	2	mA

Table 14. STRONG/FAST I/O output characteristics

Symbol		с	Parameter	Conditions			Unit	
			Falameter	Conditions	Min	Тур	Мах	Onic
V _{ol_S}	сс	D	Output low voltage for	l _{ol} = 8.0 mA V _{DD} = 5.0 V ± 10 %	_	_	0.1*V _{DD}	V
			Strong type PADs	l _{ol} = 5.5 mA V _{DD} =3 .3 V ± 10 %	_	_	0.15*V _{DD}	V
V.	сс	D	Output high voltage for	I _{oh} = 8.0 mA V _{DD} = 5.0 V ± 10 %	0.9*V _{DD}	_	_	V
V _{oh_S}			Strong type PADs	l _{oh} = 5.5 mA V _{DD} = 3.3 V ± 10 %	0.85*V _{DD}	_	—	V
R_s	сс		Output	V_{DD} = 5.0 V ± 10 %	20	_	65	
		Ρ	impedance for Strong type PADs	V _{DD} = 3.3 V ± 10 %	28		90	Ω

Symbol		с	Parameter	Conditions		Value		Unit			
Symbol		د	i didiletei	oonations	Min	Тур	Мах	Unit			
				CL = 25 pF V _{DD} =5.0 V ± 10 %	—	_	50	MHz			
	<u> </u>	т	Maximum output frequency for	CL = 50 pF V _{DD} =5.0 V ± 10 %	_	_	25	MHz			
F _{max_S}	СС	I	Strong type PADs	CL = 25 pF V _{DD} = 3.3 V ± 10 %	_	_	25	MHz			
				CL = 50 pF V _{DD} = 3.3 V ± 10 %	_	_	12.5	MHz			
							CL = 25 pF V _{DD} = 5.0 V ± 10 %	3	_	10	ns
	сс	т	Transition time output pin	CL = 50 pF V _{DD} = 5.0 V ± 10 %	5	_	16				
t _{tr_s}			STRONG configuration, 10%-90%	CL = 25 pF V _{DD} = 3.3 V ± 10 %	1.5	_	15				
				CL = 50 pF V _{DD} = 3.3 V ± 10 %	2.5	_	26				
I	сс	D	Maximum DC	V _{DD} = 5 V ± 10 %	_	—	8	mA			
I _{DCMAX_S}	00		current	V_{DD} = 3.3 V \pm 10 %	_		5.5				
t _{skew_} s	сс	Т	Difference between rise and fall time, 90 %-10 %	_	_	_	25	%			

Table 14. STRONG/FAST I/O output characteristics (continued)

Table 15. VERY STRONG/VERY FAST I/O output characteristics

Symbol		с	Parameter	Conditions		Unit		
Symbol		0	Farailleter	conditions	Min	Тур	Тур Мах	
V _{ol_V} CC	<u> </u>	D	Output low voltage for Very	l _{ol} = 9.0 mA V _{DD} =5.0 V ± 10 %	_	_	0.1*V _{DD}	V
		Strong type PADs	I _{ol} = 9.0 mA V _{DD} =3.3 V ± 10 %	_	_	0.15*V _{DD}	V	
V	сс	D	Output high voltage for Very Strong type PADs	I _{oh} = 9.0 mA V _{DD} = 5.0 V ± 10 %	0.9*V _{DD}	_	_	V
V _{oh_V}		D		l _{oh} = 9.0 mA V _{DD} = 3.3 V ± 10 %	0.85*V _{DD}	_	_	V
		C P	Output	V _{DD} = 5.0 V ± 10 %	20	_	60	
R_V (СС		impedance for Very Strong type PADs	V _{DD} = 3.3 V ± 10 %	18	_	50	Ω

			Devenueter	Ocarditions	·	Value		11		
Symbol		С	Parameter	Conditions	Min	Тур	Max	– Unit		
				CL = 25 pF V _{DD} = 5.0 V ± 10 %		_	50	MHz		
_	сс	т	Maximum output frequency for	CL = 50 pF V _{DD} = 5.0 V ± 10 %	—	-	25	MHz		
F _{max_V}	· max_v	1	Very Strong type PADs	CL = 25 pF V _{DD} = 3.3 V ± 10 %	_	-	50	MHz		
				CL = 50 pF V _{DD} = 3.3 V ± 10 %	—	-	25	MHz		
	t _{TR_V} CC T		10.000/	CL = 25 pF V _{DD} = 5.0 V ± 10 %	1	-	6			
÷		т	10–90% threshold transition time	CL = 50 pF V _{DD} = 5.0 V ± 10 %	3	-	12	n		
'TR_V			output pin VERY STRONG configuration	CL = 25 pF V _{DD} = 3.3 V ± 10 %	1.5	-	6	- ns		
				CL = 50 pF V _{DD} = 3.3 V ± 10 %	3	-	11			
		с т	Т	т	20–80% threshold transition time	CL = 25 pF V _{DD} = 5.0 V ± 10 %	0.8	-	4.5	
t _{TR20-80_} v	СС				output pin VERY STRONG configuration	CL = 15 pF V _{DD} = 3.3 V ± 10 %	1	_	4.5	ns
t _{trttl_v}	сс	т	TTL threshold transition time for output pin in VERY STRONG configuration (Ethernet standard)	CL = 25 pF V _{DD} = 3.3 V ± 10 %	0.88	_	5	ns		
		сс т		Sum of transition time	CL = 25 pF V _{DD} = 5.0 V ± 10 %	—	-	9		
Σt _{TR20-80_} V	Σt _{TR20-80_V} CC T		20–80% output pin VERY STRONG configuration	CL = 15 pF V _{DD} = 3.3 V ± 10 %	_	_	9	ns		
t _{SKEW_V}	сс	т	Difference between rise and fall delay	CL = 25 pF V _{DD} = 5.0 V ± 10 %	0	_	1.2	ns		
I _{DCMAX_V}	сс	D	Maximum DC current	V _{DD} = 5.0 V±10 % V _{DD} = 3.3 V ± 10 %	_	_	9	mA		

Table 15. VERY STRONG/VERY FAST I/O output characteristics (continued)

4.8.3 I/O pad current specifications

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in the device pinout Microsoft Excel file attached to the IO_Definition document.

Table 16 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the ${\sf I}_{\sf RMSSEG}$ maximum value.

In order to ensure device functionality, the sum of the dynamic and static current of the I/O on a single segment should remain below the I_{DYNSEG} maximum value.

Pad mapping on each segment can be optimized using the pad usage information provided on the I/O Signal Description table.

Symbol		~	Devenueter	Canditiana		Value ⁽¹)	11			
Symbo	Л	С	Parameter	Conditions	Min	Тур	Max	Unit			
			Average co	nsumption ⁽²⁾							
I _{RMSSEG}	SR	D	Sum of all the DC I/O current within a supply segment	_	_	_	80	mA			
				C _L = 25 pF, 2 MHz, V _{DD} = 5.0 V ± 10 %	_	_	1.1				
	<u> </u>	D	RMS I/O current for WEAK	C _L = 50 pF, 1 MHz, V _{DD} = 5.0 V ± 10 %	_	_	1.1	mA			
'RMS_W	I _{RMS_W} CC		configuration	C _L = 25 pF, 2 MHz, V _{DD} = 3.3 V ± 10 %	_	_	1.0	IIIA			
					C _L = 25 pF, 1 MHz, V _{DD} = 3.3 V ± 10 %		_	1.0			
		C D					C _L = 25 pF, 12 MHz, V _{DD} = 5.0 V ± 10 %		_	5.5	
	сс			RMS I/O current for MEDIUM	C _L = 50 pF, 6 MHz, V _{DD} = 5.0 V ± 10 %	_	_	5.5	mA		
I _{RMS_M}			configuration	C _L = 25 pF, 12 MHz, V _{DD} = 3.3 V ± 10 %	_	_	4.2	110 (
				C _L = 25 pF, 6 MHz, V _{DD} = 3.3 V ± 10 %	_		4.2				
				C _L = 25 pF, 50 MHz, V _{DD} = 5.0 V ± 10 %		_	21				
 	сс	D	RMS I/O current for STRONG	C _L = 50 pF, 25 MHz, V _{DD} = 5.0 V ± 10 %	_	_	21	mA			
I _{RMS_S}			c D configuration		C _L = 25 pF, 25 MHz, V _{DD} = 3.3 V ± 10 %	_	_	10			
				C _L = 25 pF, 12.5 MHz, V _{DD} = 3.3 V ± 10 %	—	_	10				

Table 16. I/O consumption

Symbol		с	Parameter	Conditions	Value ⁽¹⁾			Unit
					Min	Тур	Max	Unit
I _{RMS_V}	сс	D	RMS I/O current for VERY STRONG configuration	C _L = 25 pF, 50 MHz, V _{DD} = 5.0 V ± 10 %	_	_	23	- mA
				C _L = 50 pF, 25 MHz, V _{DD} = 5.0 V ± 10 %	_	_	23	
				C _L = 25 pF, 50 MHz, V _{DD} = 3.3 V ± 10 %	_	_	16	
				C _L = 25 pF, 25 MHz, V _{DD} = 3.3 V ± 10 %	_	_	16	
		•	Dynamic co	nsumption ⁽³⁾				
I _{DYN_SEG}	SR	D	Sum of all the dynamic and DC I/O current within a supply segment	V_{DD} = 5.0 V ± 10 %	—	—	195	mA
				V_{DD} = 3.3 V ± 10 %	_	_	150	
I _{DYN_W}	сс	D	Dynamic I/O current for WEAK configuration	C_L = 25 pF, V_{DD} = 5.0 V ± 10 %	_	_	16.7	mA
				C_{L} = 50 pF, V_{DD} = 5.0 V ± 10 %	_	_	16.8	
				C_L = 25 pF, V_{DD} = 3.3 V ± 10 %	_	_	12.9	
				C_L = 50 pF, V_{DD} = 3.3 V ± 10 %	_	_	12.9	
I _{DYN_M}	сс	D	Dynamic I/O current for MEDIUM configuration	$C_L = 25 \text{ pF}, V_{DD} = 5.0 \text{ V} \pm 10\%$	_	_	18.2	mA
				$C_L = 50 \text{ pF}, V_{DD} = 5.0 \text{ V} \pm 10\%$	_	_	18.4	
				C_L = 25 pF, V_{DD} = 3.3 V ± 10 %	_	_	14.3	
				C_{L} = 50 pF, V_{DD} = 3.3 V ± 10 %	_	_	16.4	
I _{DYN_S}	сс	D	Dynamic I/O current for STRONG configuration	C_L = 25 pF, V_{DD} = 5.0 V ± 10 %	_	_	57	– mA
				C_{L} = 50 pF, V_{DD} = 5.0 V ± 10 %	_	_	63.5	
				C_L = 25 pF, V_{DD} = 3.3 V ± 10 %	_	_	31	
				C_L = 50 pF, V_{DD} = 3.3 V ± 10 %			33.5	

Table 16.	I/O	consumption	(continued)
			(

Symbol		с	Parameter	Conditions	Value ⁽¹⁾			Unit
					Min	Тур	Мах	Unit
I _{DYN_V}	сс	D	Dynamic I/O current for VERY STRONG configuration	C_L = 25 pF, V_{DD} = 5.0 V ± 10 %	_	_	62	- mA
				C_L = 50 pF, V_{DD} = 5.0 V ± 10 %	_	_	70	
				C_L = 25 pF, V_{DD} = 3.3 V ± 10 %	_	_	52	
				C_L = 50 pF, V_{DD} = 3.3 V ± 10 %	_	_	55	

Table 16. I/O consumption (continued)

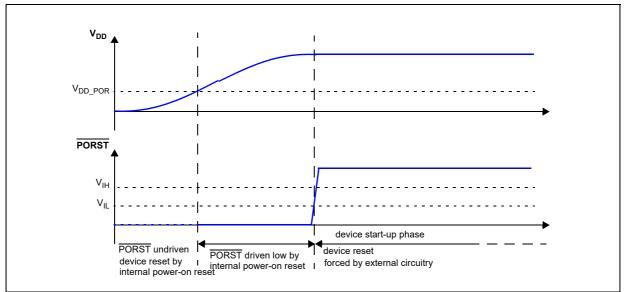
I/O current consumption specifications for the 4.5 V ≤ V_{DD_HV_IO} ≤ 5.5 V range are valid for VSIO_[VSIO_xx] = 1, and VSIO[VSIO_xx] = 0 for 3.0 V ≤ V_{DD_HV_IO} ≤ 3.6 V.

2. Average consumption in one pad toggling cycle.

3. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. When possible (timed output) it is recommended to delay transition between pads by few cycles to reduce noise and consumption.

4.9 Reset pad (PORST) electrical characteristics

The device implements dedicated bidirectional reset pins as below specified. $\overrightarrow{\text{PORST}}$ pin does not require active control. It is possible to implement an external pull-up to ensure correct reset exit sequence. Recommended value is 4.7 K Ω .



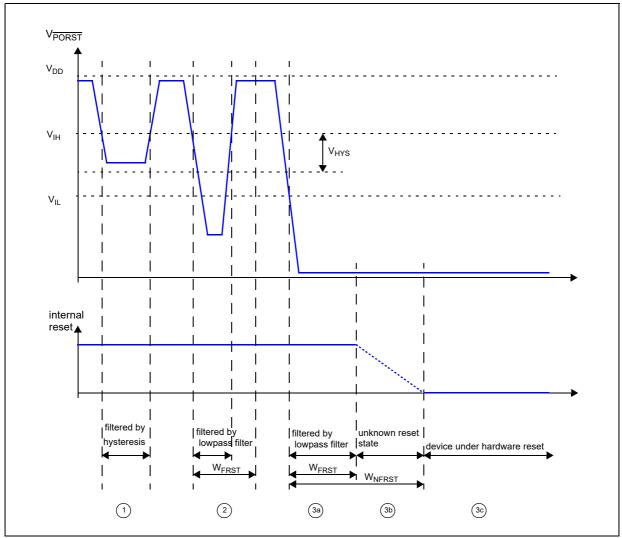

Figure 5. Startup reset requirements

Figure 6 describes device behavior depending on supply signal on PORST:

- 1. **PORST** low pulse has too low amplitude: it is filtered by input buffer hysteresis. Device remains in current state.
- 2. **PORST** low pulse has too short duration: it is filtered by low pass filter. Device remains in current state.
- 3. **PORST** low pulse is generating a reset:
 - a) **PORST** low but initially filtered during at least WFRST. Device remains initially in current state.
 - b) **PORST** potentially filtered until WNFRST. Device state is unknown. It may either be reset or remains in current state depending on extra condition (temperature, voltage, device).
 - c) **PORST** asserted for longer than WNFRST. Device is under reset.

Table 17. Reset PAD electrical characteristics

Symbol		C Parameter		Conditions		Unit		
Symbol		J	Farameter	Conditions	Min	Тур	Тур Мах	
V _{IHRES}	SR	Ρ	Input high level TTL	V _{DD_HV} = 5.0 V ± 10 % V _{DD_HV} = 3.3 V ± 10 %	2	—	V _{DD_HV_IO} +0.3	V
V _{ILRES}	SR	Ρ	Input low level	V _{DD_HV} = 5.0 V ± 10 %	-0.3	_	0.8	V
			TTL	V _{DD_HV} = 3.3 V ± 10 %	-0.3	_	0.6	
V _{HYSRES}	СС	С	Input hysteresis	V _{DD_HV} = 5.0 V ± 10 %	0.3	_	—	V
			TTL	V _{DD_HV} = 3.3 V ± 10 %	0.2	_	—	
V _{DD_POR}	СС	D	Minimum supply	V _{DD_HV} = 5.0 V ± 10 %	_	_	1.6	V
			for strong pull- down activation	V _{DD_HV} = 3.3 V ± 10 %	—	_	1.05	

0h a			Demonster	O and it is a s		Value		11
Symbo	1	С	Parameter	Conditions	Min	Тур	Max	– Unit
I _{OL_R}	CC	Ρ	Strong pull-down	V _{DD_HV} = 5.0 V ± 10 %	12	_	—	mA
			current ⁽¹⁾	V _{DD_HV} = 3.3 V ± 10 %	8	—	—	
I _{WPU}	СС	Ρ	Weak pull-up current absolute	V _{IN} = 1.1 V ⁽²⁾ V _{DD_HV} = 5.0 V ± 10 %	_	_	130	μA
	P P P P	Ρ	value	V _{IN} = 1.1 V V _{DD_HV} = 3.3 V ± 10 %	—	—	70	
		Ρ	_	V _{IN} = 0.69 * V _{DD_HV_IO} ⁽³⁾ V _{DD_HV} = 5.0 V ± 10 %	15	_	_	
			V _{IN} = 0.69 * V _{DD_HV_IO} V _{DD_HV} = 3.3 V ± 10 %	15	—	—		
I _{WPD}	CC	Ρ	Weak pull-down current absolute value	V _{IN} = 0.69 * V _{DD_HV_IO} ⁽²⁾ V _{DD_HV} = 5.0 V ± 10 %	_	_	130	μA
		Ρ		$V_{IN} = 0.69 *$ $V_{DD_HV_IO}^{(2)}$ $V_{DD_HV} = 3.3 V \pm 10 \%$	_	_	80	
		Ρ		V _{IN} = 0.9 V V _{DD_HV} = 5.0 V ± 10 %	15	_	_	
		Ρ		V _{IN} = 0.9 V V _{DD_HVDD_HV} = 3.3 V ± 10 %	15	_	_	
W _{FRST}	СС	Р	Input filtered	V _{DD_HV} = 5.0 V ± 10 %	_	—	500	ns
		Р	pulse	V _{DD_HV} = 3.3 V ± 10 %	_	—	600	
W _{NFRST}	СС	Ρ	Input not filtered	$V_{DD_{HV}} = 5.0 \text{ V} \pm 10 \%$	2000	_		ns
		Ρ	pulse	V _{DD_HV} = 3.3 V ± 10 %	3000		_	

Table 17. Reset PAD electrical characteristics (continued)

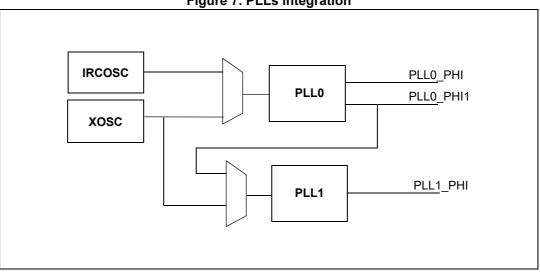
 I_{ol r} applies to PORST: Strong Pull-down is active on PHASE0 for PORST. Refer to the device pinout IO definition excel file for details regarding pin usage.

2. Maximum current when forcing a change in the pin level opposite to the pull configuration.

3. Minimum current when keeping the same pin level state than the pull configuration.

Table 18. Reset PAD state during power-up and reset

PAD	POWER-UP State	RESET state	DEFAULT state ⁽¹⁾	STANDBY state
PORST	Strong pull-down	Weak pull-down	Weak pull-down	Weak pull-up


1. Before SW Configuration. Refer to the Device Reference Manual, Reset Generation Module (MC_RGM) Functional Description chapter for the details of the power-up phases.

4.10 PLLs

Two phase-locked loop (PLL) modules are implemented to generate system and auxiliary clocks on the device.

Figure 7 depicts the integration of the two PLLs. Refer to device Reference Manual for more detailed schematic.

4.10.1 PLL0

 Table 19. PLL0 electrical characteristics

Symbol		C Parameter		Conditions	Value			Unit	
Symbol		C	Falameter	Conditions	Min	Тур	Max		
f _{PLL0IN}	SR	—	PLL0 input clock ⁽¹⁾	_	8	_	44	MHz	
Δ_{PLLOIN}	SR	_	PLL0 input clock duty cycle ⁽¹⁾	_	40		60	%	
f _{INFIN}	SR	_	PLL0 PFD (Phase requency Detector) input — lock frequency		8	_	20	MHz	
f _{PLL0VCO}	СС	Ρ	PLL0 VCO frequency —		600		1400	MHz	
f _{PLL0PHI0}	СС	D	PLL0 output frequency	_	4.762		400	MHz	
f _{PLL0PHI1}	СС	D	PLL0 output clock PHI1	—	20		175 ⁽²⁾	MHz	
t _{PLL0LOCK}	СС	Р	PLL0 lock time	_	—	_	100	μs	
	сс	т	PLL0_PHI0 single period jitter fPLL0IN = 20 MHz (resonator)	f _{PLL0PHI0} = 400 MHz, 6-sigma pk-pk	_		200	ps	

Symbol		с	Parameter	Conditions	Value			Unit	
Symbol		C	Parameter	Conditions	Min	Тур	Max		
[∆] pllophi1spjl ⁽³⁾	сс	D	PLL0_PHI1 single period jitter fPLL0IN = 20 MHz (resonator)	f _{PLL0PHI1} = 40 MHz, 6-sigma pk-pk	_	_	300 ⁽⁴⁾	ps	
Δ _{PLL0LTJ} ⁽³⁾				10 periods accumulated jitter (80 MHz equivalent frequency), 6-sigma pk-pk	_	_	±250	ps	
	CC D	D	PLL0 output long term jitter ⁽⁴⁾ f _{PLL0IN} = 20 MHz (resonator), VCO frequency = 800 MHz	16 periods accumulated jitter (50 MHz equivalent frequency), 6-sigma pk-pk	_	_	±300	ps	
				long term jitter (< 1 MHz equivalent frequency), 6-sigma pk-pk)	_	_	±500	ps	
I _{PLL0}	СС	D	PLL0 consumption	FINE LOCK state	_	_	6	mA	

Table 19. PLL0 electrical characteristics (continued)

1. PLL0IN clock retrieved directly from either internal RCOSC or external FXOSC clock. Input characteristics are granted when using internal RCOSC or external oscillator is used in functional mode.

 If the PLL0_PHI1 is used as an input for PLL1, then the PLL0_PHI1 frequency shall obey the maximum input frequency limit set for PLL1 (87.5 MHz, according to *Table 20*).

3. Jitter values reported in this table refer to the internal jitter, and do not include the contribution of the divider and the path to the output CLKOUT pin.

V_{DD_LV} noise due to application in the range V_{DD_LV} = 1.20 V±5 %, with frequency below PLL bandwidth (40 kHz) will be filtered.

4.10.2 PLL1

PLL1 is a frequency modulated PLL with Spread Spectrum Clock Generation (SSCG) support.

Symbol	Symbol		Parameter	Conditions	Value			Unit
Symbol		С	Falameter	conditions	Min	Тур	Max	Unit
f _{PLL1IN}	SR	_	PLL1 input clock ⁽¹⁾ —		37.5	—	87.5	MHz
Δ_{PLL1IN}	SR	_	PLL1 input clock duty cycle ⁽¹⁾	_	35	—	65	%
f _{INFIN}	SR	_	PLL1 PFD (Phase Frequency Detector) input clock frequency	—	37.5		87.5	MHz
f _{PLL1VCO}	СС	Р	PLL1 VCO frequency	—	600	_	1400	MHz
f _{PLL1PHI0}	СС	D	PLL1 output clock PHI0	—	4.762	—	F _{SYS} ⁽²⁾	MHz
t _{PLL1LOCK}	СС	Р	PLL1 lock time	—	_	—	50	μs
f _{PLL1MOD}	сс	Т	PLL1 modulation frequency	_		—	250	kHz
18	сс	т	PLL1 modulation depth	Center spread ⁽³⁾	0.25	_	2	%
^δ pll1mod	00	I	(when enabled)	Down spread	0.5	—	4	%
∆ _{PLL1PHI0SPJ} (4)	сс	Т	PLL1_PHI0 single period peak to peak jitter	f _{PLL1PHI0} = 200 MHz, 6-sigma	—	_	500 ⁽⁵⁾	ps
I _{PLL1}	СС	D	PLL1 consumption	FINE LOCK state			5	mA

Table 20. PLL1 electrical cha	racteristics
-------------------------------	--------------

1. PLL1IN clock retrieved directly from either internal PLL0 or external FXOSC clock. Input characteristics are granted when using internal PPL0 or external oscillator is used in functional mode.

2. Refer to Section 4.3: Operating conditions for the maximum operating frequency.

 The device maximum operating frequency F_{SYS} (max) includes the frequency modulation. If center modulation is selected, the FSYS must be below the maximum by MD (Modulation Depth Percentage), such that FSYS(max)=FSYS(1+MD %). Refer to the Reference Manual for the PLL programming details.

