SMART ARC CAN

SMART Arc CAN Enabled 145° Position Sensor Superior Measurement. Accurate. Reliable. Thinking.

DESCRIPTION

The Honeywell SMART Arc CAN Position Sensor is one of the most durable, adaptable, lightweight, and non-contact position sensors available, enabling absolute position sensing with enhanced accuracy. The SMART Arc CAN Position Sensor is a new configuration type of Honeywell's SMART Arc Position Sensors.

The SMART Arc CAN Position sensor uses a ring magnet, allowing ease of integration in pinned joint applications. Communication is transmitted using industry-standard CAN J1939 connectivity. This Honeywell position sensor utilizes magnetoresistive technology to detect the position of a magnet relative to the sensor in one of two available sizes, within a sensing range of 0° to 145°. This robust arc position sensor is much more robust than typical rotary position sensors or in-cylinder sensors.

Honeywell's SMART Arc CAN Position Sensor offers an IP69K sealed package, eliminates mechanical failure mechanisms, reduces wear and tear and improves system reliability and durability.

Customization

The SMART Arc CAN Position Sensor may be customized to best meet specific application needs. Solutions may be tailored to exact specifications for improved time to market, lower total system costs and enhanced reliability. These devices use a patented combination of an ASIC (Application-Specific Integrated Circuit) and an array of MR (magnetoresistive) sensors to accurately and reliably determine the position of the magnet in the magnet ring.

The MR array measures the output of the MR sensors mounted along the magnet's direction of travel. The output and the MR sensor sequence determine the nearest pair of MR sensors to the center of the magnet location. The output of these two MR sensors is then used to determine the position of the magnet between them.

POTENTIAL APPLICATIONS

Transportation

- Front end loader and digger/excavator boom position
- Refuse truck lift and automatic reach arm position
- Articulated vehicle steering position
- Timber harvester/processor equipment cutter arm position
- On-board loader weighing system position

Industrial

- Telescoping conveyor elevation
- Rail-road crossing arms position

Military

- Remote weapon systems elevation
- Chassis suspension systems position height

Aerospace:

- Ground-based solar panels elevation and azimuth
- Ground-based satellite dish elevation and azimuth

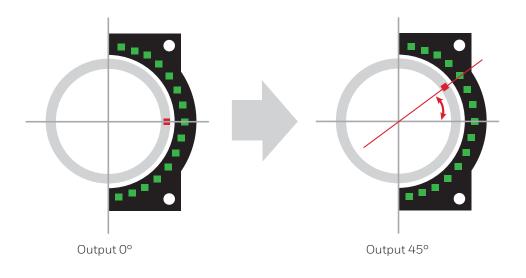
Medical:

• Robotically assisted surgery equipment position

FEATURES

• **Reliable, durable:** Non-contact design reduces wear and tear, improving reliability and durability, minimizing downtime

006002 Issue 1


- **Rugged:** Honeywell utilizes package materials with no moving parts within the sensor, making it resistant to vibration, shock, and extreme temperatures
- **Flexible:** Air gap tolerance of 5,25 mm [0.21 in] between sensor and magnet expands application use
- **Cost effective:** Adaptable, noncontacting design allows customers to eliminate unnecessary connections for installation, reducing installation steps/time and components
- Accurate: 145° configuration accurately, linearity down to 0.3 %
- **Adaptable:** Electronics on board allow for flexible packaging and component compatibility with existing systems
- Lightweight: Lighter in weight than optical encoders
- **Self-diagnostics** feature can reduce equipment downtime by providing predictive maintenance input
- Combined patented MR sensor and ASIC technology provide enhanced differentiation and performance
- **IP68, IP69K sealing** allow use in many harsh applications
- **RoHS-compliant** materials meet Directive 2002/95/EC
- Connector: Deutsch DT06-04
- Sensor Output: CAN-2.0B SAE J1939

Honeywell

THEORY OF OPERATION

- The bucket sensor is a two-piece design, consisting of the sensor and the magnet ring carrier.
- Theory of operation, as the magnet moves with respect to the sensor body. The position of the system can be interpreted.

Operating Principles Example

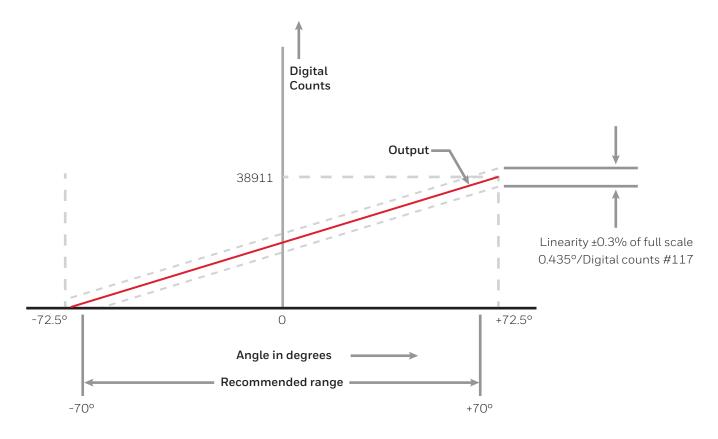


TABLE 1. SENSOR FAMILY DESIGNATION		
Part Number	Definition	
SPS-A145D-WCBS0