4. Jitter values reported in this table refer to the internal jitter, and do not include the contribution of the divider and the path to the output CLKOUT pin.

5. 1.25 V±5 %, application noise below 40 kHz at $V_{\text{DD_LV}}$ pin - no frequency modulation.

4.11 Oscillators

4.11.1 Crystal oscillator 40 MHz

Table 21. External 40 MHz oscillator electrical specifications

Gumba	Symbol		Deveneter	Conditions	V	alue	Unit
Symbo	1	С	Parameter	Conditions	Min	Мах	Unit
f _{XTAL}	CC	D	Crystal Frequency	—	4 ⁽²⁾	8	MHz
			Range ⁽¹⁾		>8	20	
					>20	40	
t _{cst}	CC	Т	Crystal start-up time ^{(3),(4)}	T _J = 150 °C	—	5	ms
t _{rec}	CC	D	Crystal recovery time ⁽⁵⁾	—	—	0.5	ms
V _{IHEXT}	СС	D	EXTAL input high voltage ⁽⁶⁾ (External Reference)	$V_{REF} = 0.29 * V_{DD_HV_OSC}$	V _{REF} + 0.75	—	V
V _{ILEXT}	СС	D	EXTAL input low voltage ⁽⁶⁾ (External Reference)	$V_{REF} = 0.29 * V_{DD_HV_OSC}$	—	V _{REF} - 0.75	V
C _{S_EXTAL}	СС	D	Total on-chip stray capacitance on EXTAL pin ⁽⁷⁾	_	3	7	pF
C _{S_XTAL}	CC	D	Total on-chip stray capacitance on XTAL pin ⁽⁷⁾	_	3	7	pF
9 _m	CC	Ρ	Oscillator Transconductance	f _{XTAL} = 4 – 8 MHz freq_sel[2:0] = 000	3.9	13.6	mA/V
		D		f _{XTAL} = 5 - 10 MHz freq_sel[2:0] = 001	5	17.5	
		D		f _{XTAL} = 10 – 15 MHz freq_sel[2:0] = 010	8.6	29.3	
		Ρ		f _{XTAL} = 15 - 20 MHz freq_sel[2:0] = 011	14.4	48	
		D		f _{XTAL} = 20 - 25 MHz freq_sel[2:0] = 100	21.2	69	
		D		f _{XTAL} = 25 – 30 MHz freq_sel[2:0] = 101	27	86	
		D		f _{XTAL} = 30 - 35 MHz freq_sel[2:0] = 110	33.5	115	
		Ρ		f _{XTAL} = 35 - 40 MHz freq_sel[2:0] = 111	33.5	115	
V _{EXTAL}	CC	D	Oscillation Amplitude on the EXTAL pin after startup ⁽⁸⁾	T _J = –40 °C to 150 °C	0.5	1.8	V

Symbol		с	Parameter	Conditions	v	alue	Unit
Symbo	1	Ŭ	Farameter	Conditions	Min	Min Max	
V _{HYS}	CC	D	Comparator Hysteresis	T _J = –40 °C to 150 °C	0.1	1.0	V
I _{XTAL}	CC	D	XTAL current ^{(8),(9)}	T _J = –40 °C to 150 °C	—	14	mA

1. The range is selectable by UTEST miscellaneous DCF client XOSC_FREQ_SEL.

2. The XTAL frequency, if used to feed the PPL0 (or PLL1), shall obey the minimum input frequency limit set for PLL0 (or PLL1).

3. This value is determined by the crystal manufacturer and board design, and it can potentially be higher than the maximum provided.

- 4. Proper PC board layout procedures must be followed to achieve specifications.
- 5. Crystal recovery time is the time for the oscillator to settle to the correct frequency after adjustment of the integrated load capacitor value.
- 6. Applies to an external clock input and not to crystal mode.
- 7. See crystal manufacturer's specification for recommended load capacitor (C_L) values. The external oscillator requires external load capacitors when operating from 8 MHz to 16 MHz. Account for on-chip stray capacitance (C_{S EXTAL}/C_{S XTAL}) and PCB capacitance when selecting a load capacitor value. When operating at 20 MHz/40 MHz, the integrated load capacitor value is selected via S/W to match the crystal manufacturer's specification, while accounting for on-chip and PCB capacitance.
- 8. Amplitude on the EXTAL pin after startup is determined by the ALC block, that is the Automatic Level Control Circuit. The function of the ALC is to provide high drive current during oscillator startup, but reduce current after oscillation in order to reduce power, distortion, and RFI, and to avoid over driving the crystal. The operating point of the ALC is dependent on the crystal value and loading conditions.
- 9. I_{XTAL} is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded. This is the maximum current during startup of the oscillator.

4.11.2 Crystal Oscillator 32 kHz

Table 22. 32 kHz extern	al slow oscillato	or electrical specifications

Symbol		с	Parameter	Conditions			Unit		
Symbol		U	Falailletei	Conditions	Min	Тур	Мах		
f _{sxosc}	SR	Т	Slow external crystal oscillator frequency	—	—	32768	_	Hz	
9 _{msxosc}	СС	Ρ	Slow external crystal oscillator transconductance	_	9.5	_	32	µA/V	
V _{sxosc}	CC	Т	Oscillation Amplitude	_	0.5	—	1.7	V	
I _{sxoosc}	CC	D	Oscillator consumption		_	—	9	μA	
T _{sxosc}	CC	Т	Start up time		—		2	S	

4.11.3 RC oscillator 16 MHz

Symbol		с	Parameter	Conditions		Value		Unit
Symbol		C	Farameter	Conditions	Min	Тур	Max	Onit
f _{Target}	СС	D	IRC target frequency	—	—	16	—	MHz
δf _{var_noT}	CC	Ρ	IRC frequency variation without temperature compensation	T < 150 °C	-5	—	5	%
δf _{var_T}	CC	Т	IRC frequency variation with temperature compensation	T < 150 °C	-3	—	3	%
δf _{var_SW}		Т	IRC software trimming accuracy	Trimming temperature	-0.5	<u>+</u> 0.3	0.5	%
T _{start_noT}	CC	Т	Startup time to reach within f _{var_noT}	Factory trimming already applied			5	μs
T _{start_T}	CC	Т	Startup time to reach within f _{var_T}	Factory trimming already applied	_	_	120	μs
I _{FIRC}	CC	Т	Current consumption on HV power supply ⁽¹⁾	After T_{start_T}	—	—	1200	μA

1. The consumption reported considers the sum of the RC oscillator 16 MHz IP, and the core logic clocked by the IP during Standby mode.

4.11.4 Low power RC oscillator

						Value				Value		
Symbol		С	Parameter	Conditions				Unit				
-					Min	Тур	Мах					
F _{sirc}	СС	Т	Slow Internal RC oscillator frequency	—	_	1024	_	kHz				
δf _{var_T}	СС	Ρ	Frequency variation across temperature	–40 °C < T < 150 °C	-9	_	+9	%				
δf _{var_V}	СС	Ρ	Frequency variation across voltage	–40 °C < T < 150 °C	-5	_	+5	%				
I _{sirc}	СС	Т	Slow Internal RC oscillator current	T = 55 °C	_	_	6	μA				
T _{sirc}	СС	Т	Start up time, after switching ON the internal regulator.	_	_	_	12	μS				

Table 24. 1024 kHz internal RC oscillator electrical characteristics

4.12 ADC system

4.12.1 ADC input description

Figure 8 shows the input equivalent circuit for SARn and SARB channels.

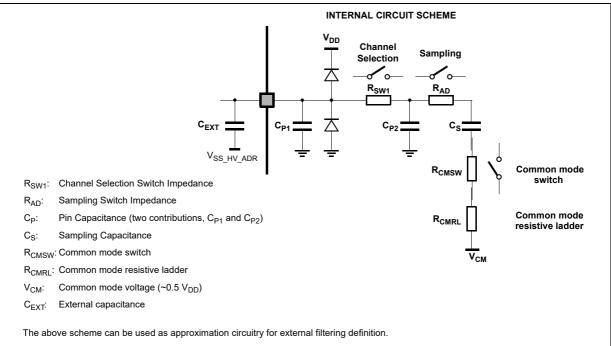


Figure 8. Input equivalent circuit (Fast SARn and SARB channels)

All specifications in the following table valid for the full input voltage range for the analog inputs.

Symbol		с	Parameter	Conditions	Value		Unit
Symbol		C	Faiameter	Conditions	Min	Max	Unit
R _{20KΩ}	сс	D	Internal voltage reference source impedance.	_	16	30	KΩ
I _{LKG}	сс	_	Input leakage current, two ADC channels on input-only pin.	See IO chapter <i>Table 10: I/</i> <i>characteristics</i> , parameter			
I _{INJ1}	SR	_	Injection current on analog input preserving functionality at full or degraded performances.	See Operating Conditions chapter <i>Table 5:</i> <i>Operating conditions</i> , I _{INJ1} parameter.			
C _{HV_ADC}	SR	D	V _{DD_HV_ADV} external capacitance.	See Power Management chapter <i>Table 33: Externa components integration</i> , C _{ADC} parameter.			External
C _{P1}	сс	D	Pad capacitance	See IO chapter <i>Table 10: I/O input electrical characteristics</i> , parameter C _{P1} .			1

Table 25. ADC pin specification

Cumhal			Devenueden	Decemeter Conditions		Value	
Symbol		С	Parameter	Conditions	Min	Max 2 0.5 1 5 2 1.8 0.8 1.8 0.8 3.2 9 300 500 +1.5 C, it is negative device is large a sto atten The impediation of	Unit
				SARB channels	—	2	
C _{P2}	СС	D	Internal routing capacitance SARn 10bit channels	SARn 10bit channels	-	0.5	pF
				SARn 12bit channels		1	
Cs	сс	D	SAR ADC sampling capacitance	SARn 12bit		5	рF
US	00		SAN ADC Sampling capacitance	SARn 10bit	-	2	μr
				SARB channels	0	1.8	
R _{SWn}	СС	D	Analog switches resistance	SARn 10bit channels	0	0.8	kΩ
				SARn 12bit channels	0	-	
P	сс	D	ADC input analog switches	SARn 12bit	— 0.8		kΩ
R _{AD}	00		resistance	SARn 10bit		3.2	N22
R _{CMSW}	СС	D	Common mode switch resistance	Sum of the two		0	kΩ
R _{CMRL}	СС	D	Common mode resistive ladder	resistances		3	kΩ
D (1)		6	Discharge resistance for ADC	V _{DD_HV_IO} = 5.0 V ± 10 %		300	W
R _{SAFEPD} ⁽¹⁾	СС	D	input-only pins (strong pull-down for safety)	V _{DD_HV_IO} = 3.3 V ± 10 %		500	W
A _{BGAP}	СС	D	ADC digital bandgap accuracy		-1.5	+1.5	%
C _{EXT}	SR		External capacitance at the pad input pin	-1.5+1.5%To preserve the accuracy of the ADC, it is necessar that analog input pins have low AC impedance.Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible. This capacitor contributes to attenuating the noise present on the input pin. The impedance relative to the signal source can limit the ADC's sample rate.			

Table 25. ADC pin specification (continued)

1. It enables discharge of up to 100 nF from 5 V every 300 ms. Refer to the device pinout Microsoft Excel file attached to the IO_Definition document for the pads supporting it.

4.12.2 SAR ADC 12 bit electrical specification

The SARn ADCs are 12-bit Successive Approximation Register analog-to-digital converters with full capacitive DAC. The SARn architecture allows input channel multiplexing.

Note: The functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maximum may affect device reliability or cause permanent damage to the device.

Symbol		с	Parameter	Conditions	Va	lue	Unit
Symbol		C	Parameter	Conditions	Min	Max	Unit
f	SR	Ρ	Clock frequency	Standard frequency mode	7.5	13.33	MHz
f _{ADCK}	SN	Т	Clock liequency	High frequency mode	>13.33	16.0	
t _{ADCINIT}	SR	_	ADC initialization time	—	1.5	—	μs
t _{ADCBIASINIT}	SR		ADC BIAS initialization time	—	5	—	μs
+	SR	т		Fast SAR	1/f _{ADCK}	—	
t _{ADCPRECH}	on	1	ADC decharge time	Slow SAR (SARDAC_B)	2/f _{ADCK}		- µs
ΔV _{PRECH}	SR	D	Decharge voltage precision	Т _Ј < 150 °С	0	0.25	V
R _{20KΩ}	сс	D	Internal voltage reference source impedance	_	16	30	KΩ
ΔV _{INTREF}	сс	Ρ	Internal reference voltage precision	Applies to all internal reference points (Vss_Hv_ADR, 1/3 * V _{DD_HV_ADR} , 2/3 * V _{DD_HV_ADR} , V _{DD_HV_ADR})	-0.20	0.20	v

Table 26.	SARn	ADC	electrical	specification
10.010 -01	••••••••			opeenieation

Cumb al		6	Dovomotor	Conditions	Va	lue	11
Symbol		С	Parameter	Conditions	Min	Max	– Unit
		Р		Fast SAR – 12-bit configuration	6/f _{ADCK}		
				Fast SAR – 10-bit configuration mode 1 ⁽²⁾ (Standard frequency mode only)	6/f _{ADCK}		
				Fast SAR – 10-bit configuration mode 2 ⁽³⁾ (Standard frequency mode only)	5/f _{ADCK}		
				Fast SAR – 10-bit configuration mode 3 ⁽⁴⁾ (High frequency mode only)	6/f _{ADCK}		
				Slow SAR (SARADC_B) – 12-bit configuration	12/f _{ADCK}		
^t ADCSAMPLE	SR	D	ADC sample time ⁽¹⁾	Slow SAR (SARADC_B) – 10-bit configuration mode 1 ⁽²⁾ (Standard frequency mode only)	12/f _{ADCK}	_	μs
				Slow SAR (SARADC_B) – 10-bit configuration mode 2 ⁽³⁾ (Standard frequency mode only)	10/f _{ADCK}		
				Slow SAR (SARADC_B) – 10-bit configuration mode 3 ⁽⁴⁾ (High frequency mode only)	12/f _{ADCK}		
				Conversion of BIAS test channels through 20 $k\Omega$ input.	40/f _{ADCK}		
t	SR	Р	ADC evaluation time	12-bit configuration	12/f _{ADCK}		116
^t ADCEVAL		D		10-bit configuration	10/f _{ADCK}		— μs
I _{ADCREFH} ^{(5),(6)}	сс	т	ADC high reference current	Run mode (average across all codes)	—	7	μA
				Power Down mode	_	1	
I _{ADCREFL} ⁽⁶⁾	сс	D	ADC low reference	$\begin{array}{l} \text{Run mode} \\ \text{V}_{DD_HV_ADR_S} \leq 5.5 \text{ V} \end{array}$	_	15	μΑ
'ADCREFL			current	Power Down mode $V_{DD_HV_ADR_S} \le 5.5 \text{ V}$	_	1	
(6)	сс	Р	V _{DD_HV_ADV} power	Run mode	_	4.0	mA
I _{ADV_S} ⁽⁶⁾		D	supply current	Power Down mode		0.04	

Symbol	Symbol		Parameter	Conditions	Va	lue	Unit					
Symbol			Parameter	Conditions	Min	Value Min Max -4 4 -6 6 -6 6 -12 12 -1.5 1.5 -2.0 2.0	Onit					
		т		T _J < 150 °C, V _{DD_HV_ADV} > 3 V, V _{DD_HV_ADR_S} > 3 V	-4	4						
		Ρ	Total unadjusted error	T _J < 150 °C, V _{DD_HV_ADV} > 3 V, V _{DD_HV_ADR_S} > 3 V	-6	6	LSB					
TUE ₁₂	СС	т	in 12-bit configuration ⁽⁷⁾	T _J < 150 °C, V _{DD_HV_ADV} > 3 V, 3 V > V _{DD_HV_ADR_S} > 2 V	-6	6	(12b)					
		D		High frequency mode, T _J < 150 °C, V _{DD_HV_ADV} > 3 V, V _{DD_HV_ADR_S} > 3 V	-12							
		D		Mode 1, T _J < 150 °C, V _{DD_HV_ADV} > 3 V V _{DD_HV_ADR_S} > 3 V	-1.5	1.5						
TUE	TUE ₁₀ CC C	00		<u> </u>	000		D	Total unadjusted error in 10-bit	Mode 1, T _J < 150 °C, V _{DD_HV_ADV} > 3 V, 3 V > V _{DD_HV_ADR_S} > 2 V	-2.0	2.0	LSB
			configuration ⁽⁷⁾		Mode 2, T _J < 150 °C, V _{DD_HV_ADV} > 3 V V _{DD_HV_ADR_S} > 3 V	-3.0	3.0	(10b)				
		С		Mode 3, T _J < 150 °C, V _{DD_HV_ADV} > 3 V V _{DD_HV_ADR_S} > 3 V	-4.0	4.0						

Table 26. SARn ADC electrical specification	(continued)
	(0011111000)

Symbol		с	Parameter	Conditions	Value		Unit									
Symbol		C	Farameter	Conditions	Min	Max	Onit									
				$V_{IN} < V_{DD_{HV}ADV}$ $V_{DD_{HV}ADR} - V_{DD_{HV}ADV}$ $\in [0:25 \text{ mV}]$	-1	1										
				$V_{\text{IN}} < V_{\text{DD}_{\text{HV}_{\text{ADV}}}}$ $V_{\text{DD}_{\text{HV}_{\text{ADR}}}} - V_{\text{DD}_{\text{HV}_{\text{ADV}}}}$ $\in [25:50 \text{ mV}]$	-2	2										
				$V_{IN} < V_{DD_HV_ADV}$ $V_{DD_HV_ADR} - V_{DD_HV_ADV}$ $\in [50:75 \text{ mV}]$	-4	4										
				$V_{IN} < V_{DD_HV_ADV}$ $V_{DD_HV_ADR} - V_{DD_HV_ADV}$ $\in [75:100 \text{ mV}]$	-6	6										
∆TUE ₁₂	∆TUE ₁₂ CC	сс	сс	СС	СС	СС	СС	СС	сс	CC D	D	TUE degradation due to $V_{DD_HV_ADR}$ offset with respect to $V_{DD_HV_ADV}$	$V_{DD_HV_ADV} < V_{IN} < V_{DD_HV_ADR}$ $V_{DD_HV_ADR} - V_{DD_HV_ADR} - V_{DD_HV_ADV} \in [0:25 \text{ mV}]$	-2.5	2.5	LSB (12b)
				$V_{DD_HV_ADV} < V_{IN} < V_{DD_HV_ADR}$ $V_{DD_HV_ADR} - V_{DD_HV_ADV} \in [25:50 \text{ mV}]$	-4	4										
				$V_{DD_HV_ADV} < V_{IN} < V_{DD_HV_ADR} V_{DD_HV_ADR} - V_{DD_HV_ADV} \in [50:75 mV]$	-7	7										
				$V_{DD_HV_ADV} < V_{IN} < V_{DD_HV_ADR} V_{DD_HV_ADR} - V_{DD_HV_ADV} \in [75:100 mV]$	-12	12										
DNL ⁽⁸⁾	P	Differential non-	Standard frequency mode, V _{DD_HV_ADV} > 4 V V _{DD_HV_ADR_S} > 4 V	-1	2	LSB										
	СС	т	linearity	High frequency mode, V _{DD_HV_ADV} > 4 V V _{DD_HV_ADR_S} > 4 V	-1	2	(12b)									

 Minimum ADC sample times are dependent on adequate charge transfer from the external driving circuit to the internal sample capacitor. The time constant of the entire circuit must allow the sampling capacitor to charge within 1/2 LSB within the sampling window. Refer to *Figure 8* for models of the internal ADC circuit, and the values to use in external RC sizing and calculating the sampling window duration.

2. Mode1: 6 sampling cycles + 10 conversion cycles at 13.33 MHz.

3. Mode2: 5 sampling cycles + 10 conversion cycles at 13.33 MHz.

4. Mode3: 6 sampling cycles + 10 conversion cycles at 16 MHz.

5. I_{ADCREFH} and I_{ADCREFL} are independent from ADC clock frequency. It depends on conversion rate: consumption is driven by the transfer of charge between internal capacitances during the conversion.

6. Current parameter values are for a single ADC.

- 7. TUE is granted with injection current within the range defined in Table 25, for parameters classified as T and D.
- 8. DNL is granted with injection current within the range defined in Table 25, for parameters classified as T and D.

4.12.3 SAR ADC 10 bit electrical specification

The ADC comparators are 10-bit Successive Approximation Register analog-to-digital converters with full capacitive DAC. The SARn architecture allows input channel multiplexing.

Note: The functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maximum may affect device reliability or cause permanent damage to the device.

Symbol		с	Parameter	Conditions	Val	ue	Unit	
Зутвої		C	Parameter	Conditions	Min	Max	Unit	
f	SR	Ρ	Clock frequency	Standard frequency mode	7.5	13.33	MHz	
f _{ADCK}	51	Т	Clock frequency	High frequency mode	>13.33	16.0		
t _{ADCINIT}	SR	_	ADC initialization time	—	1.5	—	μs	
t _{ADCBIASINIT}	SR	_	ADC BIAS initialization time	_	5	—	μs	
t _{ADCINITSBY}	SR	—	ADC initialization time in standby	Standby mode	8	_	μs	
+	SR	т	ADC precharge time	Fast channel	1/f _{ADCK}	_		
t _{ADCPRECH} SR		'	ADC precharge time	Standard channel	2/f _{ADCK}	—	- μs	
ΔV_{PRECH}	SR	D	Precharge voltage precision	Т _Ј < 150 °С	0	0.25	V	
t _{ADCSAMPLE}	SR	Р	ADC sample time ⁽¹⁾	10-bit ADC mode	5/f _{ADCK}	_	μs	
			ADC comparator	ADC comparator mode	2/f _{ADCK}	_	μs	
+	СD	Ρ	ADC evaluation time	10-bit ADC mode	10/f _{ADCK}	—		
t _{ADCEVAL}	SR	D		ADC comparator mode	2/f _{ADCK}	—	μs	
(2) (2)			ADC high reference	Run mode (average across all codes)	_	7	_	
I _{ADCREFH} ^{(2),(3)}	СС	Т	current	Power down mode	—	1	μA	
				ADC comparator mode	—	19.5		
				Run mode $V_{DD_HV_ADR_S} \le 5.5 \text{ V}$	_	15		
I _{ADCREFL} ⁽⁴⁾	сс	D	ADC low reference current	Power Down mode $V_{DD_HV_ADR_S} \le 5.5 \text{ V}$	_	1	μA	
				ADC comparator mode	—	20.5		
(4)	сс	Р	V _{DD HV ADV} power	Run mode	_	4	mA	
I _{ADV_} s ⁽⁴⁾		D	supply current	Power down mode	—	0.04	IIIA	

Table 27. ADC-Comparator electrical specification

Symbol		~	Demonster	Que ditions	Va	lue	Unit			
Symbol		С	Parameter	Conditions	Min	Мах	Unit			
		Т		T _J < 150 °C, V _{DD_HV_ADV} > 3 V, V _{DD_HV_ADR_S} > 3 V	-2	2				
TUE ₁₀	сс	1		00	Ρ	Total unadiusted error	T _J < 150 °C, V _{DD_HV_ADV} > 3 V, V _{DD_HV_ADR_S} > 3 V	-3	3	- LSB
		т	Total unadjusted error in 10-bit configuration ⁽⁵⁾	T _J < 150 °C, V _{DD_HV_ADV} > 3 V, 3 V > V _{DD_HV_ADR_S} > 2 V	-3	3	(10b)			
		D		High frequency mode, T _J < 150 °C, V _{DD_HV_ADV} > 3 V, V _{DD_HV_ADR_S} > 3 V	-3	3				
				V _{IN} < V _{DD_HV_ADV} V _{DD_HV_ADR} − V _{DD_HV_ADV} ∈ [0:25 mV]	-1.0	1.0				
				$V_{IN} < V_{DD_HV_ADV}$ $V_{DD_HV_ADR} - V_{DD_HV_ADV} \in$ [25:50 mV]	-2.0	2.0	LSB (10b)			
				$V_{IN} < V_{DD_HV_ADV}$ $V_{DD_HV_ADR} - V_{DD_HV_ADV} \in$ [50:75 mV]	-3.5	3.5				
				$V_{IN} < V_{DD_HV_ADV}$ $V_{DD_HV_ADR} - V_{DD_HV_ADV} \in$ [75:100 mV]	-6.0	6.0				
∆TUE ₁₀	сс	D to V _{DD} with res	TUE degradation due to $V_{DD_HV_ADR}$ offset with respect to $V_{DD_HV_ADV}$	$V_{DD_HV_ADV} < V_{IN} < V_{DD_HV_ADR} V_{DD_HV_ADR} - V_{DD_HV_ADV} \in [0:25 \text{ mV}]$	-2.5	2.5				
				$V_{DD_HV_ADV} < V_{IN} < V_{DD_HV_ADR} V_{DD_HV_ADR} - V_{DD_HV_ADV} \in [25:50 \text{ mV}]$	-4.0	4.0				
			$V_{DD_HV_ADV} < V_{IN} < V_{DD_HV_ADR} < V_{DD_HV_ADR} = V_{DD_HV_ADV} \in [50:75 \text{ mV}]$	-7.0	7.0					
				$V_{DD_HV_ADV} < V_{IN} < V_{DD_HV_ADR} < V_{DD_HV_ADR} = V_{DD_HV_ADV} \in [75:100 \text{ mV}]$	-12.0	12.0				

 Table 27. ADC-Comparator electrical specification (continued)

Gumbal		с	Parameter	Conditions	Va	11	
Symbol		C	Falailletei	Conditions	Min	Мах	Unit
	<u> </u>	Ρ	Differential non-linearity	Standard frequency mode, V _{DD_HV_ADV} > 4 V V _{DD_HV_ADR_S} > 4 V	-1	2	LSB
DNL ⁽⁶⁾	CC	т	std. mode	High frequency mode, V _{DD_HV_ADV} > 4 V V _{DD_HV_ADR_S} > 4 V	-1	2	(10b)

Table 27. ADC-Comparator electrical specification (continued)

 Minimum ADC sample times are dependent on adequate charge transfer from the external driving circuit to the internal sample capacitor. The time constant of the entire circuit must allow the sampling capacitor to charge within 1/2 LSB within the sampling window. Refer to *Figure 8* for models of the internal ADC circuit, and the values to use in external RC sizing and calculating the sampling window duration.

2. I_{ADCREFH} and I_{ADCREFL} are independent from ADC clock frequency. It depends on conversion rate: consumption is driven by the transfer of charge between internal capacitances during the conversion.

3. Current parameter values are for a single ADC.

4. All channels of all SAR-ADC12bit and SAR-ADC10bit are impacted with same degradation, independently from the ADC and the channel subject to current injection.

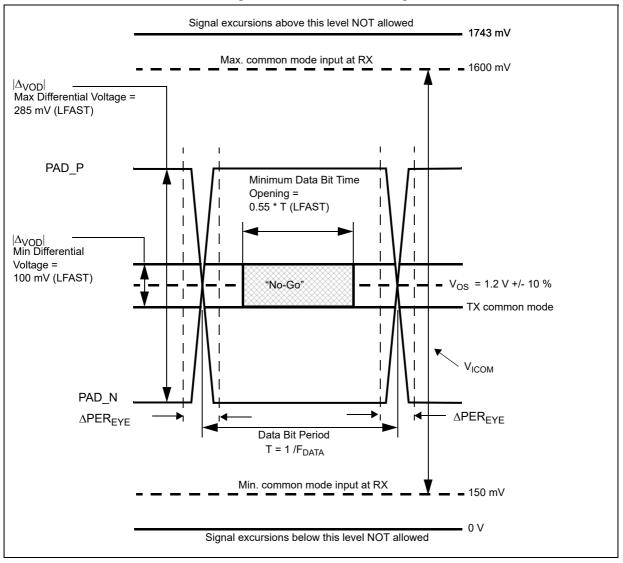
5. TUE is granted with injection current within the range defined in Table 25, for parameters classified as T and D.

6. DNL is granted with injection current within the range defined in Table 25, for parameters classified as T and D.

4.13 Temperature sensor

The following table describes the temperature sensor electrical characteristics.

Symbol		с	Deremeter	Conditions		Unit		
		U	Parameter	Conditions	Min	Тур	Max	Unit
—	CC		Temperature monitoring range	—	-40	—	150	°C
T _{SENS}	CC	Т	Sensitivity	_	—	5.18	_	mV/°C
T _{ACC}	СС	Р	Accuracy	T _J < 150 °C	-3	—	3	°C


Table 28. Temperature sensor electrical characteristics

4.14 LFAST pad electrical characteristics

The LFAST(LVDS Fast Asynchronous Serial Transmission) pad electrical characteristics apply to high-speed debug serial interfaces on the device.

4.14.1 LFAST interface timing diagrams

Figure 9. LFAST LVDS timing definition

Electrical characteristics

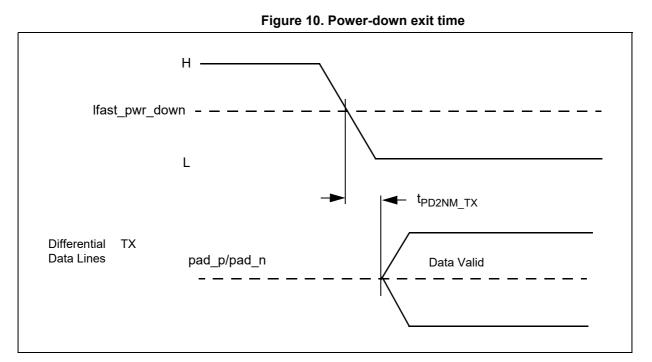
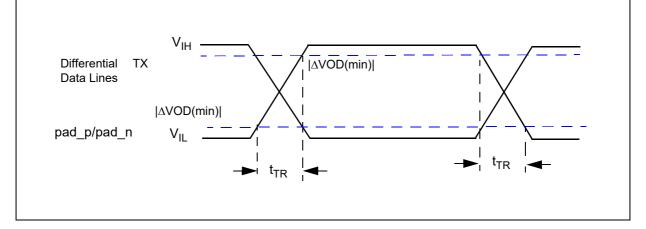



Figure 11. Rise/fall time

4.14.2 LFAST LVDS interface electrical characteristics

The following table contains the electrical characteristics for the LFAST interface.

	Table 29. LVDS	pad startup	and receiver	electrical	characteristics ^{(1),(2)}
--	----------------	-------------	--------------	------------	------------------------------------

Symbol C		c	Parameter	Conditions		Unit					
		C	Falameter	Conditions	Min	Тур	Max	Unit			
	STARTUP ^{(3),(4)}										
t _{STRT_BIAS}	сс	т	Bias current reference startup time ⁽⁵⁾	_	_	0.5	4	μs			
t _{PD2NM_TX}	сс	Т	Transmitter startup time (power down to normal mode) ⁽⁶⁾	_	_	0.4	2.75	μs			

DS11701 Rev 4

Table 29. LVDS pad startup and receiver electrical characteristics ("M-" (continued)										
Symbol		с	Parameter	Conditions		Value		Unit		
Symbol		C	Farameter	Conditions	Min	Тур	Мах	Unit		
t _{SM2NM_TX}	сс	Т	Transmitter startup time (sleep mode to normal mode) ⁽⁷⁾	Not applicable to the MSC/DSPI LVDS pad	_	0.4	0.6	μs		
t _{PD2NM_RX}	сс	т	Receiver startup time (power down to normal mode) ⁽⁸⁾	_	_	20	40	ns		
t _{PD2SM_RX}	сс	т	Receiver startup time (power down to sleep mode) ⁽⁹⁾	Not applicable to the MSC/DSPI LVDS pad	_	20	50	ns		
I _{LVDS_BIAS}	СС	D	LVDS bias current consumption	Tx or Rx enabled	_	_	0.95	mA		
			TRANSMISSION LINE CHA	RACTERISTICS (PCB Tr	rack)					
Z ₀	SR	D	Transmission line characteristic impedance	_	47.5	50	52.5	Ω		
Z _{DIFF}	SR	D	Transmission line differential impedance	_	95	100	105	Ω		
			RECI	EIVER						
V _{ICOM}	SR	т	Common mode voltage	_	0.15 (10)	_	1.6 ⁽¹¹⁾	V		
$ \Delta_{VI} $	SR	Т	Differential input voltage ⁽¹²⁾	—	100		—	mV		
V _{HYS}	СС	Т	Input hysteresis	—	25	_	_	mV		
R _{IN}	СС	D	Terminating resistance	V _{DD_HV_IO} = 5.0 V ± 10 % -40 °C < T _J < 150 °C	80	_	150	Ω		
				V _{DD_HV_IO} = 3.3 V ± 10 % -40 °C < T _J < 150 °C	80	_	175			
C _{IN}	СС	D	Differential input capacitance ⁽¹³⁾	—	_	3.5	6.0	pF		
I _{LVDS_RX}	сс	с	Receiver DC current consumption	Enabled	_	_	1.6	mA		
I _{PIN_RX}	сс	D	Maximum consumption on receiver input pin	Δ _{VI} = 400 mV, R _{IN} = 80 Ω	_	_	5	mA		

Table 29. LVDS pad startup and receiver electrical characteristics ^{(1),(2)} (continued)

1. The LVDS pad startup and receiver electrical characteristics in this table apply to both the LFAST & High-speed Debug (HSD) LVDS pad.

2. All LVDS pad electrical characteristics are valid from -40 °C to 150 °C.

3. All startup times are defined after a 2 peripheral bridge clock delay from writing to the corresponding enable bit in the LVDS control registers (LCR) of the LFAST and High-speed Debug modules. The value of the LCR bits for the LFAST/HSD modules don't take effect until the corresponding SIUL2 MSCR ODC bits are set to LFAST LVDS mode. Startup times for MSC/DSPI LVDS are defined after 2 peripheral bridge clock delay after selecting MSC/DSPI LVDS in the corresponding SIUL2 MSCR ODC field.

4. Startup times are valid for the maximum external loads CL defined in both the LFAST/HSD and MSC/DSPI transmitter electrical characteristic tables.

5. Bias startup time is defined as the time taken by the current reference block to reach the settling bias current after being enabled.

Total transmitter startup time from power down to normal mode is t_{STRT_BIAS} + t_{PD2NM_TX} + 2 peripheral bridge clock periods.

7. Total transmitter startup time from sleep mode to normal mode is t_{SM2NM_TX} + 2 peripheral bridge clock periods. Bias block remains enabled in sleep mode.

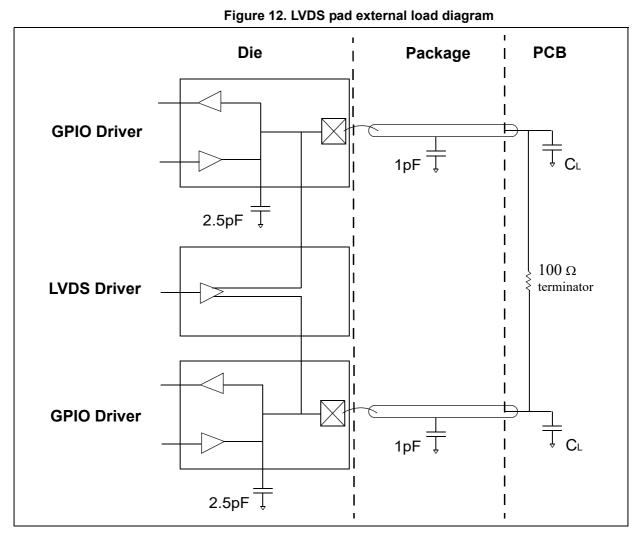
Electrical characteristics

- 8. Total receiver startup time from power down to normal mode is $t_{STRT_BIAS} + t_{PD2NM_RX} + 2$ peripheral bridge clock periods.
- Total receiver startup time from power down to sleep mode is t_{PD2SM_RX} + 2 peripheral bridge clock periods. Bias block remains enabled in sleep mode.
- 10. Absolute min = 0.15 V (285 mV/2) = 0 V
- 11. Absolute max = 1.6 V + (285 mV/2) = 1.743 V
- 12. Value valid for LFAST mode. The LXRXOP[0] bit in the LFAST LVDS Control Register (LCR) must be set to one to ensure proper LFAST receive timing.
- 13. Total internal capacitance including receiver and termination, co-bonded GPIO pads, and package contributions.

Symbol		с	Parameter	Conditions	Value			Unit									
Symbo	01	C	Faraneter	Conditions	Min	Тур	Max	Unit									
f _{DATA}	SR	D	Data rate	—	—	—	320	Mbps									
V _{OS}	СС	Ρ	Common mode voltage	—	1.08	_	1.32	V									
Δ _{VOD}	сс	Ρ	Differential output voltage swing (terminated) ^{(4),(5)}	_	110	_	285	mV									
t _{TR}	сс	т	Rise time from - ∆VOD(min) to + ∆VOD(min) . Fall time from + ∆VOD(min) to - ∆VOD(min)	_	0.26	_	1.25	ns									
CL	SR D	90 1	SP		SB D	SB D				<u>en</u> n		External lumped differential load	$V_{DD_HV_IO}$ = 4.5 V	—		6.0	рF
			D	· (1)	$V_{DD_HV_IO}$ = 3.0 V	_		4.0	р								
I _{LVDS_TX}	СС	С	Transmitter DC current consumption	Enabled	_	_	3.6	mA									
I _{PIN_TX}	сс	D	Transmitter DC current sourced through output pin	_	1.1		2.85	mA									

Table 30. LFAST transmitter electrical characteristics^{(1),(2),(3)}

1. This table is applicable to LFAST LVDS pads used in LFAST configuration (SIUL2_MSCR_IO_n.ODC=101).


2. The LFAST and High-Speed Debug LFAST pad electrical characteristics are based on worst case internal capacitance values shown in *Figure 12*.

3. All LFAST and High-Speed Debug LVDS pad electrical characteristics are valid from -40 °C to 150 °C.

4. Valid for maximum data rate f_{DATA}. Value given is the capacitance on each terminal of the differential pair, as shown in *Figure 12*.

5. Valid for maximum external load C_L .

4.14.3 LFAST PLL electrical characteristics

The following table contains the electrical characteristics for the LFAST PLL.

Symbo	ibol C		Parameter	Conditions		Unit		
Symbol		C	Faldineter	Conditions	Min	Тур	Max	Unit
f _{RF_REF}	SR	D	PLL reference clock frequency (CLKIN)	—	10 ⁽²⁾	—	30	MHz
ERR _{REF}	СС	D	PLL reference clock frequency error	—	-1	_	1	%
DC _{REF}	СС	D	PLL reference clock duty cycle (CLKIN)	—	30	_	70	%
PN	сс	D	Integrated phase noise (single side band)	f _{RF_REF} = 20 MHz	_	_	-58	dBc
f _{VCO}	СС	Ρ	PLL VCO frequency	—	312	_	320 ⁽³⁾	MHz
t _{LOCK}	CC	D	PLL phase lock	—	—	—	150 ⁽⁴⁾	μs

Table 31. LFAST PLL electrical characteristics⁽¹⁾

Symbol		с	Parameter	Conditions		- Unit		
		C		conditions	Min	Тур	Max	
∆PER _{REF} SR	00	T	Input reference clock jitter (peak to peak)	Single period, f _{RF_REF} = 20 MHz		_	350	ps
	SK	Т	iput reference clock jitter (peak to peak)	Long term, f _{RF_REF} = 20 MHz	-500	_	500	ps
ΔPER_{EYE}	СС	Т	Output Eye Jitter (peak to peak) ⁽⁵⁾	—	_	_	400	ps

Table 31. LFAST PLL electrical characteristics⁽¹⁾ (continued)

1. The specifications in this table apply to both the interprocessor bus and debug LFAST interfaces.

2. If the input frequency is lower than 20 MHz, it is required to set a input division factor of 1.

3. The 320 MHz frequency is achieved with a 20 MHz reference clock.

4. The total lock time is the sum of the coarse lock time plus the programmable lock delay time 2 clock cycles of the peripheral bridge clock that is connected to the PLL on the device (to set the PLL enable bit).

5. Measured at the transmitter output across a 100 Ω termination resistor on a device evaluation board. See *Figure 12*.

4.15 **Power management**

The power management module monitors the different power supplies as well as it generates the required internal supplies. The device can operate in the following configurations:

Device	External regulator	Internal SMPS regulator	Internal linear regulator external ballast	Internal linear regulator internal ballast	Auxiliary regulator	Clamp regulator	Internal standby regulator ⁽¹⁾
SPC584Bx	_	_	X ⁽²⁾	Х	Х	Х	Х

1. Standby regulator is automatically activated when the device enters standby mode.

 For compatibility purpose with SPC584Cx/SPC58ECx, or for the optimization of the power dissipation, the operability of the device with external ballast can be used. The external ballast option is available only on specific devices, contact the local sales.

4.15.1 Power management integration

Use the integration schemes provided below to ensure the proper device function, according to the selected regulator configuration.

The internal regulators are supplied by $V_{DD_HV_IO_MAIN}$ supply and are used to generate V_{DD_LV} supply.

Place capacitances on the board as near as possible to the associated pins and limit the serial inductance of the board to less than 5 nH.

It is recommended to use the internal regulators only to supply the device itself.

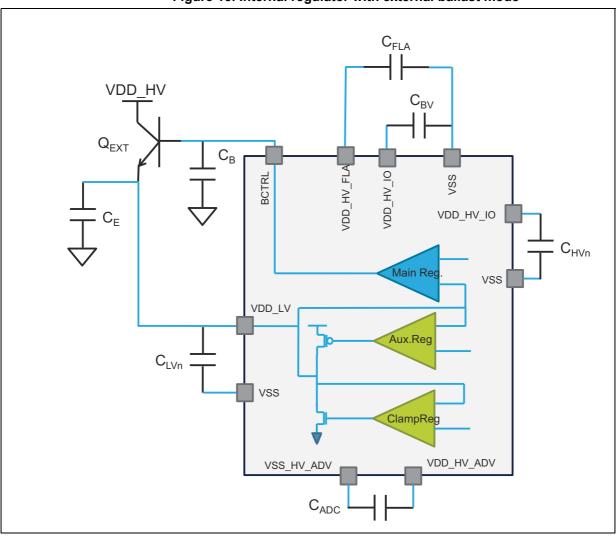


Figure 13. Internal regulator with external ballast mode

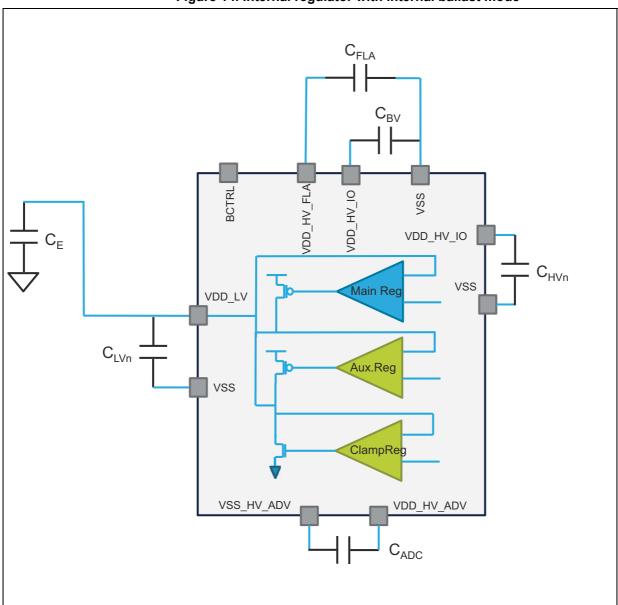
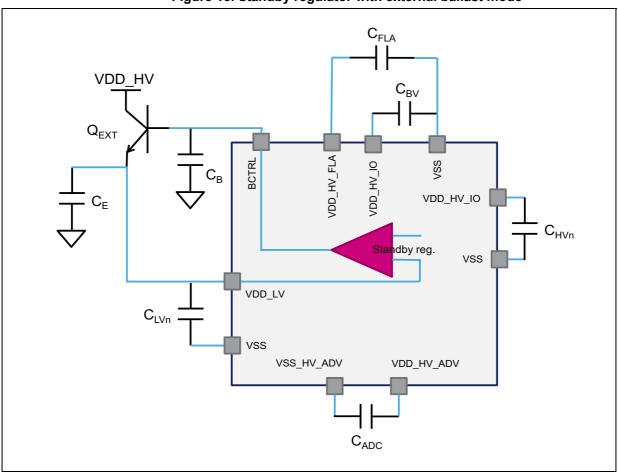
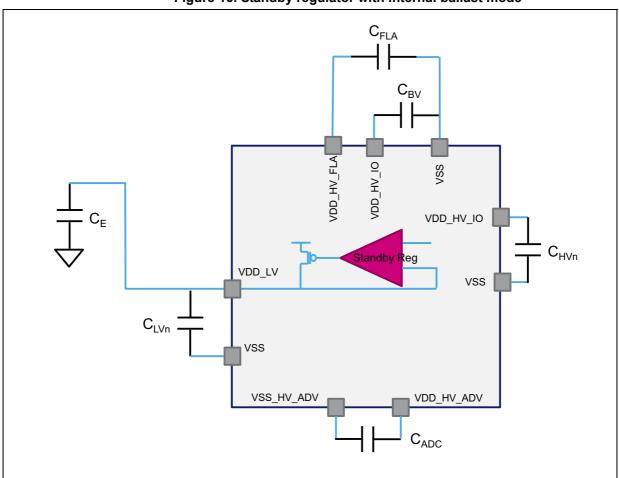


Figure 14. Internal regulator with internal ballast mode

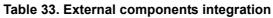

Figure 15. Standby regulator with external ballast mode

Figure 16.	Standby	regulator	with	internal	hallast i	mode
i igui e i o.	otanaby	regulator	WWILII	memai	Danasti	nouc

Sympo	Symbol	с	Devemeter	Conditions ⁽¹⁾	Value			- Unit	
Symbol		ر	Parameter	Conditions	Min	Тур	Max	Unit	
Common Components									
C _E	SR	D	Internal voltage regulator stability external capacitance ^{(2) (3)}	—	1.1	2.2	3.0	μF	
R _E	SR	D	Stability capacitor equivalent serial resistance	Total resistance including board track	_	_	50	mΩ	
C _{LVn}	SR	D	Internal voltage regulator decoupling external capacitance ^{(3) (4) (5)}	Each V _{DD_LV} /V _{SS} pair	_	47	_	nF	
R _{LVn}	SR	D	Stability capacitor equivalent serial resistance	—	_	_	50	mΩ	
C _{BV}	SR	D	Bulk capacitance for HV supply ⁽³⁾	on one V _{DD_HV_IO_MAIN} / V _{SS} pair		4.7		μF	
C _{HVn}	SR	D	Decoupling capacitance for ballast and IOs ⁽³⁾	on all $V_{DD_HV_IO}/V_{SS}$ and $V_{DD_HV_ADR}/V_{SS}$ pairs	_	100	_	nF	

				a 1111 (1)	Value			Unit
Symbo	I	С	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
C _{FLA}	SR	D	Decoupling capacitance for Flash supply ⁽⁶⁾	—	_	10	_	nF
C _{ADC}	SR	D	ADC supply external capacitance ⁽²⁾	V _{DD_HV_ADV/} V _{SS_HV_ADV} pair.	_	1	_	μF
			Internal Linear Regulator	with External Ballast Mod	e			
Q _{EXT}	SR	D	Recommended external NPN transistors	NJD2873T4, BCP68				
V _Q	SR	D	External NPN transistor collector voltage	_	2.0	_	V _{DD} HV_IO _MAIN	V
C _B	SR	D	Internal voltage regulator stability external capacitance on ballast base ^{(4) (7)}	_	_	2.2	_	μF
R _B	SR	D	Stability capacitor equivalent serial resistance	Total resistance including board track	_	_	50	mΩ

Table 33. External components integration (continued)

1. V_{DD} = 3.3 V ± 10 % / 5.0 V ± 10 %, T_J = –40 / 150 °C, unless otherwise specified.

2. Recommended X7R or X5R ceramic –50 % / +35 % variation across process, temperature, voltage and after aging.

3. CE capacitance is required both in internal and external regulator mode.

4. For noise filtering, add a high frequency bypass capacitance of 10 nF.

5. For applications it is recommended to implement at least 5 C_{LV} capacitances.

6. Recommended X7R capacitors. For noise filtering, add a high frequency bypass capacitance of 100 nF.

7. CB capacitance is required if only the external ballast is implemented.

4.15.2 Voltage regulators

Symbol		с	Parameter	Conditions		Value		Unit	
Symbol		C	Falameter	Conditions	Min	Тур	Мах	Unit	
N	сс	Ρ		Power-up, before trimming, no load	1.14	1.22	1.30		
V MREG	V _{MREG} CC P	Ρ	Main regulator output voltage	After trimming, maximum load	1.09	1.19	1.24	V	
			Main regulator current provided to	Internal ballast	—		325		
IDD _{MREG}	сс	т	V _{DD_LV} domain The maximum current supported is the sum of the Main Regulator and the Auxiliary Regulator maximum current both regulators are working in parallel.	External ballast	_		450	mA	
IDD _{CLAMP}	сс	D	Main regulator rush current sinked from V _{DD_HV_IO_MAIN} domain during V _{DD_LV} domain loading	Power-up condition	_	_	150	mA	
∆IDD _{MREG}	сс	т	Main regulator output current variation	20 μs observation window	-100	_	100	mA	
	сс	D	Main regulator current	I _{MREG} = max	—	_	17	mA	
IMREGINT	00	D	consumption	I _{MREG} = 0 mA	_	_			

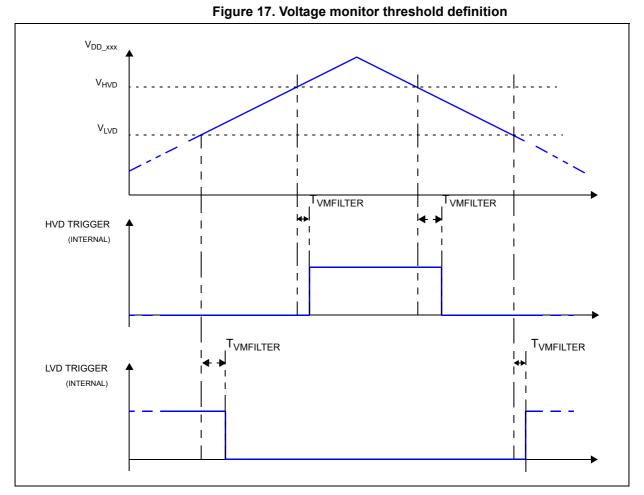
Table 34. Linear regulator specifications

Table 35. Auxiliary regulator specifications

Symbol		с	Parameter	Conditions		Unit		
		C	Faiameter	Conditions	Min	Тур	Max	Unit
V _{AUX}	сс	Ρ	Aux regulator output voltage	After trimming, internal regulator mode	1.09	1.19	1.22	V
IDD _{AUX}	сс	Т	Aux regulator current provided to V_{DD_LV} domain	_			150	mA
∆IDD _{AUX}	сс	Т	Aux regulator current variation	20 µs observation window	-100	_	100	mA
	D	Aux regulator current	I _{MREG} = max			1.1	mA	
IAUXINT	00	D	consumption	I _{MREG} = 0 mA			1.1	

Symbol		с	Parameter	Conditions		Unit		
		U	Falanielei	Conditions	Min	Тур	Max	Unit
V _{CLAMP}	сс	Ρ	Clamp regulator output voltage	After trimming, internal regulator mode	1.18	1.22	1.33	V
ΔIDD_{CLAMP}	сс	Т	Clamp regulator current variation	20 μs observation window	-100	_	100	mA
ICLAMPINT	сс	D	Clamp regulator current consumption	I _{MREG} = 0 mA	_	_	0.7	mA

Table 36. Clamp regulator specifications


Table 37. Standby regulator specifications

Symbol		С	Parameter	Conditions		Unit		
		U	Falameter	Conditions	Min	Тур	Max	C.int
V _{SBY}	сс	Ρ	Standby regulator output voltage	After trimming, maximum load	1.02	1.06	1.26	V
IDD _{SBY}	BY CC T	Standby regulator current		External Ballast	_	_	50	mA
IDDSBY	00	1	provided to V _{DD_LV} domain	Internal Ballast			10	

4.15.3 Voltage monitors

The monitors and their associated levels for the device are given in *Table 38. Figure 17* illustrates the workings of voltage monitoring threshold.

Cumhal		~	Supply/Parameter ⁽¹⁾	Conditions			Unit	
Symbol		С	Supply/Parameter **	Conditions	Min	Тур	Max	Onit
		•	PowerOn Rese	HV				
V _{POR200_C}	СС	Ρ	V _{DD_HV_IO_MAIN}	—	1.80	2.18	2.40	V
			Minimum Voltage Det	ectors HV				
V _{MVD270_C}	СС	Ρ	V _{DD_HV_IO_MAIN}	_	2.71	2.76	2.80	V
V _{MVD270_F}	СС	Ρ	V _{DD_HV_FLA}	_	2.71	2.76	2.80	V
V _{MVD270_SBY}	СС	Ρ	V _{DD_HV_IO_MAIN} (in Standby)	_	2.71	2.76	2.80	V
			Low Voltage Detec	tors HV				
V _{LVD290_C}	СС	Ρ	V _{DD_HV_IO_MAIN}	—	2.89	2.94	2.99	V
V _{LVD290_F}	СС	Ρ	V _{DD_HV_FLA}	—	2.89	2.94	2.99	V
V _{LVD290_AS}	СС	Ρ	V _{DD_HV_ADV} (ADCSAR pad)	—	2.89	2.94	2.99	V
V _{LVD290_IF}	СС	Ρ	V _{DD_HV_IO_ETH}	—	2.89	2.94	2.99	V
V _{LVD400_AS}	CC	Ρ	V _{DD_HV_ADV} (ADCSAR pad)	—	4.15	4.23	4.31	V

Table 38.	Voltage	monitor	electrical	characteristics
	Tonugo	monitor	ciccuitcui	onaraotoristios

0			0 (1)			Value ⁽²⁾		
Symbol		С	Supply/Parameter ⁽¹⁾	Conditions	Min	Тур	Max	Unit
V _{LVD400_IM}	CC	Ρ	V _{DD_HV_IO_MAIN}		4.15	4.23	4.31	V
V _{LVD400_IF}	СС	Ρ	V _{DD_HV_IO_ETH}		4.15	4.23	4.31	V
			High Voltage Detec	tors HV				
V _{HVD400_IF}	CC	Ρ	V _{DD_HV_IO_ETH}		3.68	3.75	3.82	V
			Upper Voltage Dete	ctors HV				
V _{UVD600_F}	CC	Ρ	V _{DD_HV_FLA}		5.72	5.82	5.92	V
V _{UVD600_IF}	CC	Р	V _{DD_HV_IO_ETH}		5.72	5.82	5.92	V
			PowerOn Rese	t LV	ļ	ļ	ļ	!
V _{POR031_C}	CC	Ρ	V _{DD_LV}		0.29	0.60	0.97	V
			Minimum Voltage Det	tectors LV				
V _{MVD082_C}	CC	Ρ	V _{DD_LV}	—	0.85	0.88	0.91	V
V _{MVD094_C}	CC	Р	V _{DD_LV}		0.98	1.00	1.02	V
V _{MVD094_FA}	СС	Р	V _{DD_LV} (Flash)		1.00	1.02	1.04	V
V _{MVD094_FB}	CC	Р	V _{DD_LV} (Flash)		1.00	1.02	1.04	V
			Low Voltage Detec	tors LV				
V _{LVD100_C}	CC	Ρ	V _{DD_LV}		1.06	1.08	1.11	V
V _{LVD100_SB}	CC	Р	V _{DD_LV} (In Standby)		0.99	1.01	1.03	V
V _{LVD100_F}	CC	Ρ	V _{DD_LV} (Flash)		1.08	1.10	1.12	V
			High Voltage Detec	ctors LV				
V _{HVD134_C}	CC	Ρ	V _{DD_LV}	—	1.28	1.31	1.33	V
			Upper Voltage Dete	ctors LV				
V _{UVD140_C}	CC	Ρ	V _{DD_LV}		1.34	1.37	1.39	V
V _{UVD140_F}	СС	Ρ	V _{DD_LV} (Flash)	—	1.34	1.37	1.39	V
			Common	•				•
T _{VMFILTER}	CC	D	Voltage monitor filter ⁽³⁾		5	_	25	μs

Table 38. Voltage monitor electrical characteristics (continued)
--

 Even if LVD/HVD monitor reaction is configurable, the application ensures that the device remains in the operative condition range, and the internal LVDx monitors are disabled by the application. Then an external voltage monitor with minimum threshold of VDD_LV(min) = 1.08 V measured at the device pad, has to be implemented. For HVDx, if the application disables them, then they need to grant that VDD_LV and VDD_HV voltage levels stay withing the limitations provided in Section 4.2: Absolute maximum ratings.

2. The values reported are Trimmed values, where applicable.

 See Figure 17. Transitions shorter than minimum are filtered. Transitions longer than maximum are not filtered, and will be delayed by T_{VMFILTER} time. Transitions between minimum and maximum can be filtered or not filtered, according to temperature, process and voltage variations.

4.16 Flash

The following table shows the Wait state configuration.

	and out that clate comige	
APC	RWSC	Frequency range (MHz)
	0	f <u><</u> 30
000 ⁽¹⁾	1	f <u><</u> 60
	2	f <u><</u> 90
	3	f <u><</u> 120
	0	f <u><</u> 30
100 ⁽²⁾	1	f <u><</u> 60
100(-)	2	f <u>≤</u> 90
	3	f <u><</u> 120
001 ⁽³⁾	2	55 < f <u><</u> 80
	3	55 < f <u><</u> 120

Table 39. Wait state configuration

1. STD pipelined, no address anticipation.

2. No pipeline (STD + 1 Tck).

3. Pipeline with 1 Tck address anticipation.

The following table shows the Program/Erase characteristics.

Table 40. Flash	memory program	and erase sp	pecifications
-----------------	----------------	--------------	---------------

		Value											
Symbol	Characteristics ⁽¹⁾⁽²⁾			Init	ial max		Typical		etime ax ⁽⁵⁾		Unit		
		Тур ⁽³⁾	3) C	25 °C (6)	All temp (7)	с	end of life ⁽⁴⁾	< 1 K cycles	<u><</u> 250 K cycles	С			
t _{dwprogram}	Double Word (64 bits) program time [Packaged part]	43	С	130	_	_	140	500		500		С	μs
t _{pprogram}	Page (256 bits) program time	72	С	240	_	_	240	1000		С	μs		
t _{pprogrameep}	Page (256 bits) program time Data Flash - EEPROM (partition 1) [Packaged part]	83	С	264	_	-	276	1000		с	μs		
t _{qprogram}	Quad Page (1024 bits) program time	220	С	1040	1200	Ρ	850	2000		С	μs		
t _{qprogrameep}	Quad Page (1024 bits) program time Data Flash - EEPROM (partition 1) [Packaged part]	245	С	1140	1320	Ρ	978	20	000	с	μs		

Table 40. Flash memory program and erase specifications (continued)

						Val	ue		-				
Symbol	Characteristics ⁽¹⁾⁽²⁾	- (3)		Initial max			Typical	Lifetime max ⁽⁵⁾			Unit		
		Тур ⁽³⁾	С	25 °C (6)	All temp (7)	с	end of life ⁽⁴⁾	< 1 K cycles	<u><</u> 250 K cycles				
t _{16kpperase}	16 KB block pre-program and erase time	190	С	450	500	Ρ	220	1000	—	С	ms		
t _{32kpperase}	32 KB block pre-program and erase time	250	С	520	600	Ρ	290	1200	1200 —				
t _{64kpperase}	64 KB block pre-program and erase time	360	С	700	750	Ρ	420	1600	_	С	ms		
t _{128kpperase}	128 KB block pre-program and erase time	600	С	1300	1600	Р	800	4000	_	С	ms		
t _{256kpperase}	256 KB block pre-program and erase time	1050	С	1800	2400	Р	1600	4000	_	С	ms		
t _{16kprogram}	16 KB block program time	25	С	45	50	Ρ	40	1000		С	ms		
t _{32kprogram}	32 KB block program time	50	С	90	100	Ρ	75	1200	—	С	ms		
t _{64kprogram}	64 KB block program time	100	С	175	200	Ρ	150	1600	—	С	ms		
t _{128kprogram}	128 KB block program time	200	С	350	430	Ρ	300	2000	—	С	ms		
t _{256kprogram}	256 KB block program time	400	С	700	850	Ρ	590	4000		С	ms		
t _{16kprogrameep}	Program 16 KB Data Flash - EEPROM (partition 1) [Packaged part]	30	С	52	58	Ρ	64	1750		1750		С	ms
t _{16keraseeep}	Erase 16 KB Data Flash - EEPROM (partition 1) [Packaged part]	220	С	495	550	Ρ	400	3(3600				
t _{16kprogrameep}	Program 16 KB HSM Data Flash - EEPROM (partition 1) [Packaged part]	30	С	52	58	Ρ	64	1	1750				
t _{16keraseeep}	Erase 16 KB HSM Data Flash - EEPROM (partition 1) [Packaged part]	220	С	495	550	Ρ	400	3600		с	ms		
t _{prr}	Program rate ⁽⁸⁾	2.2	С	2.8	3.40	С	2.4			С	s/M B		
t _{pr}	Erase rate ⁽⁸⁾	4.8	С	7.2	9.6	с	6.4	_		С	s/M B		
t _{tprfm}	Program rate Factory Mode ⁽⁸⁾	1.12	С	1.4	1.6	с	_			С	s/M B		
t _{erfm}	Erase rate Factory Mode ⁽⁸⁾	4.0	С	5.2	5.8	с	_			С	s/M B		
t _{ffprogram}	Full flash programming time ⁽⁹⁾	3.45	С	6.0	7.3	Ρ	5.1	_	—	С	s		

		Value											
Symbol	Characteristics ⁽¹⁾⁽²⁾	(0)		Initial max			Typical	Lifetime max ⁽⁵⁾			Unit		
		Тур ⁽³⁾	С	25 °C (6)	All temp (7)	с	end of life ⁽⁴⁾	< 1 K cycles	<u><</u> 250 K cycles	С			
t _{fferase}	Full flash erasing time ⁽⁹⁾	9.9	С	18.1	23.3	Ρ	14.3		_	С	s		
t _{ESRT}	Erase suspend request rate ⁽¹⁰⁾	200	т	_	_	—	_	-			_		μs
t _{PSRT}	Program suspend request rate ⁽¹⁰⁾	30	т	_	_	—	_		_	_	μs		
t _{AMRT}	Array Integrity Check - Margin Read suspend request rate	15	т		_		_		_	μs			
t _{PSUS}	Program suspend latency ⁽¹¹⁾	_			—	12		т	μs				
t _{ESUS}	Erase suspend latency ⁽¹¹⁾	_	—	_		—	—	22			μs		
t _{AIC0S}	Array Integrity Check (2.0 MB, sequential) ⁽¹²⁾	12.8	т		_	_	_	_		_	ms		
t _{AIC256KS}	Array Integrity Check (256 KB, sequential) ⁽¹²⁾	1.5	т		_	_	_	_		_	ms		
t _{AIC0P}	Array Integrity Check (2.0 MB, proprietary) ⁽¹²⁾	4.0	т	_	_	—	_	_	_		s		
t _{MR0S}	Margin Read (2.0 MB, sequential) ⁽¹²⁾	35	т				_	_	_		ms		
t _{MR256KS}	Margin Read (256 KB, sequential) ⁽¹²⁾	4.0	т	_			_	_	_		ms		

Table 40. Flash memory	program and erase	e specifications	(continued)

1. Characteristics are valid both for Data Flash and Code Flash, unless specified in the characteristics column.

2. Actual hardware operation times; this does not include software overhead.

3. Typical program and erase times assume nominal supply values and operation at 25 °C.

- Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations. These values are characteristic, but not tested.
- 5. Lifetime maximum program & erase times apply across the voltages and temperatures and occur after the specified number of program/erase cycles. These maximum values are characterized but not tested or guaranteed.
- Initial factory condition: < 100 program/erase cycles, 25 °C typical junction temperature and nominal (± 5 %) supply voltages.
- Initial maximum "All temp" program and erase times provide guidance for time-out limits used in the factory and apply for less than or equal to 100 program or erase cycles, –40 °C < TJ < 150 °C junction temperature and nominal (± 5 %) supply voltages.
- 8. Rate computed based on 256 KB sectors.
- 9. Only code sectors, not including EEPROM.
- 10. Time between suspend resume and next suspend. Value stated actually represents Min value specification.
- 11. Timings guaranteed by design.
- 12. AIC is done using system clock, thus all timing is dependent on system frequency and number of wait states. Timing in the table is calculated at max frequency.

All the Flash operations require the presence of the system clock for internal synchronization. About 50 synchronization cycles are needed: this means that the timings of the previous table can be longer if a low frequency system clock is used.

Symbol	Characteristics ^{(1) (2)}		Unit			
Symbol	Characteristics	Min	С	Тур	С	Unit
N _{CER16K}	16 KB CODE Flash endurance	10	—	100	—	Kcycles
N _{CER32K}	32 KB CODE Flash endurance	10	-	100	—	Kcycles
N _{CER64K}	64 KB CODE Flash endurance	10	—	100	—	Kcycles
N _{CER128K}	128 KB CODE Flash endurance	1	—	100	—	Kcycles
N	256 KB CODE Flash endurance	1	-	100	—	Kcycles
N _{CER256K}	256 KB CODE Flash endurance ⁽³⁾	10	—	100	—	Kcycles
N _{DER16K}	16 KB DATA EEPROM Flash endurance	250	—	_	—	Kcycles
N _{DER16K}	16 KB HSM DATA EEPROM Flash endurance	100	—	_	—	Kcycles
t _{DR1k}	Minimum data retention Blocks with 0 - 1,000 P/E cycles	25	_	_	_	Years
t _{DR10k}	Minimum data retention Blocks with 1,001 - 10,000 P/E cycles	20	_	_	_	Years
t _{DR100k}	Minimum data retention Blocks with 10,001 - 100,000 P/E cycles	15	_	_	_	Years
t _{DR250k}	Minimum data retention Blocks with 100,001 - 250,000 P/E cycles	10	_		_	Years

1. Program and erase cycles supported across specified temperature specifications.

2. It is recommended that the application enables the core cache memory.

3. 10K cycles on 4-256 KB blocks is not intended for production. Reduced reliability and degraded erase time are possible.

4.17 AC specifications

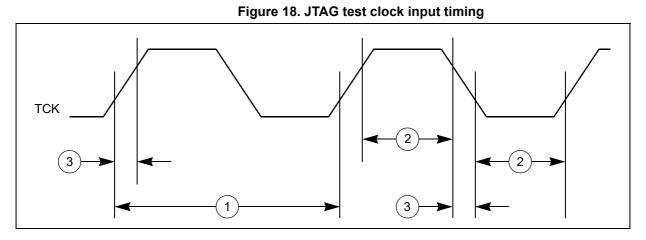
All AC timing specifications are valid up to 150 °C, except where explicitly noted.

4.17.1 Debug and calibration interface timing

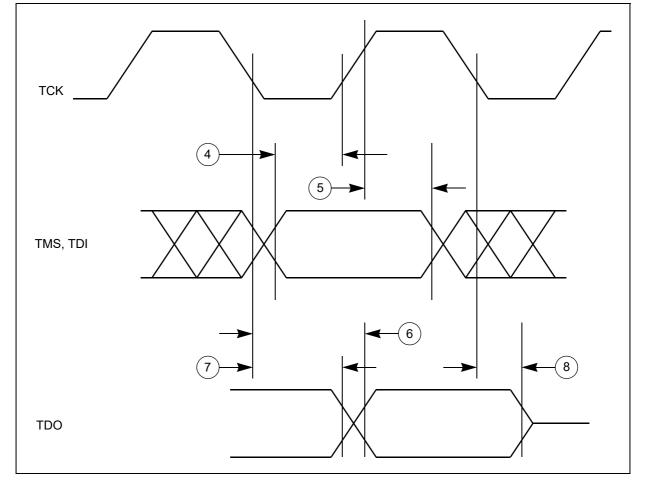
4.17.1.1 JTAG interface timing

#	# Symbol		с	Characteristic	Value) (1),(2)	Unit
#	Symbol		C	Characteristic	Min	Max	Unit
1	t _{JCYC}	CC	D	TCK cycle time	100	—	ns
2	t _{JDC}	СС	Т	TCK clock pulse width	40	60	%
3	t _{TCKRISE}	СС	D	TCK rise and fall times (40 %–70 %)	—	3	ns
4	t _{TMSS,} t _{TDIS}	СС	D	TMS, TDI data setup time	5	—	ns
5	t _{TMSH} , t _{TDIH}	СС	D	TMS, TDI data hold time	5	—	ns
6	t _{TDOV}	СС	D	TCK low to TDO data valid	—	15 ⁽³⁾	ns
7	t _{TDOI}	СС	D	TCK low to TDO data invalid	0	—	ns
8	t _{TDOHZ}	СС	D	TCK low to TDO high impedance	—	15	ns
9	t _{JCMPPW}	СС	D	JCOMP assertion time	100	—	ns
10	t _{JCMPS}	СС	D	JCOMP setup time to TCK low	40	—	ns
11	t _{BSDV}	СС	D	TCK falling edge to output valid	—	600 ⁽⁴⁾	ns
12	t _{BSDVZ}	СС	D	TCK falling edge to output valid out of high impedance	—	600	ns
13	t _{BSDHZ}	СС	D	TCK falling edge to output high impedance	—	600	ns
14	t _{BSDST}	СС	D	Boundary scan input valid to TCK rising edge	15	—	ns
15	t _{BSDHT}	СС	D	TCK rising edge to boundary scan input invalid	15		ns

Table 42. JTAG pin AC electrical characteristics


1. These specifications apply to JTAG boundary scan only. See Table 43 for functional specifications.

2. JTAG timing specified at V_{DD_HV_IO_JTAG} = 4.0 to 5.5 V and max. loading per pad type as specified in the I/O section of the datasheet.


3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.

4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

57

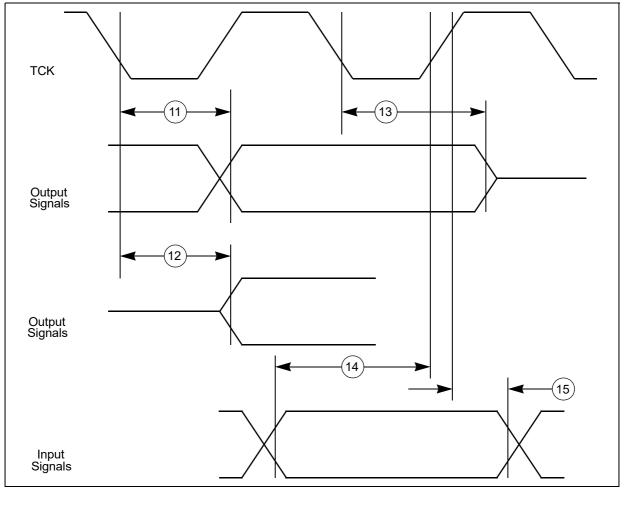



Figure 21. JTAG boundary scan timing

DS11701 Rev 4

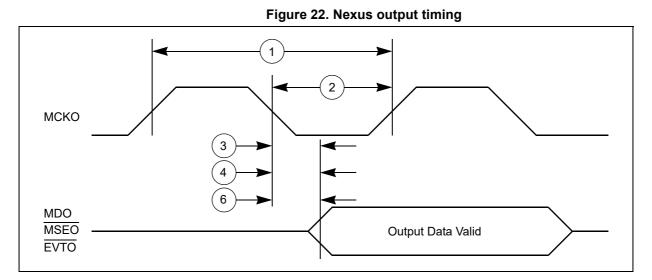
4.17.1.2 Nexus interface timing

#	Symbo		с	Characteristic	Valu	ıe ⁽¹⁾	Unit						
#	Symbo	וכ	C	Characteristic	Min	Max	Unit						
7	t _{EVTIPW}	CC	D	EVTI pulse width	4	—	t _{CYC} ⁽²⁾						
8	t _{EVTOPW}	CC	D	EVTO pulse width	40	_	ns						
				TCK cycle time	2 ^{(3),(4)}	_	t _{CYC} ⁽²⁾						
9	t _{TCYC}	сс	D	Absolute minimum TCK cycle time ⁽⁵⁾ (TDO sampled on posedge of TCK)	40 ⁽⁶⁾								
										Absolute minimum TCK cycle time ⁽⁷⁾ (TDO sampled on negedge of TCK)	20 ⁽⁶⁾	_	ns
11	t _{NTDIS}	СС	D	TDI data setup time	5	_	ns						
12	t _{NTDIH}	СС	D	TDI data hold time	5	_	ns						
13	t _{NTMSS}	СС	D	TMS data setup time	5	_	ns						
14	t _{NTMSH}	СС	D	TMS data hold time	5	_	ns						
15	_	СС	D	TDO propagation delay from falling edge of TCK ⁽⁸⁾	—	16	ns						
16	_	сс	D	TDO hold time with respect to TCK falling edge (minimum TDO propagation delay)	2.25	_	ns						

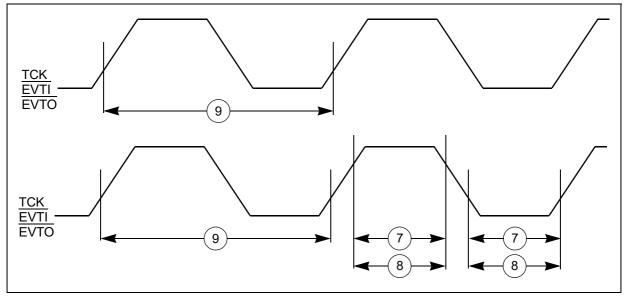
Table 43. Nexus debug port timing

Nexus timing specified at V_{DD_HV_IO_JTAG} = 3.0 V to 5.5 V, and maximum loading per pad type as specified in the I/O section of the data sheet.

2. t_{CYC} is system clock period.


3. Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual peripheral frequency being used. To ensure proper operation TCK frequency should be set to the peripheral frequency divided by a number greater than or equal to that specified here.

- 4. This is a functionally allowable feature. However, it may be limited by the maximum frequency specified by the Absolute minimum TCK period specification.
- 5. This value is TDO propagation time 36 ns + 4 ns setup time to sampling edge.
- 6. This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency being used.


7. This value is TDO propagation time 16 ns + 4 ns setup time to sampling edge.

8. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.

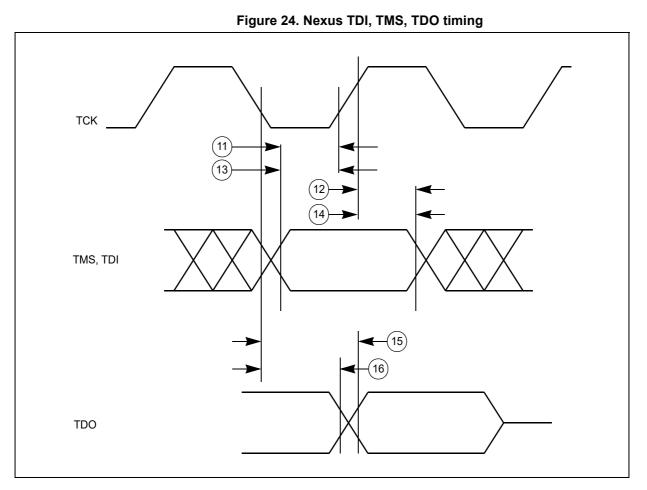


Figure 23. Nexus event trigger and test clock timings

4.17.1.3 External interrupt timing (IRQ pin)

Table 44. External interrupt timing

Characteristic	Symbol	Min	Мах	Unit
IRQ Pulse Width Low	t _{IPWL}	3	—	t _{cyc}
IRQ Pulse Width High	t _{IPWH}	3	_	t _{cyc}
IRQ Edge to Edge Time ⁽¹⁾	t _{ICYC}	6		t _{cyc}

1. Applies when IRQ pins are configured for rising edge or falling edge events, but not both.

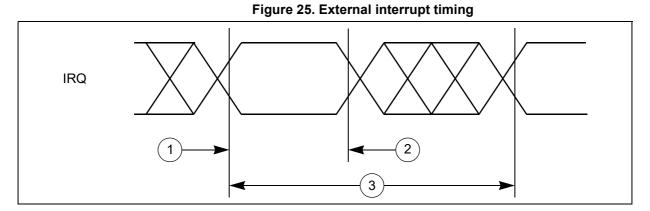
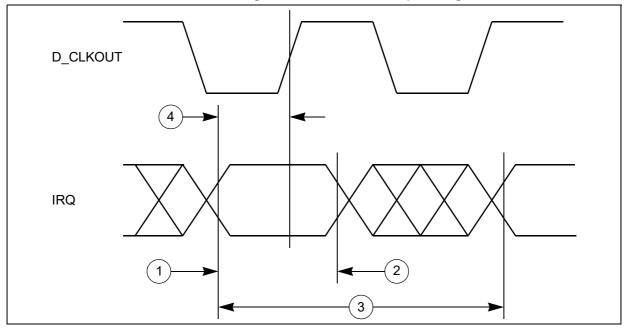



Figure 26. External interrupt timing

4.17.2 DSPI timing with CMOS pads

DSPI channel frequency support is shown in *Table 45*. Timing specifications are shown in the tables below.

	Max usable frequency (MHz) ^{(2),(3)}		
	Full duplex – Classic timing (<i>Table 46</i>)	DSPI_0, DSPI_1, DSPI_2, DSPI_3, DSPI_5, DSPI_6,	10
		DSPI_4	17
	Full duplex – Modified timing (<i>Table 47</i>)	DSPI_0, DSPI_1, DSPI_2, DSPI_3, DSPI_5, DSPI_6,	10
CMOS (Master		DSPI_4	30
mode)	Output only mode (SCK/SOUT/PCS) (<i>Table 46</i> and <i>Table 47</i>)	DSPI_0, DSPI_1, DSPI_2, DSPI_3, DSPI_5, DSPI_6,	10
		DSPI_4	30
	Output only mode TSB mode (SCK/SOUT/PCS)	DSPI_0, DSPI_1, DSPI_2, DSPI_3, DSPI_5, DSPI_6,	10
		DSPI_4	30
CMOS (Slave mode	Full duplex) (<i>Table 48</i>)		16

1. Each DSPI module can be configured to use different pins for the interface. Refer to the device pinout Microsoft Excel file attached to the IO_Definition document for the available combinations. It is not possible to reach the maximum performance with every possible combination of pins.

2. Maximum usable frequency can be achieved if used with fastest configuration of the highest drive pads.

3. Maximum usable frequency does not take into account external device propagation delay.

4.17.2.1 DSPI master mode full duplex timing with CMOS pads

4.17.2.1.1 DSPI CMOS master mode – classic timing

Note: In the following table, all output timing is worst case and includes the mismatching of rise and fall times of the output pads.

Table 46. DSPI CMOS master classic timing (full duplex and output only) MTFE = 0, CPHA = 0 or 1

#	# Symbol		С	Characteristic	Cond	dition	Value	<mark>;</mark> (1)	Unit							
#					Pad drive ⁽²⁾	Load (C _L)	Min	Мах	Unit							
					SCK drive strength											
1	+	сс	П	SCK cycle time	Very strong	25 pF	59.0	—								
1	T t _{SCK} CC	CC								03		Strong	50 pF	80.0	—	ns
							Medium	50 pF	200.0	_						

щ	0			C. Characteristic	Con	dition	Value	ə ⁽¹⁾	11								
#	Symt	001	С	Characteristic	Pad drive ⁽²⁾	Load (C _L)	Min	Max	Unit								
					SCK and PCS drive strength			L									
					Very strong	25 pF	$(N^{(3)} \times t_{SYS}^{(4)}) - 16$	—									
2	t _{csc} (сс	D	PCS to SCK	Strong	50 pF	$(N^{(3)} \times t_{SYS}^{(4)}) - 16$	—									
	-030			delay	Medium	50 pF	$(N^{(3)} \times t_{SYS}^{(4)}) - 16$	—	ns								
					PCS medium and SCK strong	PCS = 50 pF SCK = 50 pF	$(N^{(3)} \times t_{SYS}^{(4)}) - 29$	_									
					SCK and PCS	drive strength			•								
			D		Very strong	PCS = 0 pF SCK = 50 pF	$(M^{(5)} \times t_{SYS}^{(4)}) - 35$	—									
3	3 t _{ASC}	сс		After SCK delay	Strong	PCS = 0 pF SCK = 50 pF	$(M^{(5)} \times t_{SYS}^{(4)}) - 35$	—									
					Medium	PCS = 0 pF SCK = 50 pF	$(M^{(5)} \times t_{SYS}^{(4)}) - 35$	_	ns								
					PCS medium and SCK strong	PCS = 0 pF SCK = 50 pF	$(M^{(5)} \times t_{SYS}^{(4)}) - 35$	_									
					SCK drive strer	ngth		I									
4	+	<u> </u>		_	CC D	сс р	CC D	C D	П	П	П	SCK duty	Very strong	0 pF	$^{1}/_{2}t_{SCK} - 2$	$^{1}/_{2}t_{SCK} + 2$	
4	t _{SDC}								cycle ⁽⁶⁾	Strong	0 pF	$^{1}/_{2}t_{SCK} - 2$	$^{1}/_{2}t_{SCK} + 2$	ns			
							Medium	0 pF	$^{1}/_{2}t_{SCK} - 5$	$^{1}/_{2}t_{SCK} + 5$							
					PCS str	robe timing											
5	t _{PCSC}	сс	D	PCSx to PCSS	PCS and PCSS	drive strength		1									
	PUSC			time ⁽⁷⁾	Strong	25 pF	16.0	—	ns								
6	t _{PASC}	сс	D	PCSS to PCSx	PCS and PCSS	-											
	1 400	^T PASC CC D time ⁽⁷⁾		Strong	25 pF	16.0	—	ns									
	[r –	Γ		etup time	T										
					SCK drive strer	-		[
7	t _{SUI}	сс	C D			Very strong	25 pF	25.0	—	-							
	301					Strong	50 pF	31.0	—	ns							
									Medium	50 pF	52.0	—					

Table 46. DSPI CMOS master classic timing (full duplex and output only) MTFE = 0, CPHA = 0 or 1 (continued)

Table 46. DSPI CMOS master classic timing (full duplex and output only) MTFE = 0, CPHA = 0 or 1 (continued)

ш	Current		с	Chavastavistis	Con	dition	Value	<mark>)</mark> (1)	L lasit					
#	Symi	Symbol C		Characteristic	Pad drive ⁽²⁾	Load (C _L)	Min	Max	— Unit					
				•	SIN I	old time	•							
					SCK drive strer	ngth								
8	+	сс	П	SIN hold time	Very strong	0 pF	-1.0	—						
0	ЧІ	t _{HI} CC		from SCK ⁽⁸⁾	Strong	0 pF	-1.0	_	ns					
						Medium	0 pF	-1.0	_					
				S	OUT data valid t	ime (after SCK e	edge)							
			C D	CC D	CC D	; D			SOUT and SCM	K drive strength				
9	+.	<u> </u>							П	SOUT data valid	Very strong	25 pF	—	7.0
3	t _{SUO}	00					time from SCK ⁽⁹⁾	Strong	50 pF	—	8.0	ns		
					Medium	50 pF	—	16.0						
				S	OUT data hold t	ime (after SCK e	edge)							
					SOUT and SCM	K drive strength								
10	+	сс	П	SOUT data hold	Very strong	25 pF	-7.7	_						
	0 t _{HO} C			CC D		time after SCK ⁽⁹⁾	Strong	50 pF	-11.0	—	ns			
						Medium	50 pF	-15.0	—					

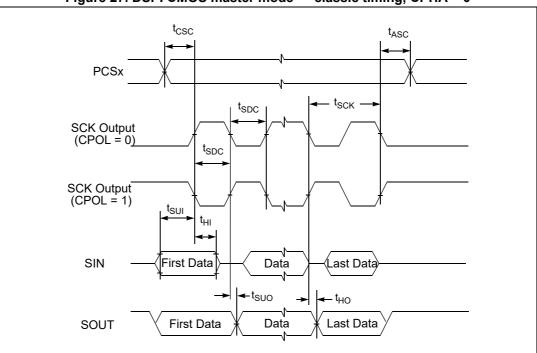
1. All timing values for output signals in this table are measured to 50 % of the output voltage.

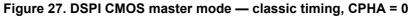
2. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation.

3. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).

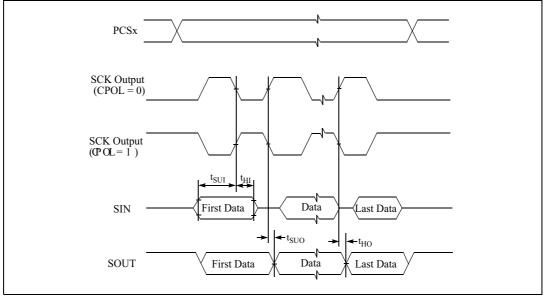
 t_{SYS} is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min t_{SYS} = 10 ns).

5. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).


t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.


7. PCSx and PCSS using same pad configuration.


8. Input timing assumes an input slew rate of 1 ns (10 % – 90 %) and uses TTL voltage thresholds.


9. SOUT Data valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

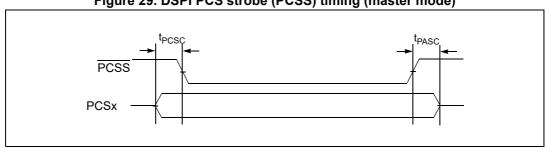


Figure 29. DSPI PCS strobe (PCSS) timing (master mode)

4.17.2.1.2 DSPI CMOS master mode — modified timing

Note: In the following table, all output timing is worst case and includes the mismatching of rise and fall times of the output pads.

Table 47. DSPI CMOS master modified timing (full duplex and output only)
MTFE = 1, CPHA = 0 or 1

#	Sum		с	Characteristic	Cone	dition	Value	(1)	Unit									
#	Symt	IDOI		Characteristic	Pad drive ⁽²⁾	Load (C _L)	Min	Мах	Unit									
					SCK drive stre	ength												
1		<u> </u>		SCK cycle time	Very strong	25 pF	33.0	—										
'	t _{SCK}	00			Strong	50 pF	80.0	—	ns									
					Medium	50 pF	200.0	—										
					SCK and PCS strength	3 drive												
	2 t _{CSC}				Very strong	25 pF	$(N^{(3)} \times t_{SYS}^{(4)}) - 16$	—										
2		сс	D	PCS to SCK	Strong	50 pF	$(N^{(3)} \times t_{SYS}^{(4)}) - 16$	—										
	-030			delay	Medium	50 pF	$(N^{(3)} \times t_{SYS}^{(4)}) - 16$	—	ns									
						PCS medium and SCK strong	PCS = 50 pF SCK = 50 pF	$(N^{(3)} \times t_{SYS}^{(4)}) - 29$	_									
					SCK and PCS strength	S drive												
							Very strong	PCS = 0 pF SCK = 50 pF	$(M^{(5)} \times t_{SYS}^{(4)}) - 35$	_								
3	t _{ASC}	сс	D	After SCK delay	Strong	PCS = 0 pF SCK = 50 pF	$(M^{(5)} \times t_{SYS}^{(4)}) - 35$	_										
														Medium	PCS = 0 pF SCK = 50 pF	$(M^{(5)} \times t_{SYS}^{(4)}) - 35$	_	ns
							PCS medium and SCK strong	PCS = 0 pF SCK = 50 pF	$(M^{(5)} \times t_{SYS}^{(4)}) - 35$	_								

	1		1	IVI	IFE = 1, CPF	IA = 0 or 1 (c	ontinued)								
#	Sumk		~	Characteristic	Cone	dition	Value	(1)	Unit						
#	Symt	101	С	Characteristic	Pad drive ⁽²⁾	Load (C _L)	Min	Max	Onit						
			l		SCK drive str	ength									
4	+	<u> </u>		SCK duty cycle ⁽⁶⁾	Very strong	0 pF	$^{1}/_{2}t_{SCK} - 2$	$^{1}/_{2}t_{SCK} + 2$							
4	t _{SDC}	00			Strong	0 pF	$^{1}/_{2}t_{SCK} - 2$	¹ / ₂ t _{SCK} + 2	ns						
					Medium	0 pF	$^{1}/_{2}t_{SCK} - 5$	¹ / ₂ t _{SCK} + 5							
		-			PCS	strobe timing									
5	t _{PCSC}	t _{PCSC} CC [PCSx to PCSS time ⁽⁷⁾	PCS and PCS strength	SS drive									
				une	Strong	25 pF	16.0	—	ns						
6	t _{PASC}	сс г	сс	D	D D	PCSS to PCSx time ⁽⁷⁾	PCS and PCS strength	SS drive							
					Strong	25 pF	16.0	—	ns						
	SIN setup time														
					SCK drive str	ength									
							SIN setup time to SCK	Very strong	25 pF	$25 - (P^{(9)} \times t_{SYS}^{(4)})$	—				
														CPHA = 0 ⁽⁸⁾	Strong
7	t _{SUI}	сс	П		Medium	50 pF	$52 - (P^{(9)} \times t_{SYS}^{(4)})$								
	501	00			SCK drive str	ength									
				SIN setup time to SCK	Very strong	25 pF	25.0	_							
				CPHA = $1^{(8)}$	Strong	50 pF	31.0	—	ns						
					Medium	50 pF	52.0	—							
	T		1		SI	N hold time	1								
					SCK drive str	ength									
				SIN hold time from SCK	Very strong	0 pF	$-1 + (P^{(9)} \times t_{SYS}^{(3)})$	_							
				$CPHA = 0^{(8)}$	Strong	0 pF	$-1 + (P^{(9)} \times t_{SYS}^{(3)})$	_	ns						
8	8 t _{HI}	сс	D		Medium	0 pF	$-1 + (P^{(9)} \times t_{SYS}^{(3)})$	_							
Ū	-		-		SCK drive str	ength			-						
				SIN hold time from SCK	Very strong	0 pF	-1.0	—							
				from SCK	Strong	0 pF	-1.0	—	ns						
					Medium	0 pF	-1.0								

Table 47. DSPI CMOS master modified timing (full duplex and output only) MTFE = 1, CPHA = 0 or 1 (continued)

	MITE = 1, CPHA = 0 or 1 (continued)												
#	Sumb		с	Charactoristic	Cone	dition	Value	.(1)	- Unit				
#	Symt	101	C	Characteristic	Pad drive ⁽²⁾	Load (C _L)	Min	Max	Unit				
				S	OUT data vali	d time (after S	CK edge)						
				SOUT data valid	SOUT and SO strength	CK drive							
	9 t _{SUO} C			time from SCK	Very strong	25 pF	—	7.0 + t _{SYS} ⁽⁴⁾					
				CPHA = 0, ⁽¹⁰⁾	Strong	50 pF	—	8.0 + t _{SYS} ⁽⁴⁾	ns				
0		сс	D		Medium	50 pF	_	16.0 + t _{SYS} ⁽⁴⁾					
9					SOUT and SO strength	CK drive							
					SOUT data valid time from SCK	Very strong	25 pF	_	7.0				
				CPHA = 1 ⁽¹⁰⁾	Strong	50 pF	—	8.0	ns				
					Medium	50 pF	_	16.0					
				S	SOUT data hol	d time (after S	CK edge)						
					SOUT data hold	SOUT and SO strength	CK drive						
				time after SCK	Very strong	25 pF	$-7.7 + t_{SYS}^{(4)}$	—					
				CPHA = 0 ⁽¹⁰⁾	Strong	50 pF	–11.0 + t _{SYS} ⁽⁴⁾	_	ns				
10	t	сс	D		Medium	50 pF	–15.0 + t _{SYS} ⁽⁴⁾						
10	10 t _{HO}		, D			SOUT data hold	SOUT and SO strength	CK drive					
				time after SCK	Very strong	25 pF	-7.7						
								CPHA = 1 ⁽¹⁰⁾	Strong	50 pF	-11.0		ns
					Medium	50 pF	-15.0						

Table 47. DSPI CMOS master modified timing (full duplex and output only) MTFE = 1, CPHA = 0 or 1 (continued)

1. All timing values for output signals in this table are measured to 50 % of the output voltage.

2. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation.

- N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 4. t_{SYS} is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min t_{SYS} = 10 ns).
- 5. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 7. PCSx and PCSS using same pad configuration.
- 8. Input timing assumes an input slew rate of 1 ns (10 % 90 %) and uses TTL voltage thresholds.
- 9. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set to 1.

10. SOUT Data valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

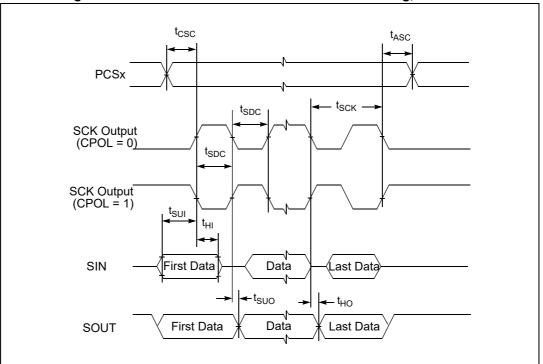
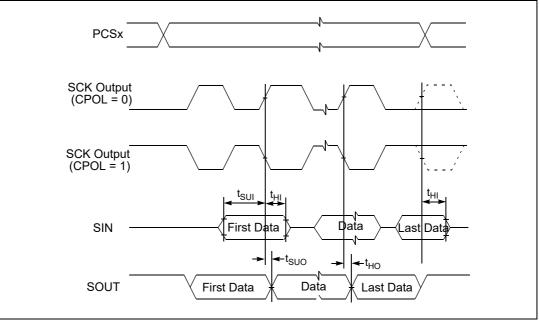
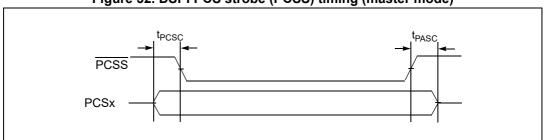




Figure 30. DSPI CMOS master mode — modified timing, CPHA = 0

Figure 32. DSPI PCS strobe (PCSS) timing (master mode)

4.17.2.2 Slave mode timing

Table 48. DSPI CMOS slave timing — full duplex — normal and modified transfer formats (MTFE = 0/1)

#	Syml	hal	с	Characteristic	Condi	ition	Min	Max	Unit
#	Synn	001	C	Characteristic	Pad Drive	Load	WIII	IVIAX	Unit
1	t _{SCK}	CC	D	SCK Cycle Time ⁽¹⁾	—		62	_	ns
2	t _{CSC}	SR	D	SS to SCK Delay ⁽¹⁾	—	_	16	_	ns
3	t _{ASC}	SR	D	SCK to SS Delay ⁽¹⁾	—	_	16	_	ns
4	t _{SDC}	СС	D	SCK Duty Cycle ⁽¹⁾	—	_	30		ns
				Slave Access Time ^{(1) (2) (3)}	Very strong	25 pF	_	50	ns
5	t _A	СС	D	(SS active to SOUT driven)	Strong	50 pF	_	50	ns
					Medium	50 pF	_	60	ns
				Slave SOUT Disable Time ⁽¹⁾ (2) (3) (\overline{SS} inactive to SOUT High-	Very strong	25 pF	_	5	ns
6	t _{DIS}	СС			Strong	50 pF	_	5	ns
				Z or invalid)	Medium	50 pF	_	10	ns
9	t _{SUI}	сс	D	Data Setup Time for Inputs ⁽¹⁾	—	_	10	_	ns
10	t _{HI}	СС	D	Data Hold Time for Inputs ⁽¹⁾	—	_	10		ns
				SOUT Valid Time(1)(2)(3)	Very strong	25 pF	_	30	ns
11	t _{SUO}	СС	D	(after SCK edge)	Strong	50 pF	_	30	ns
					Medium	50 pF	_	50	ns
				SOUT Hold Time ^{(1) (2) (3)}	Very strong	25 pF	2.5	_	ns
12	t _{HO}	СС	D	(after SCK edge)	Strong	50 pF	2.5	_	ns
					Medium	50 pF	2.5	—	ns

1. Input timing assumes an input slew rate of 1 ns (10 % - 90 %) and uses TTL voltage thresholds.

2. All timing values for output signals in this table, are measured to 50 % of the output voltage.

3. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

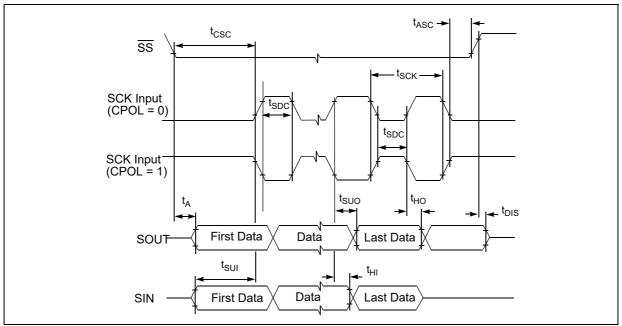
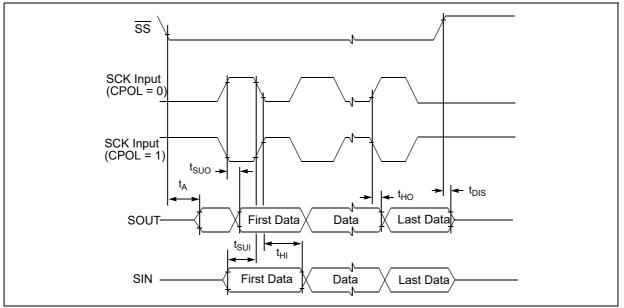
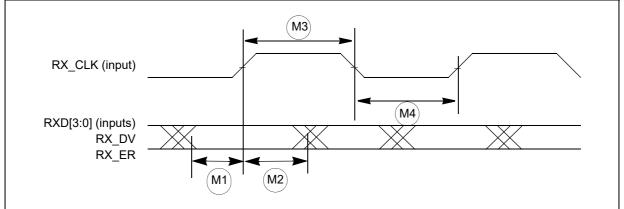



Figure 33. DSPI slave mode — modified transfer format timing (MFTE = 0/1) CPHA = 0

4.17.3 Ethernet timing

The Ethernet provides both MII and RMII interfaces. The MII and RMII signals can be configured for either CMOS or TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V. Check the device pinout details to review the packages supporting MII and RMII.

4.17.3.1 MII receive signal timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)


The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1 %. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency.

Note: In the following table, all timing specifications are referenced from RX_CLK = 1.4 V to the valid input levels, 0.8 V and 2.0 V.

Symbol	Symbol		Characteristic	Val	lue	Unit	
Symbol	ol C Characteristic				Max	Onit	
M1	CC	D	RXD[3:0], RX_DV, RX_ER to RX_CLK setup	5		ns	
M2	CC	D	RX_CLK to RXD[3:0], RX_DV, RX_ER hold	5		ns	
M3	CC	D	RX_CLK pulse width high	35 %	65 %	RX_CLK period	
M4	СС	D	RX_CLK pulse width low	35 %	65 %	RX_CLK period	

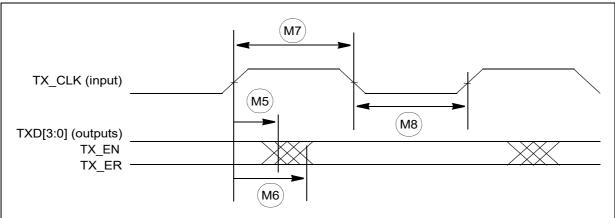
Table	49.	MII	receive	signal	timina
Table	TU .		1000100	Signar	unning

4.17.3.2 MII transmit signal timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)

The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1 %. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency.

The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This option allows the use of non-compliant MII PHYs.

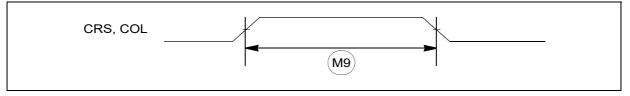
Refer to the SPC584Bx 32-bit Power Architecture microcontroller *reference manual's* Ethernet chapter for details of this option and how to enable it.


Note: In the following table, all timing specifications are referenced from TX_CLK = 1.4 V to the valid output levels, 0.8 V and 2.0 V.

Symbol	Symbol		Characteristic		ıe ⁽¹⁾	Unit
Symbol		С	Gharacteristic	Min	Мах	onit
M5	СС	D	TX_CLK to TXD[3:0], TX_EN, TX_ER invalid	5	_	ns
M6	СС	D	TX_CLK to TXD[3:0], TX_EN, TX_ER valid	_	25	ns
M7	СС	D	TX_CLK pulse width high	35 %	65 %	TX_CLK period
M8	СС	D	TX_CLK pulse width low 35		65 %	TX_CLK period

Table 50. MII transmit signal timing

1. Output parameters are valid for $C_L = 25 \text{ pF}$, where C_L is the external load to the device. The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value


Figure 36. MII transmit signal timing diagram

4.17.3.3 MII async inputs signal timing (CRS and COL)

Table 51. MII async inputs signal timing

Symbol		с	Charactoristic	Characteristic		Unit
Symbol			Gharacteristic	Min	Мах	Onit
M9	CC	D	CRS, COL minimum pulse width	1.5	—	TX_CLK period

Figure 37. MII async inputs timing diagram

4.17.3.4 MII and RMII serial management channel timing (MDIO and MDC)

The Ethernet functions correctly with a maximum MDC frequency of 2.5 MHz.

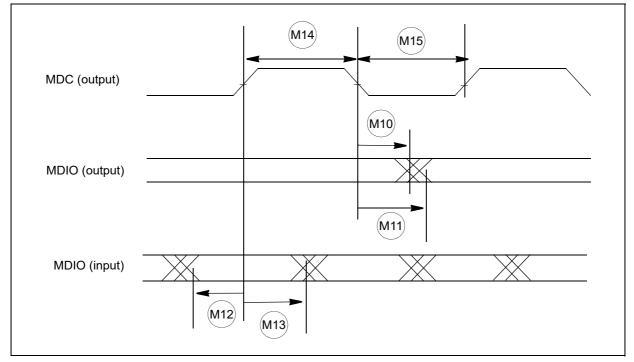


Figure 38. MII serial management channel timing diagram

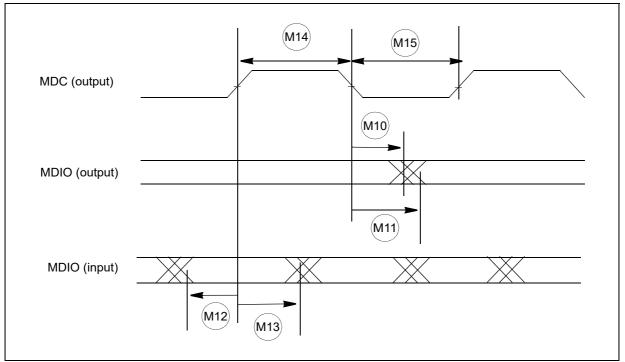
4.17.3.5 MII and RMII serial management channel timing (MDIO and MDC)

The Ethernet functions correctly with a maximum MDC frequency of 2.5 MHz.

Note: In the following table, all timing specifications are referenced from MDC = 1.4 V (TTL levels) to the valid input and output levels, 0.8 V and 2.0 V (TTL levels). For 5 V operation, timing is referenced from MDC = 50 % to 2.2 V/3.5 V input and output levels.

Symbol		с	Characteristic	Val	ue	Unit
Symbol		C	Characteristic	Min	Мах	Unit
M10	сс	D	MDC falling edge to MDIO output invalid (minimum propagation delay)	0	—	ns
M11	сс	D	MDC falling edge to MDIO output valid (maximum propagation delay)	_	25	ns
M12	СС	D	MDIO (input) to MDC rising edge setup	10	_	ns
M13	СС	D	MDIO (input) to MDC rising edge hold	0	_	ns
M14	СС	D	MDC pulse width high	40 %	60 %	MDC period
M15	СС	D	MDC pulse width low	40 %	60 %	MDC period

Table 52. MII serial management channel timing	Table 52	. MII serial	management	channel	timing
--	----------	--------------	------------	---------	--------



Note: In the following table, all timing specifications are referenced from MDC = 1.4 V (TTL levels) to the valid input and output levels, 0.8 V and 2.0 V (TTL levels). For 5 V operation, timing is referenced from MDC = 50 % to 2.2 V/3.5 V input and output levels.

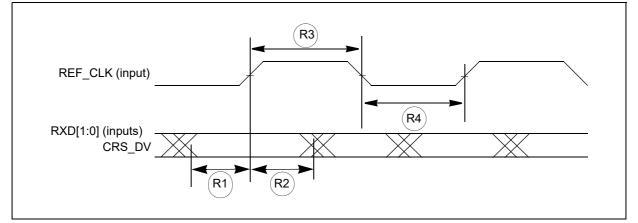
Symbol		с	Characteristic	Va	ue	Unit
Symbol		C		Min	Мах	Onit
M10	сс	D	MDC falling edge to MDIO output invalid 0 — (minimum propagation delay)		—	ns
M11	сс	D	IDC falling edge to MDIO output valid — 25		ns	
M12	СС	D	MDIO (input) to MDC rising edge setup 10 -		_	ns
M13	СС	D	MDIO (input) to MDC rising edge hold 0		_	ns
M14	СС	D	MDC pulse width high 40 % 60 %		MDC period	
M15	СС	D	MDC pulse width low	60 %	MDC period	

Table 53. RMII serial management channel timing

Figure 39. MII serial management channel timing diagram

4.17.3.6 RMII receive signal timing (RXD[1:0], CRS_DV)

The receiver functions correctly up to a REF_CLK maximum frequency of 50 MHz +1 %. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency, which is half that of the REF_CLK frequency.



Note: In the following table, all timing specifications are referenced from REF_CLK = 1.4 V to the valid input levels, 0.8 V and 2.0 V.

Symbol		с	Characteristic	Val	ue	Unit
Symbol		C	Characteristic	Min	Мах	Unit
R1	CC	D	RXD[1:0], CRS_DV to REF_CLK setup	4		ns
R2	СС	D	REF_CLK to RXD[1:0], CRS_DV hold	2	_	ns
R3	СС	D	REF_CLK pulse width high	35 %	65 %	REF_CLK period
R4	СС	D	REF_CLK pulse width low 35 %		65 %	REF_CLK period

Table 54.	RMII	receive	signal	timina
10010 011		1000110	orginal	en in ing

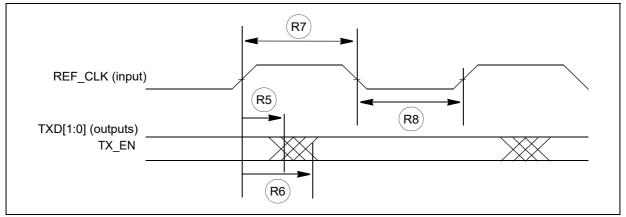
Figure 40. RMII receive signal timing diagram

4.17.3.7 RMII transmit signal timing (TXD[1:0], TX_EN)

The transmitter functions correctly up to a REF_CLK maximum frequency of 50 MHz + 1 %. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency, which is half that of the REF_CLK frequency.

The transmit outputs (TXD[1:0], TX_EN) can be programmed to transition from either the rising or falling edge of REF_CLK, and the timing is the same in either case. This option allows the use of non-compliant RMII PHYs.

Note: In the following table, all timing specifications are referenced from REF_CLK = 1.4 V to the valid output levels, 0.8 V and 2.0 V.


RMII transmit signal valid timing specified is considering the rise/fall time of the ref_clk on the pad as 1ns.

Symbol		с	Characteristic Value		Value		
Symbol		C	Gharacteristic	Min	Max	Unit	
R5	CC	D	REF_CLK to TXD[1:0], TX_EN invalid	2	_	ns	
R6	СС	D	REF_CLK to TXD[1:0], TX_EN valid	REF_CLK to TXD[1:0], TX_EN valid — 14		ns	
R7	СС	D	REF_CLK pulse width high 3		65 %	REF_CLK period	
R8	СС	D	EF_CLK pulse width low 35 % 65 % REF		REF_CLK period		

Table	55.	RMII	transmit	signal	timing
-------	-----	------	----------	--------	--------

Figure 41. RMII transmit signal timing diagram

4.17.4 CAN timing

The following table describes the CAN timing.

Symbol	Symbol		Parameter	meter Condition		Value		Unit
Symbol		С	Falametei	Condition	Min	Тур	Мах	Onit
	CC	D	CAN	Medium type pads 25 pF load	—	—	70	
	CC	D	controller	Medium type pads 50 pF load	_	—	80	
t _{P(RX:TX)}	сс	D	propagation delay time standard	STRONG, VERY STRONG type pads 25 pF load	_	_	60	ns
	сс	D	pads	STRONG, VERY STRONG type pads 50 pF load	_	_	65	
	CC	D	CAN	Medium type pads 25 pF load	_	—	90	
	CC	D	controller	Medium type pads 50 pF load	_	—	100	
t _{PLP(RX:TX)}	сс	D	propagation delay time low power	STRONG, VERY STRONG type pads 25 pF load	_	_	80	ns
	сс	D	pads	STRONG, VERY STRONG type pads 50 pF load	_	_	85	

Table 56. CAN timing

4.17.5 UART timing

UART channel frequency support is shown in the following table.

LINFlexD clock frequency LIN_CLK (MHz)	Oversampling rate	Voting scheme	Max usable frequency (Mbaud)
	16	2.1 majority voting	5
	8	- 3:1 majority voting	10
80	6	Limited voting on one	13.33
	5	sample with configurable	16
	4	sampling point	20
	16	2:1 majority voting	6.25
	8	- 3:1 majority voting	12.5
100	6	Limited voting on one	16.67
	5	sample with configurable	20
	4	sampling point	25

Table 57. UART frequency support

4.17.6 I2C timing

The I²C AC timing specifications are provided in the following tables.

Note: In the following table, I2C input timing is valid for Automotive and TTL inputs levels, hysteresis enabled, and an input edge rate no slower than 1 ns (10 % – 90 %).

Table 58. I2C input timing	specifications – SCL and SDA
----------------------------	------------------------------

No.	Symbol		с	Parameter		ue	Unit
NO.				Falanietei	Min	Max	onit
1	_	СС	D	Start condition hold time	2	—	PER_CLK Cycle ⁽¹⁾
2		СС	D	Clock low time	8	_	PER_CLK Cycle
3		СС	D	Bus free time between Start and Stop condition	4.7	_	μs
4		СС	D	Data hold time	0.0	_	ns
5	—	СС	D	Clock high time	4	_	PER_CLK Cycle
6	_	CC	D	Data setup time	0.0	_	ns
7		СС	D	Start condition setup time (for repeated start condition only)	2	—	PER_CLK Cycle
8		СС	D	Stop condition setup time	2	_	PER_CLK Cycle

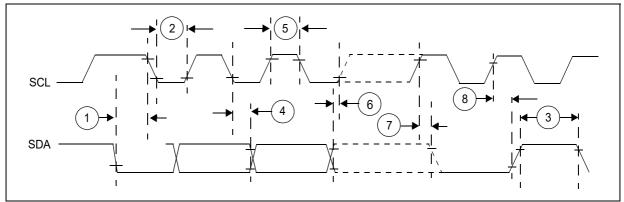
1. PER_CLK is the SoC peripheral clock, which drives the I²C BIU and module clock inputs. See the Clocking chapter in the device reference manual for more detail.

Note: In the following table:

• All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

• Output parameters are valid for CL = 25 pF, where CL is the external load to the device (lumped). The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value.

• Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation.


• Programming the IBFD register (I2C bus Frequency Divider) with the maximum frequency results in the minimum output timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the pre-scale and division values programmed in the IBC field of the IBFD register.

No.	Symbol		с	Parameter	Value		Unit
NO.					Min	Max	onit
1	_	СС	D	Start condition hold time	6	_	PER_CLK Cycle ⁽¹⁾
2	_	CC	D	Clock low time	10		PER_CLK Cycle
3	_	СС	D	Bus free time between Start and Stop condition	4.7		μs
4	_	CC	D	Data hold time	7		PER_CLK Cycle
5	_	CC	D	Clock high time	10		PER_CLK Cycle
6		СС	D	Data setup time	2		PER_CLK Cycle
7		CC	D	Start condition setup time (for repeated start condition only)	20	_	PER_CLK Cycle
8		СС	D	Stop condition setup time	10	—	PER_CLK Cycle

Table 59. I2C output timing specifications — SCL and SDA

1. PER_CLK is the SoC peripheral clock, which drives the I²C BIU and module clock inputs. See the Clocking chapter in the device reference manual for more detail.

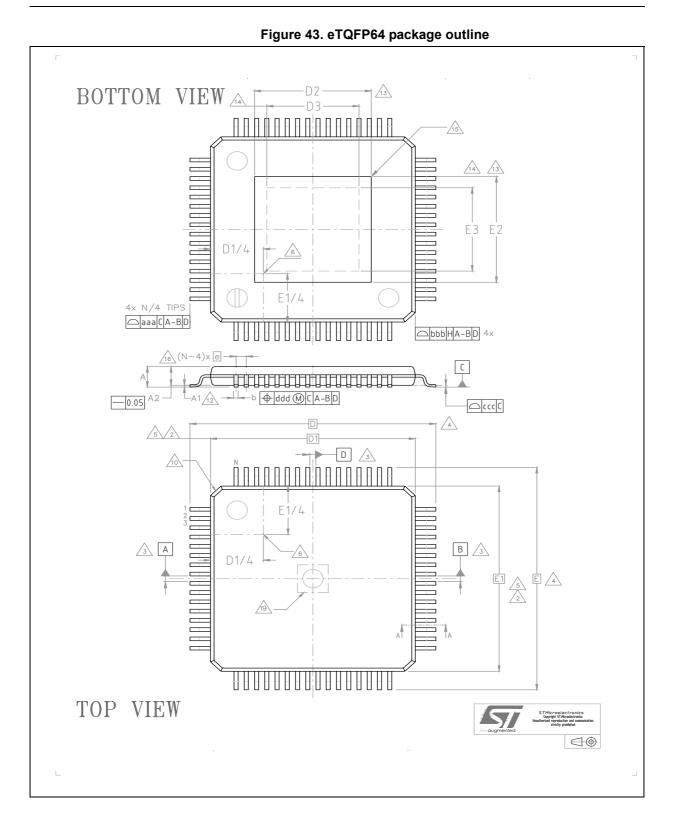
57

5 Package information

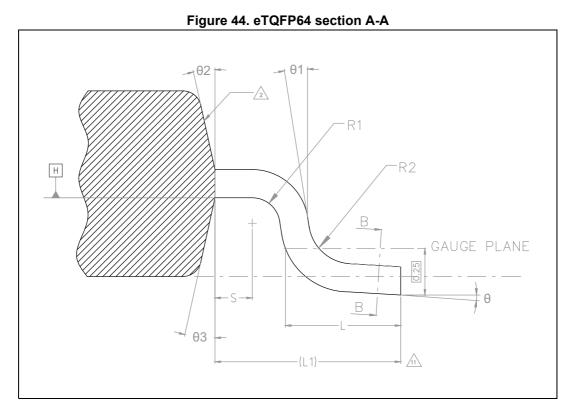
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

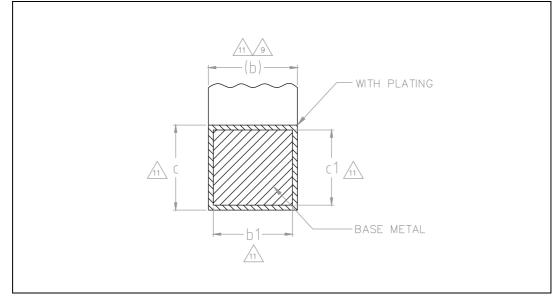
The following table lists the case numbers for SPC584Bx.

Table	60.	Package	case	numbers
10010	•••	i aonago	0400	


Package type	Device type
eTQFP64	Production
eTQFP100	Production
eTQFP144	Production
eLQFP176	Production

5.1 eTQFP64 package information

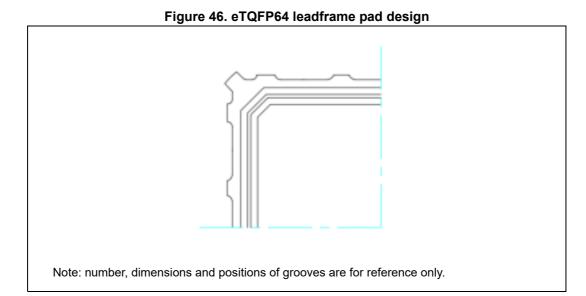

Refer to *Section 5.1.1: Package mechanical drawings and data information* for full description of below figures and table notes.


57

DS11701 Rev 4

Figure 45. eTQFP64 section B-B

Cumhal		Dimensions ^{(7),(17)}		
Symbol	Min. Typ.		Max.	
θ	0°	3.5°	7°	
θ1	0°	—		
θ2	10°	12°	14°	
θ 3	10°	12°	14°	
A ⁽¹⁵⁾	_	_	1.20	
A1 ⁽¹²⁾	0.05	_	0.15	
A2 ⁽¹⁵⁾	0.95	1.00	1.05	
b ^{(8),(9),(11)}	0.17	0.22	0.27	
b1 ⁽¹¹⁾	0.17	0.20	0.23	
c ⁽¹¹⁾	0.09	_	0.20	
c1 ⁽¹¹⁾	0.09	_	0.16	
D ⁽⁴⁾	12 BSC			
D1 ^{(2),(5)}		10 BSC		
D2 ⁽¹³⁾	_	_	5.85	
D3 ⁽¹⁴⁾	4.10	_	_	
е		0.50 BSC		
E ⁽⁴⁾	12 BSC			
E1 ^{(2),(5)}		10 BSC		
E2 ⁽¹³⁾		_	5.85	
E3 ⁽¹⁴⁾	4.10	_	_	
L	0.45	0.60	0.75	
L1		1 REF		
N ⁽¹⁶⁾		64		
R1	0.08	_	_	
R2	0.08	_	0.20	
S	0.20		_	
aaa ^{(1),(18)}		0.20		
bbb ^{(1),(18)}		0.20		
ccc ^{(1),(18)}		0.08		
ddd ^{(1),(18)}	0.08			



5.1.1 Package mechanical drawings and data information

The following notes are related to Figure 43, Figure 44, Figure 45 and Table 61:

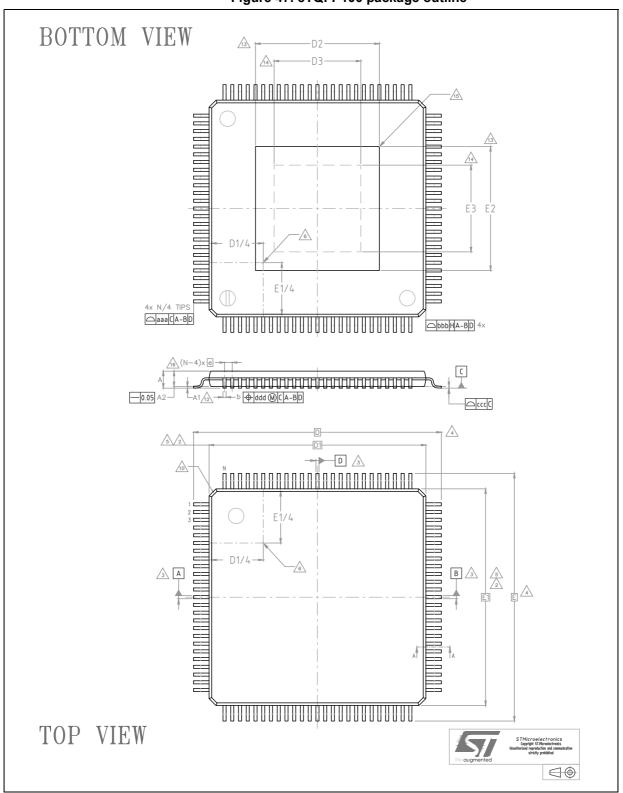
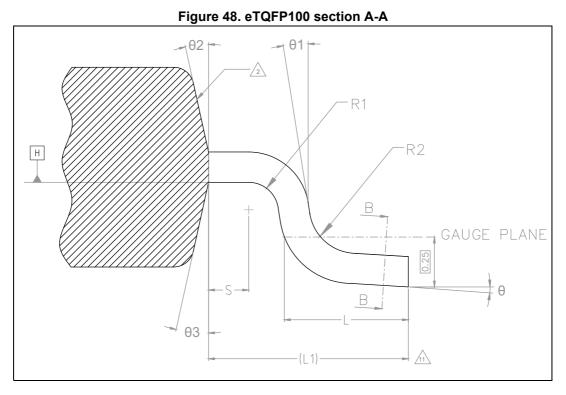
- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All dimensions are in millimeter except where explicitly noted.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. Dimensions D2 and E2 show the maximum exposed metal area on the package surface where the exposed pad is located (if present). It includes all metal protrusions from exposed pad itself. Type of exposed pad on SPC584Bx(variable) is as *Figure 46*. End user should verify D2 and E2 dimensions according to the specific device application.
- 14. Dimensions D3 and E3 show the minimum solderable area, defined as the portion of exposed pad which is guaranteed to be free from resin flashes/bleeds, bordered by internal edge of inner groove.
- 15. The optional exposed pad is generally coincident with the top or bottom side of the package and not allowed to protrude beyond that surface.
- 16. "N" is the max number of terminal positions for the specified body size.
- 17. Critical dimensions:
 - a) Stand-Off
 - b) Overall Width
 - c) Lead Coplanarity
- 18. For symbols, recommended values and tolerances, see Table 62.
- 19. Notch may be present in this area (MAX 1.5mm square) if center top gate molding technology is applied. Resin gate residual not protruding out of package top surface.

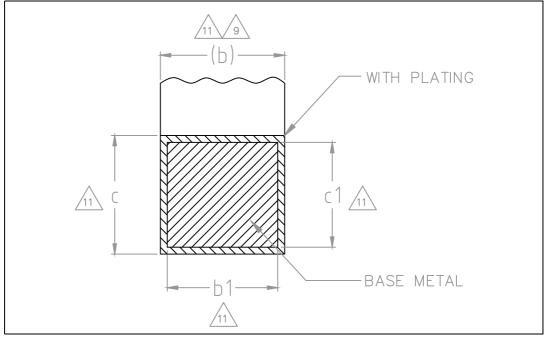
Symbol	Definition	Notes
aaa	The tolerance that controls the position of the terminal pattern with respect to Datum A and B. The center of the tolerance zone for each terminal is defined by basic dimension e as related to Datum A and B.	For flange-molded packages, this tolerance also applies for basic dimensions D1 and E1. For packages tooled with intentional terminal tip protrusions, aaa does not apply to those protrusions.
bbb	The bilateral profile tolerance that controls the position of the plastic body sides. The centers of the profile zones are defined by the basic dimensions D and E.	—
ссс	The unilateral tolerance located above the seating plane where in the bottom surface of all terminals must be located.	This tolerance is commonly know as the "coplanarity" of the package terminals.
ddd	The tolerance that controls the position of the terminals to each other. The centers of the profile zones are defined by basic dimension e.	This tolerance is normally compounded with tolerance zone defined by "b".

Table 62. eTQFP64 symbol definitions

5.2 eTQFP100 package information

Refer to *Section 5.2.1: Package mechanical drawings and data information* for full description of below figures and table notes.

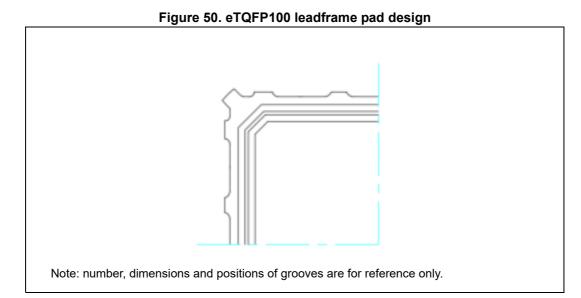

Figure 47. eTQFP100 package outline

DS11701 Rev 4

Figure 49. eTQFP100 section B-B

0		Dimensions ^{(7),(17)}		
Symbol	Min.	Тур.	Max.	
θ	0 ⁰	3.5 ^o	7 ⁰	
θ1	0 ⁰	—	_	
θ2	10 ^o	12°	14 ^o	
θ 3	10 ^o	12 ^o	14 ^o	
A ⁽¹⁵⁾	_		1.20	
A1 ⁽¹²⁾	0.05		0.15	
A2 ⁽¹⁵⁾	0.95	1.00	1.05	
b ^{(8),(9),(11)}	0.17	0.22	0.27	
b1 ⁽¹¹⁾	0.17	0.20	0.23	
c ⁽¹¹⁾	0.09	—	0.20	
c1 ⁽¹¹⁾	0.09		0.16	
D ⁽⁴⁾		16.00 BSC		
D1 ^{(2),(5)}		14.00 BSC		
D2 ⁽¹³⁾	_	—	6.77	
D3 ⁽¹⁴⁾	5.10	_	_	
е		0.50 BSC		
E ⁽⁴⁾		16.00 BSC		
E1 ^{(2),(5)}		14.00 BSC		
E2 ⁽¹³⁾	_	—	6.77	
E3 ⁽¹⁴⁾	5.10	- I	_	
L	0.45	0.60	0.75	
L1		1.00 REF		
N ⁽¹⁶⁾		100		
R1	0.08	_	_	
R2	0.08		0.20	
S	0.20		_	
aaa ^{(1),(18)}		0.20		
bbb ^{(1),(18)}		0.20		
ccc ^{(1),(18)}		0.08		
ddd ^{(1),(18)}		0.08		

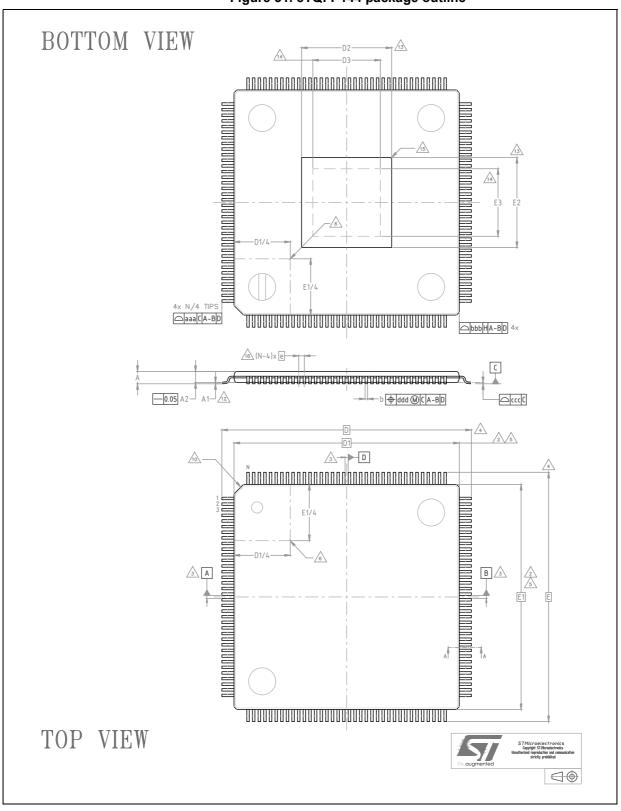
Table 63. eTQFP100 package mechanical data



5.2.1 Package mechanical drawings and data information

The following notes are related to Figure 47, Figure 48, Figure 49 and Table 63:

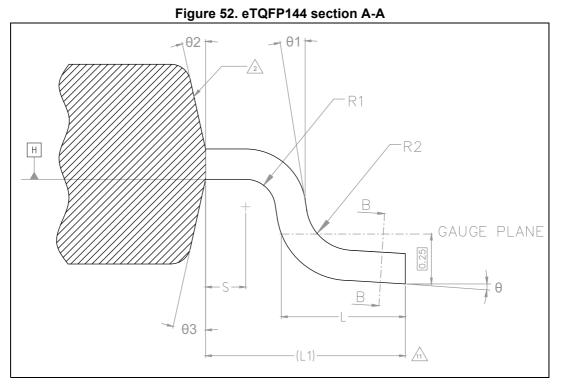
- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All dimensions are in millimeter except where explicitly noted.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. Dimensions D2 and E2 show the maximum exposed metal area on the package surface where the exposed pad is located (if present). It includes all metal protrusions from exposed pad itself. Type of exposed pad on SPC584Bx is as *Figure 50*. End user should verify D2 and E2 dimensions according to the specific device application.
- 14. Dimensions D3 and E3 show the minimum solderable area, defined as the portion of exposed pad which is guaranteed to be free from resin flashes/bleeds, bordered by internal edge of inner groove.
- 15. The optional exposed pad is generally coincident with the top or bottom side of the package and not allowed to protrude beyond that surface.
- 16. "N" is the max number of terminal positions for the specified body size.
- 17. Critical dimensions:
 - a) Stand-Off
 - b) Overall Width
 - c) Lead Coplanarity
- 18. For symbols, recommended values and tolerances, see Table 64.

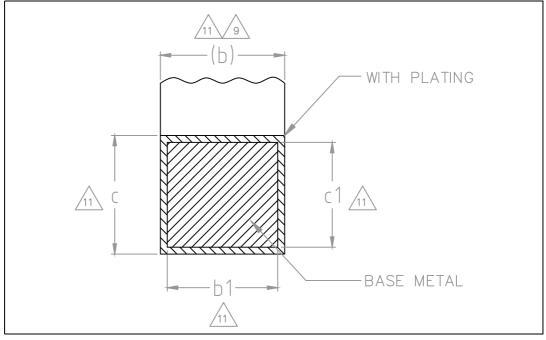

Table 64. eTQFP100 symbol definitions

Symbol	Definition	Notes
aaa	The tolerance that controls the position of the terminal pattern with respect to Datum A and B. The center of the tolerance zone for each terminal is defined by basic dimension e as related to Datum A and B.	For flange-molded packages, this tolerance also applies for basic dimensions D1 and E1. For packages tooled with intentional terminal tip protrusions, aaa does not apply to those protrusions.
bbb	The bilateral profile tolerance that controls the position of the plastic body sides. The centers of the profile zones are defined by the basic dimensions D and E.	—
ссс	The unilateral tolerance located above the seating plane where in the bottom surface of all terminals must be located.	This tolerance is commonly know as the "coplanarity" of the package terminals.
ddd	The tolerance that controls the position of the terminals to each other. The centers of the profile zones are defined by basic dimension e.	This tolerance is normally compounded with tolerance zone defined by "b".

5.3 eTQFP144 package information

Refer to Section 5.3.1: Package mechanical drawings and data information for full description of below figures and table notes.



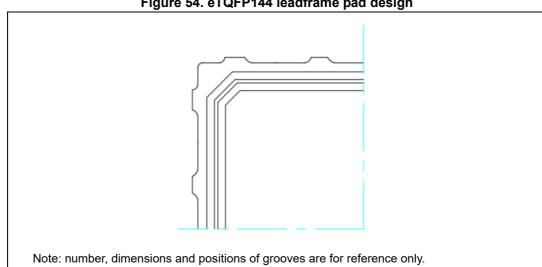


DS11701 Rev 4

Figure 53. eTQFP144 section B-B

DS11701 Rev 4

Our week all		Dimensions ^{(7),(17)}	
Symbol -	Min.	Тур.	Max.
θ	0.0°	3.5°	7.0°
θ1	0.0°	—	
θ2	10.0°	12.0°	14.0°
03	10.0°	12.0°	14.0°
A ⁽¹⁵⁾	_	_	1.20
A1 ⁽¹²⁾	0.05	_	0.15
A2 ⁽¹⁵⁾	0.95	1.00	1.05
b ^{(8),(9),(11)}	0.17	0.22	0.27
b1 ⁽¹¹⁾	0.17	0.20	0.23
c ⁽¹¹⁾	0.09		0.20
c1 ⁽¹¹⁾	0.09	_	0.16
D ⁽⁴⁾	—	22.00 BSC	
D1 ^{(2),(5)}	_	20.00 BSC	_
D2 ⁽¹³⁾	_	_	6.77
D3 ⁽¹⁴⁾	5.10	_	_
E ⁽⁴⁾	_	22.00 BSC	_
E1 ^{(2),(5)}	_	20.00 BSC	_
E2 ⁽¹³⁾	—	_	6.77
E3 ⁽¹⁴⁾	5.10	_	_
е		0.50 BSC	
L	0.45	0.60	0.75
L1	_	1.00 REF	_
N ⁽¹⁶⁾		144	
R1	0.08	_	_
R2	0.08		0.20
S	0.20		_
aaa ^{(1),(18)}		0.20	
bbb ^{(1),(18)}		0.20	
ccc ^{(1),(18)}		0.08	
ddd ^{(1),(18)}		0.08	


Table 65. eTQFP144 package mechanical data

5.3.1 Package mechanical drawings and data information

The following notes are related to Figure 51, Figure 52, Figure 53 and Table 65:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All dimensions are in millimeter except where explicitly noted.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. Dimensions D2 and E2 show the maximum exposed metal area on the package surface where the exposed pad is located (if present). It includes all metal protrusions from exposed pad itself. Type of exposed pad on SPC584Bx is as *Figure 54*. End user should verify D2 and E2 dimensions according to the specific device application.
- 14. Dimensions D3 and E3 show the minimum solderable area, defined as the portion of exposed pad which is guaranteed to be free from resin flashes/bleeds, bordered by internal edge of inner groove.
- 15. The optional exposed pad is generally coincident with the top or bottom side of the package and not allowed to protrude beyond that surface.
- 16. "N" is the max number of terminal positions for the specified body size.
- 17. Critical dimensions:
 - a) Stand-Off
 - b) Overall Width
 - c) Lead Coplanarity
- 18. For symbols, recommended values and tolerances, see Table 66.

Figure 54. eTQFP144 leadframe pad design

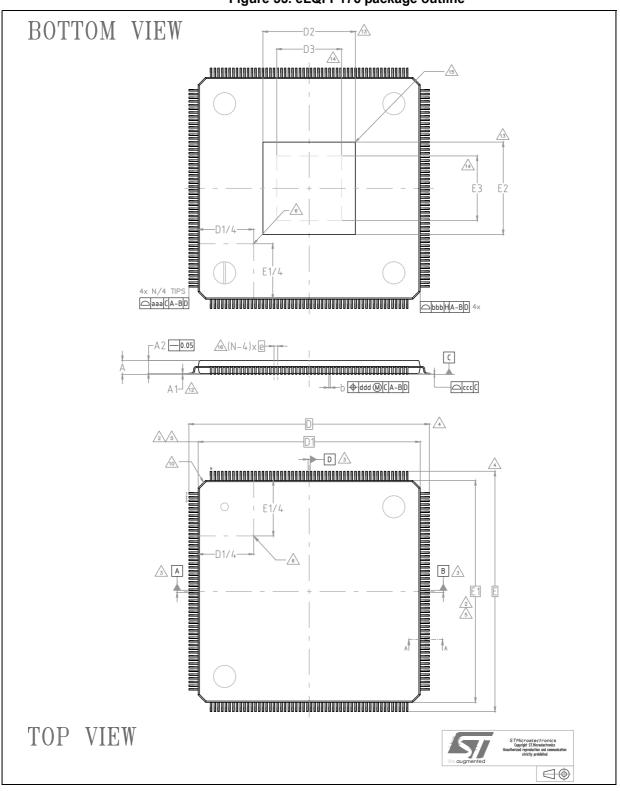
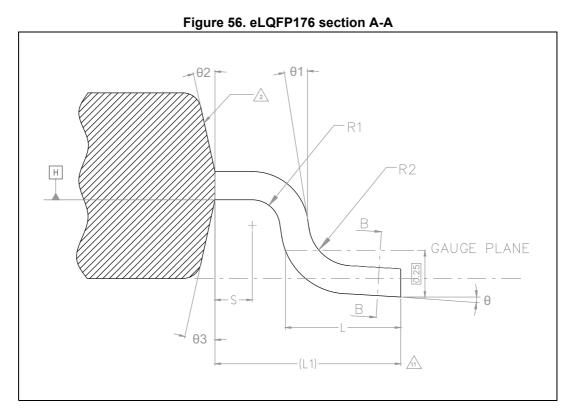
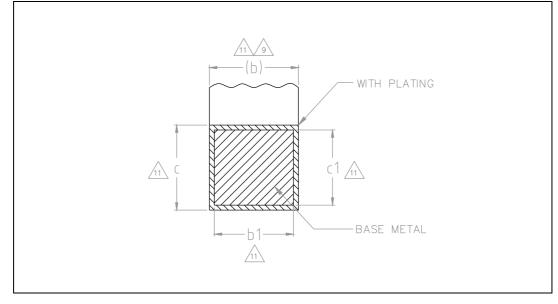

Symbol	Definition	Notes
aaa	The tolerance that controls the position of the terminal pattern with respect to Datum A and B. The center of the tolerance zone for each terminal is defined by basic dimension e as related to Datum A and B.	For flange-molded packages, this tolerance also applies for basic dimensions D1 and E1. For packages tooled with intentional terminal tip protrusions, aaa does not apply to those protrusions.
bbb	The bilateral profile tolerance that controls the position of the plastic body sides. The centers of the profile zones are defined by the basic dimensions D and E.	_
ccc	The unilateral tolerance located above the seating plane where in the bottom surface of all terminals must be located.	This tolerance is commonly know as the "coplanarity" of the package terminals.
ddd	The tolerance that controls the position of the terminals to each other. The centers of the profile zones are defined by basic dimension e.	This tolerance is normally compounded with tolerance zone defined by "b".

Table 66. eTQFP144 symbol definitions

eLQFP176 package information 5.4

Refer to Section 5.4.1: Package mechanical drawings and data information for full description of below figures and table notes.





DS11701 Rev 4

Figure 57. eLQFP176 section B-B

Symbol		Dimensions ^{(7),(17)}		
Symbol -	Min.	Nom.	Max.	
θ	0°	3.5°	7°	
θ1	0°	—		
θ2	10°	12°	14°	
θ 3	10°	12°	14°	
A ⁽¹⁵⁾	_	_	1.60	
A1 ⁽¹²⁾	0.05	_	0.15	
A2 ⁽¹⁵⁾	1.35	1.40	1.45	
b ^{(8),(9),(11)}	0.17	0.22	0.27	
b1 ⁽¹¹⁾	0.17	0.20	0.23	
c ⁽¹¹⁾	0.09	_	0.20	
c1 ⁽¹¹⁾	0.09	_	0.16	
D ⁽⁴⁾		26.00 BSC		
D1 ^{(2),(5)}		24.00 BSC		
D2 ⁽¹³⁾	_	_	7.77	
D3 ⁽¹⁴⁾	6.10	_	_	
е		0.50 BSC		
E ⁽⁴⁾		26.00 BSC		
E1 ^{(2),(5)}		24.00 BSC		
E2 ⁽¹³⁾	_	_	7.77	
E3 ⁽¹⁴⁾	6.10		_	
L	0.45	0.60	0.75	
L1		1.00 REF		
N ⁽¹⁶⁾		176		
R1	0.08		_	
R2	0.08		0.20	
S	0.20			
aaa ^{(1),(18)}		0.20		
bbb ^{(1),(18)}	0.20			
ccc ^{(1),(18)}	0.08			
ddd ^{(1),(18)}		0.08		

Table 67. eLQFP176 package mechanical data

5.4.1 Package mechanical drawings and data information

The following notes are related to Figure 55, Figure 56, Figure 57 and Table 67:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All dimensions are in millimeter except where explicitly noted.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. Dimensions D2 and E2 show the maximum exposed metal area on the package surface where the exposed pad is located (if present). It includes all metal protrusions from exposed pad itself. Type of exposed pad on SPC584Bx is as *Figure 58*. End user should verify D2 and E2 dimensions according to the specific device application.
- 14. Dimensions D3 and E3 show the minimum solderable area, defined as the portion of exposed pad which is guaranteed to be free from resin flashes/bleeds, bordered by internal edge of inner groove.
- 15. The optional exposed pad is generally coincident with the top or bottom side of the package and not allowed to protrude beyond that surface.
- 16. "N" is the max number of terminal positions for the specified body size.
- 17. Critical dimensions:
 - a) Stand-Off
 - b) Overall Width
 - c) Lead Coplanarity
- 18. For symbols, recommended values and tolerances, see Table 68.

Figure 58. eLQFP176 leadframe pad design

Symbol	Definition	Notes
aaa	The tolerance that controls the position of the terminal pattern with respect to Datum A and B. The center of the tolerance zone for each terminal is defined by basic dimension e as related to Datum A and B.	For flange-molded packages, this tolerance also applies for basic dimensions D1 and E1. For packages tooled with intentional terminal tip protrusions, aaa does not apply to those protrusions.
bbb	The bilateral profile tolerance that controls the position of the plastic body sides. The centers of the profile zones are defined by the basic dimensions D and E.	_
ссс	The unilateral tolerance located above the seating plane where in the bottom surface of all terminals must be located.	This tolerance is commonly know as the "coplanarity" of the package terminals.
ddd	The tolerance that controls the position of the terminals to each other. The centers of the profile zones are defined by basic dimension e.	This tolerance is normally compounded with tolerance zone defined by "b".

Table 68. eLQFP176 symbol definitions

5.5 Package thermal characteristics

The following tables describe the thermal characteristics of the device. The parameters in this chapter have been evaluated by considering the device consumption configuration reported in the *Section 4.7: Device consumption*.

5.5.1 eTQFP64

Symbo	Symbol C		Parameter ⁽¹⁾	Conditions	Value	Unit
$R_{ ext{ heta}JA}$	СС	D	Junction-to-Ambient, Natural Convection ⁽²⁾	Four layer board (2s2p)	30.8	°C/W
$R_{ hetaJMA}$	СС	D	Junction-to-Moving-Air, Ambient ⁽²⁾	at 200 ft./min., four layer board (2s2p)	24.4	°C/W
R_{\thetaJB}	СС	D	Junction-to-board ⁽³⁾	—	12.1	°C/W
$R_{\theta JCtop}$	СС	D	Junction-to-case top ⁽⁴⁾	_	15.2	°C/W
$R_{\theta JCbottom}$	СС	D	Junction-to-case bottom ⁽⁵⁾	_	4.5	°C/W
Ψ_{JT}	СС	D	Junction-to-package top ⁽⁶⁾	Natural convection	3.7	°C/W

 Table 69. Thermal characteristics for 64 exposed pad eTQFP package

 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- 4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 5. Thermal resistance between the die and the exposed pad ground on the bottom of the package based on simulation without any interface resistance.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

5.5.2 eTQFP100

Table 70. Thermal characteristics for 100 exposed pad eTQFP package

Symbo	Symbol C		Parameter ⁽¹⁾	Conditions	Value	Unit
$R_{ hetaJA}$	СС	D	Junction-to-Ambient, Natural Convection ⁽²⁾	Four layer board (2s2p)	28.9	°C/W
$R_{ hetaJMA}$	СС	D	Junction-to-Moving-Air, Ambient ⁽²⁾	At 200 ft./min., four layer board (2s2p)	22.9	°C/W
$R_{\theta JB}$	СС	D	Junction-to-board ⁽³⁾	—	14.1	°C/W
$R_{\theta JCtop}$	СС	D	Junction-to-case top ⁽⁴⁾	—	14	°C/W
$R_{\theta JCbottom}$	СС	D	Junction-to-case bottom ⁽⁵⁾	_	4.4	°C/W
Ψ_{JT}	СС	D	Junction-to-package top ⁽⁶⁾	Natural convection	3.7	°C/W

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

Package information

- 4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 5. Thermal resistance between the die and the exposed pad ground on the bottom of the package based on simulation without any interface resistance.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

5.5.3 eTQFP144

Symbol		C Parameter ⁽¹⁾		Conditions	Value	Unit		
$R_{ ext{ heta}JA}$	СС	D	Junction-to-Ambient, Natural Convection ⁽²⁾	Four layer board (2s2p)	28.5	°C/W		
$R_{ hetaJMA}$	СС	D	Junction-to-Moving-Air, Ambient ⁽²⁾	At 200 ft./min., four layer board (2s2p)	22.1	°C/W		
$R_{\theta JB}$	СС	D	Junction-to-board ⁽³⁾	—	14.5	°C/W		
$R_{\theta JCtop}$	СС	D	Junction-to-case top ⁽⁴⁾	—	13.7	°C/W		
$R_{\theta JCbottom}$	СС	D	Junction-to-case bottom ⁽⁵⁾	—	4.4	°C/W		
Ψ_{JT}	СС	D	Junction-to-package top ⁽⁶⁾	Natural convection	3.7	°C/W		

Table 71. Thermal characteristics for 144 exposed pad eTQFP package

 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- 4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 5. Thermal resistance between the die and the exposed pad ground on the bottom of the package based on simulation without any interface resistance.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

5.5.4 LQFP176

Table 72. Thermal characteristics for 176 exposed pad LQFP package

Symbo	Symbol C Parameter ⁽¹⁾		Conditions	Value	Unit	
$R_{ ext{ heta}JA}$	СС	D	Junction-to-Ambient, Natural Convection ⁽²⁾	Four layer board (2s2p)	28	°C/W
$R_{ hetaJMA}$	СС	D	Junction-to-Moving-Air, Ambient ⁽²⁾	at 200 ft./min., four layer board (2s2p)	21	°C/W
$R_{\theta JB}$	СС	D	Junction-to-board ⁽³⁾		15.7	°C/W
R _{0JCtop}	СС	D	Junction-to-case top ⁽⁴⁾		18.1	°C/W
$R_{\theta JCbottom}$	СС	D	Junction-to-case bottom ⁽⁵⁾	—	4.0	°C/W
Ψ_{JT}	СС	D	Junction-to-package top ⁽⁶⁾	Natural convection	3.7	°C/W

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

- 3. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 5. Thermal resistance between the die and the exposed pad ground on the bottom of the package based on simulation without any interface resistance.
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

5.5.5 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

Equation 1

 $\mathbf{T}_{\mathbf{J}} = \mathbf{T}_{\mathbf{A}} + (\mathbf{R}_{\theta \mathbf{J} \mathbf{A}} * \mathbf{P}_{\mathbf{D}})$

where:

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The differences between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the:

- Construction of the application board (number of planes)
- Effective size of the board which cools the component
- Quality of the thermal and electrical connections to the planes
- Power dissipated by adjacent components

Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leaves the planes virtually disconnected, the thermal performance is also greatly reduced.

As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:

- One oz. (35 micron nominal thickness) internal planes
- Components are well separated
- Overall power dissipation on the board is less than 0.02 W/cm²

The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

Equation 2 $T_J = T_B + (R_{\theta JB} * P_D)$

where:

T_B = board temperature for the package perimeter (°C)

 $R_{\theta,JB}$ = junction-to-board thermal resistance (°C/W) per JESD51-8

P_D = power dissipation in the package (W)

When the heat loss from the package case to the air does not factor into the calculation, the junction temperature is predictable if the application board is similar to the thermal test condition, with the component soldered to a board with internal planes.

The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance:

Equation 3

 $\mathbf{R}_{\theta \mathbf{J}\mathbf{A}} = \mathbf{R}_{\theta \mathbf{J}\mathbf{C}} + \mathbf{R}_{\theta \mathbf{C}\mathbf{A}}$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and is not affected by other factors. The thermal environment can be controlled to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For example, change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient. For most packages, a better model is required.

A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple estimations and for computational fluid dynamics (CFD) thermal models. More accurate compact Flotherm models can be generated upon request.

To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization parameter (Ψ_{JT}) to determine the junction temperature by measuring the temperature at the top center of the package case using the following equation:

Equation 4

 $\mathbf{T}_{\mathsf{J}} = \mathbf{T}_{\mathsf{T}} + (\Psi_{\mathsf{J}\mathsf{T}} \times \mathbf{P}_{\mathsf{D}})$

where:

 T_T = thermocouple temperature on top of the package (°C)

 Ψ_{JT} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

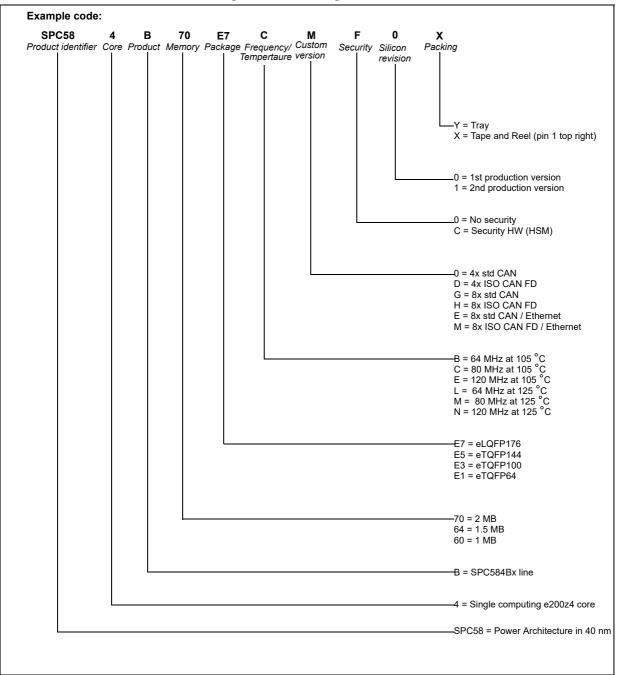
The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire.

When board temperature is perfectly defined below the device, it is possible to use the thermal characterization parameter (Ψ_{JPB}) to determine the junction temperature by measuring the temperature at the bottom center of the package case (exposed pad) using the following equation:

Equation 5

 $\mathbf{T}_{\mathsf{J}} = \mathbf{T}_{\mathsf{B}} + (\Psi_{\mathsf{JPB}} \times \mathbf{P}_{\mathsf{D}})$

where:


 T_T = thermocouple temperature on bottom of the package (°C)

 Ψ_{JT} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

6 Ordering information

Figure 59. Ordering information scheme

Note: Contact your ST sales office to ask for the availability of a particular commercial product. Features (for instance, flash, RAM or peripherals) not included in the commercial product cannot be used. ST cannot be called to take any liability for features used outside the commercial product.

SPC584B70 (2M)	SPC584B64 (1.5M)	SPC584B60 (1M)	Partition	Start address	End address
16	16	16	0	0x00FC0000	0x00FC3FFF
16	16	16	0	0x00FC4000	0x00FC7FFF
32	32	32	0	0x00FC8000	0x00FCFFFF
32	32	32	0	0x00FD0000	0x00FD7FFF
32	32	32	0	0x00FD8000	0x00FDFFFF
128	128	128	0	0x00FE0000	0x00FFFFFF
256	256	256	0	0x01000000	0x0103FFFF
256	256	256	0	0x01040000	0x0107FFFF
256	256	256	0	0x01080000	0x010BFFFF
256	256	NA	0	0x010C0000	0x010FFFFF
256	256	NA	0	0x01100000	0x0113FFFF
256	NA	NA	0	0x01140000	0x0117FFFF
256	NA	NA	0	0x01180000	0x011BFFFF

Table 73. Code Flash options

Table 74. RAM options

SPC584B70	SPC584B64	SPC584B60	Туре	Start address	End address
192 ⁽¹⁾	160 ⁽¹⁾	128 ⁽¹⁾	туре	Start address	Lifu address
8	8	8	PRAMC_2 (STBY)	0x400A8000	0x400A9FFF
24	24	24	PRAMC_2 (STBY)	0x400AA000	0x400AFFFF
32	32	32	PRAMC_2 (STBY)	0x400B0000	0x400B7FFF
32	32	NA	PRAMC_2 (STBY)	0x400B8000	0x400BFFFF
32	NA	NA	PRAMC_2 (STBY)	0x400C0000	0x400C7FFF
64	64	64	D-MEM CPU_2	0x52800000	0x5280FFFF

1. RAM size is the sum of TCM and SRAM

7 Revision history

Date	Revision	Changes
06-Oct-2016	1	Initial version.
		-
		Section 3.8.2: I/O output DC characteristics:
		 Updated "WEAK" to "WEAK/SLOW" Updated "STRONG" to "STRONG/FAST"
		 Updated "VERY STRONG" to "VERY STRONG / VERY FAST"
		Table 9: I/O pad specification descriptions:
		– Added "Standby Pads"
		Added footnote "Logic level is configurable in running mode while it is CMOS"

Table 75. Document revision history

Date	Revision	Changes
13-Dec-2016	2 (conťď)	Table 12: WEAK/SLOW I/O output characteristics: Added "10%-90% in description of parameter "trp_w".Table 13: MEDIUM I/O output characteristics: Added "10%-90% in description of parameter "trp_s".Table 14: STRONG/FAST I/O output characteristics: Added "10%-90% in description of parameter "trp_s".Table 14: STRONG/FAST I/O output characteristics: Added "10%-90% in

Table 75. Document revision his	story (continued)
---------------------------------	-------------------

		75. Document revision history (continued)
Date	Revision	Changes
13-Dec-2016	2 (cont'd)	Section 3.17: AC Specifications: Updated Figure 28: DSPI CMOS master mode — classic timing, CPHA = 1 Section 4: Package information: Updated Figure 43: eTQFP64 package outline Updated Table 61: eTQFP64 package mechanical data Updated Table 62: eTQFP100 package mechanical data Updated Table 64: eLQFP176 package mechanical data Section 6: Ordering information:
		Section 6: Ordering information: Updated Figure 59: Ordering information scheme
16-Mar-2018	3	Section : Features Changed core name to e200z420 (was e200z4d) Added first bullet "AEC-Q100 qualified" Changed document classification "Target Specification" by "Production Data" Removed ST Restricted watermark on all document Section 1: Introduction Section 2: Description: Updated latest sentence with "one processor core" (was two) Table 2: Features list: Updated MPU description Added "Semaphores" Updated "System SRAM" Updated "DMA channels values" Removed "Interrupt controller" Figure 2: Periphery allocation: Removed SEMA42 block Section 2.3: Features overview: Updated: – 64 KB local data RAM for Core_2 – 128 KB on-chip general-purpose SRAM (+ 64 KB local data RAM: 64 KB included in the CPU) – Multi channel direct memory access controllers Section 3: Package pinouts and signal descriptions: Changed introduction sentence since the pin out excel file will no longer be attached to the datasheet Section 3: Electrical characteristics Section 4.1: Introduction:
		Removed text "The IPs andfor the details" Removed the two notes applicable for preliminary data

Table 75. Document revision history (continued)

Date Revision Changes	
Table 3: Parameter classifications:	
Updated the description of classification tag "T"	
Section 4.2: Absolute maximum ratings:	
Added text "Exposure to absolute reliability"	
Added text "even momentarily"	
Table 4: Absolute maximum ratings:	
Updated values in conditions column	
Added parameter T _{TRIN}	
For parameter "T _{STG} ", maximum value updated from	n "175" to "125"
Added new parameter "T _{PAS} "	
For parameter "I _{INJ} ", description updated from "maxi DCpad"	mumPAD" to "maximum
Changed V _{DD_HV_IO_FLEX} to V _{DD_HV_IO_ETH}	
Section 4.3: Operating conditions	
Table 5: Operating conditions:	
For parameter "V _{DD_LV} ", changed the classification	from "D" to "P"
Removed note "Core voltage as"	
Added parameter I _{INJ2}	
Removed parameter "V _{RAMP_LV} "	
16-Mar-20183 (cont'd)Changed parameter V_DD_HV_IO_FLEX to V_DD_HV_IO_Updated the table footnote "Positive and negative D	
Table 6: Device supply relation during power-up/pov	-
Parameter " $V_{DD LV}$ " removed	
Changed parameter $V_{DD HV IO FLEX}$ to $V_{DD HV IO ETH}$	
Section 3.3.1: Power domains and power up/down s	sequencing:
Replaced reference to IO_definition excel file by "the	
definition excel file"	
Section 4.7: Device consumption	
Table 8: Device consumption:	
Updated parameter "I _{DDHALT} "	
Updated parameter "I _{DDSTOP} "	
Added note to parameters I _{DDHALT} and I _{DDSTOP}	
Updated "I _{DD_LKG} ": Classification "P" changed to "C	
TJ = 40 °C, added footnote "I _{DD_LKG} and I _{DD_LV} are	
Updated "I _{DD_LV} ": added footnote "I _{DD_LKG} and I _{DD} _	
Updated values of I _{DD_LKG} , I _{DDHALT} , I _{DDSTOP} , I _{DDSTE}	3Y8, I _{DDSTBY32} ,
I _{DDSTBY128} , I _{DDSSWU1} and I _{DDSSWU2}	
Updated "I _{DD_HV} ": changed Max value "45" to "55" Updated Max values of I _{DDSTBY8} , I _{DDSTBY32} , I _{DDSTB}	N/100
Updated table footnotes 4, 5, 6 and 8	Y128

Table 75. Document revision history (continued)

Date Revision Changes Section 4.8: I/O pad specification Removed note "The external ballast" Removed note "The external ballast" Reformated note from introduction Replaced all occurences of "50 pF load" with "CL=50pF" Replaced all references to the IO_definitions excel file by "the device pir definition excel file" Section 4.8.2: I/O output DC characteristics: Added note "10%/90% is the Table 9: I/O pad specification descriptions: Description of "Standby pads" updated from "Some pads are activewe currents" to "These pads are activeCMOS threshold" Removed FlexRay at Very strong configuration description Changed "the CMOS threshold" by "(VDD_HV_IO_MAIN / 2) +/-20%" at Standby pade two	
Reformated note from introduction Replaced all occurences of "50 pF load" with "CL=50pF" Replaced all references to the IO_definitions excel file by "the device pir definition excel file" Section 4.8.2: I/O output DC characteristics: Added note "10%/90% is the Table 9: I/O pad specification descriptions: Description of "Standby pads" updated from "Some pads are activewe currents" to "These pads are activeCMOS threshold" Removed FlexRay at Very strong configuration description Changed "the CMOS threshold" by "(VDD_HV_IO_MAIN / 2) +/-20%" at	
Standby pads type Table 12: WEAK/SLOW I/O output characteristics: For parameter "Texter, w", updated condition "25 pF load" to "CL=25pF" For parameter "Texter, w", updated condition "25 pF load" to "CL=25pF" For parameter "Texter, w", updated condition "25 pF load" to "CL=25pF" For parameter "Texter, w", updated condition "25 pF load" to "CL=25pF" For parameter "Texter, w", updated condition "25 pF load" to "CL=25pF" For output characteristics: Parameter "Texter, w", updated to content characteristics: Parameter "Texter, so condition added "Vpo=5.0×10% – Max value updated to 5.5mA Updated values for trp.s for condition CL = 25 pF and CL = 50 pF Table 15: VERY STRONG/VERY FAST I/O output characteristics: "trp.rt_Trp.rt" replaced by "trp.replace_v" "trp.rt_TR20-80" replaced by "trp.replace_v" "trp.rt_TR20-80" replaced by "trp.replace.exp.v" "trp.rt_TR20-80" replaced by "trp.replace.exp.v" Removed FlexRay S	he" eak-pull t

Table 75.	Document	revision	history	(continued)
-----------	----------	----------	---------	-------------

	Table	e 75. Document revision history (continued)
Date	Revision	Changes
		Updated footnote "Jitter valuescontribution of pad used as CLKOUT for measurement" to "Jitter valuescontribution of the divider and the path of the output CLKOUT pin" for parameters:
		$ = \Delta_{PLLOPHI0SPJ} $ $ = \Delta_{PLLOPH11SPJ} $
		$-\Delta_{PLLOLTJ}$
		Added "f _{INFIN} " for all devices
		Symbol "f _{INFIN} ": changed "C" by "—" in column "C"
		Updated Δ _{PLL0PHI0SPJ} : changed "T" by "D" and added pk-pk to Conditions value
		Updated APLL0PHI1SPJ : added pk-pk to Conditions value
		Table 20: PLL1 electrical characteristics:
		For parameter "I _{PLL1} ", classification changed from "C" to "T".
		Footnote "Jitter valuesmeasurement" added for parameter " $ \Delta_{PLL1PHI0SPJ} $ "
		Updated footnote "Jitter valuescontribution of pad used as CLKOUT for measurement" to "Jitter valuescontribution of the divider and the path of the output CLKOUT pin" for parameter " $ \Delta_{PLL1PHI0SPJ} $ "
		Added "f _{INFIN} "
		Symbol "f _{INFIN} ": changed "C" by "—" in column "C"
		Section 4.11: Oscillators
		Renamed the section "RC oscillator 1024 kHz" to Section 4.11.4: Low power RC oscillator
16-Mar-2018	3	Table 21: External 40 MHz oscillator electrical specifications:
	(cont'd)	Classification for parameters "C_S_EXTAL" and "C_S_XTAL" changed from "T" to "D"
		Min and Max value of parameters C_{S_EXTAL} and C_{S_XTAL} updated to "3" (min) and "7" (max)
		Updated classification, conditions, min and max values for parameter "gm"
		Changed table footnote 3 by: This value is determined by the crystal
		manufacturer and board design, and it can potentially be higher than the
		maximum provided
		Updated table footnote 1
		<i>Table 22: 32 kHz External Slow Oscillator electrical specifications</i> : Added this table
		Table 23: Internal RC oscillator electrical specifications:
		For parameter "I _{FIRC} ", replaced max value of 300 with 600
		Added footnote to the description
		Min, Typ and Max value of "δf _{var_SW} " updated from "-1", "-", "1" to "-0.5", " <u>+</u> 0.3"
		and "0.5" respectively
		Table 24: 1024 kHz internal RC oscillator electrical characteristics
		For parameter " δf_{var_T} ", and " δf_{var_V} ": changed the classification to "P".
		Section 4.12: ADC system:
		Table 25: ADC pin specification
		For I _{LKG} , changed condition "C" to "—".
		For parameter C _{P2} , updated the max value to "1".

Table 75. Document revision history (continued)

Deta	Deviletere	Charges	
Date	Revision	Changes	
Date 16-Mar-2018	Revision 3 (cont'd)	Changes Updated Max value for C _S For parameter C _{P2} , updated the max value from "1" to "2" Added electrical specification for R _{20KΩI} symbol Changed Max value = 1 by 2 for Cp2 SARB channels Table 26: SARn ADC electrical specification: Classification for parameter "I _{ADCREFH} " changed from "C" to "T". For parameter f _{ADCK} (High frequency mode), changed min value from "7.5" to "> 13.33" Deleted footnote "Values are subject to change (possibly improved to ±2 LSB) after characterization" Added symbols t _{ADCINIT} and t _{ADCBIASINIT} Column "C" split and added "D' for I _{ADV_S} Table 27: ADC-Comparator electrical specification Classification for parameter "I _{ADCREFH} " changed from "C" to "T" Removed table footnote "Values are subject to change (possibly improved to ±2 LSB) after characterization" Added new parameter "t _{ADCINITSBY} " Set min = 5/f _{ADCK} µs for 10-bit ADC mode, min = 2/f _{ADCK} " for ADC comparator mode, at symbol t _{ADCSAMPLE} Column "C" split and added "D' for I _{ADV_S} Figure 8: Input equivalent circuit (Fast SARn and SARB channels): updated Section 3.13: Temperature sensor Table 28: Temperature sensor electrical characteristics: For "temperature monitoring range": classification removed (was C) Section 4.14: LFAST pad electr	

16-Mar-2018	3 (cont'd)	 Min and Max value of parameter "APER_{REF}" for condition "Long period" updated from "TBD" to "-500" and "+500" respectively Section 4.15: Power management integration Added sentence "It is recommendeddevice itself" for all devices <i>Figure 17: Voltage monitor threshold definition:</i> Updated figure Table 32: Power management regulators Removed text "In parts packaged with LQFP176, the auxiliary and clamp regulators cannot be enabled" from note 2 Table 33: External components integration For PMOS, replaced "STT4P3LLH6" with "PMPB100XPEA" For NMOS, replaced "STT4P3LLH6" with "PMPB55XNEA" Added table footnote to typ value of C_{S2} Removed table footnote to typ value of C_{S2} Removed table footnote to typ asymptotic to 1.1 and 3.0 respectively Table 33: <i>Linear regulator specifications</i> Classification of parameter "IDD_{MREG}" changed from "P" to "T" Classification of parameter "IDD_{MREG}" changed from "P" to "T" Classification of parameter "IDD_{MREG}" changed from "T to "P" Updated TBD values Table 35: Auxiliary regulator specifications: added table Table 38: Voltage monitor electrical characteristics: V_{POR001,C}: changed the max value from "1.96" to "1.80" Changed the min value of parameter V_{POR020,C} from "0.85" to "0.97" Changed the min value of parameter V_{POR020,C} from "1.96" to "1.80" Changed the min value of parameter V_{POR020,C} from "1.96" to "1.80" Changed the max value of parameter V_{POR020,C} from "0.85" to "0.97"<!--</td-->

Date	Revision	Changes
16-Mar-2018	3 (cont'd)	Table 43: Nexus debug port timing: Classification of parameters "t _{EVTIPW} " and "t _{EVTIPW} " changed from "P" to "D" Table 45: DSPI channel frequency support Added column to show slower and faster frequencies Added DSPI_5 to lower frequency and removed it from higher frequency Table 46: DSPI CMOS master classic timing (full duplex and output only) MTFE = 0, CPHA = 0 or 1 Changed the Min value of t _{SCK} (very strong) from 33 to 59 Table 56: CAN timing: Added columns for "CC" and "D" Section 4: Package information Table 51: eTQFP64 package mechanical data Deleted angle lines Updated values for D2, D3, E2, E3 and ddd Table 62: eTQFP100 package mechanical data Deleted angle lines Table 64: eLQFP176 package outline: Removed "6.2x6.2 mm" after "eTQFP 10x10x1.0" Figure 44: eTQFP100 package outline Removed "6.4x6.4 mm" after "eTQFP 14x14x1.0" Table 69: Thermal characteristics for 100 exposed pad eTQFP package: Updated all parameters values Table 71: Thermal characteristics for 176 exposed pad eTQFP package: Updated all parameters values Table 72: Thermal characteristics for 176 exposed pad eTQFP package: Updated all parameters values Table 72: Thermal characteristics for 176 exposed pad eT

Table 75. Document revision history	v (continued)
	y (0011011000)

Date	Revision	Changes
	4	Section 1: Introduction: Removed "Document overview" section title. Section 2: Description: Changed title type.
		Section 4.2: Absolute maximum ratings Table 4: Absolute maximum ratings: Added cross reference to footnote ⁽²⁾ to all V _{DD_HV*} and V _{IN} Section 4.3: Operating conditions - Table 5: Operating conditions: V _{DD_HV_ADR_S} : Removed line for C condition. Section 4.5: Electromagnetic compatibility characteristics: Updated section title from "Electromagnetic emission characteristics" to Section 4.5: Electromagnetic compatibility characteristics. Section 4.7: Device consumption
		Table 8: Device consumption:
		 Updated maximum values of all conditions and changed from 'P' to 'C' in C column at TJ=40 °C condition for I_{DDSTBY8}, I_{DDSTBY32} and I_{DDSTBY128} parameters.
10-Sep-2019		- Moved table footnote 1. from table title to "Value".
		Section 4.9: Reset pad (PORST) electrical characteristics
		<i>Figure 5: Startup Reset requirements</i> : Deleted V _{DDMIN} . <i>Section 4.10: PLLs</i>
		 – Table 19: PLL0 electrical characteristics: Changed condition from T to D for [Δ_{PLL0PHI1SPJ}], Δ_{PLL0LTJ} and I_{PLL0}.
		 – Table 20: PLL1 electrical characteristics: Changed condition from T to D for IPLL1.
		Section 4.11: Oscillators:
		Table 23: Internal RC oscillator electrical specifications: Updated Max value for I _{FIRC.}
		Section 4.12: ADC system:
		 Figure 8: Input equivalent circuit (Fast SARn and SARB channels): Added parameter "C_{EXT}: external capacitance" and component to scheme.
		 Table 25: ADC pin specification: Added row for symbol "C_{EXT} / SR".

Table 75. Document revision history (continued)

Date Re	Revision	Changes
	A (cont'd)	 Jocument revision history (continued) Changes Section 4.14: LFAST pad electrical characteristics: Figure 9: LFAST LVDS timing definition: Updated. Table 29: LVDS pad startup and receiver electrical characteristics,: Removed the last sentence of Note "Total internal capacitance". Section 4.15: Power management: Table 33: External components integration: Updated conditions for C_{BV}. Table 33: Voltage monitor electrical characteristics: Added footnote "Even if LVD/HVD" Section 4.16: Flash: Table 39: Wait state configuration: for APC=001 changed the minimum frequency from 40 to 55 MHz Table 40: Flash memory program and erase specifications: Updated. Section 4.17: AC specifications: Section 5.17: AC specifications: Section 5: Package information: Added sub-section "Package mechanical drawings and data information" and introduction sentence to the notes list. Table 60: Package case numbers: Removed package reference column. Figure 43: eTQFP64 package outline: Updated. Figure 43: eTQFP64 package mechanical drawings and data information" and introduction sentence to the notes list. Table 61: eTQFP64 package outline: Updated. Figure 43: eTQFP64 package outline: Updated. Figure 44: eTQFP64 package outline: Updated. Figure 49: eTQFP64 package outline: Updated. Figure 49: eTQFP64 package outline: Lipdated. Figure 49: eTQFP64 spection B-B: Added. Table 63: eTQFP64 speckage mechanical drawings and data information: Moved notes to new section. Figure 49: eTQFP100 package mechanical data: Updated table, notes content and numbering. Section 5.2.1: Package mechanical data: Updated table, notes content and numbering. Section 5.2.1: Package mechanical data: Updated. Figure 51: eTQFP100 package outline: Updated. Figure 61: eTQFP100 package mechani

Table 75. Document revision history (continued)

Date	Revision	Changes
10-Sep-2019	4 (conťd)	 Section 5.4.1: Package mechanical drawings and data information: Moved notes to new section. Table 68: eLQFP176 symbol definitions: Updated. Table 72: Thermal characteristics for 176 exposed pad LQFP package: Updated values. Section 6: Ordering information Figure 59: Ordering information scheme: Added figure footnotes. Removed "F = Security HW + ST Firmware" in security.

Table 75. Document revision history (continued)

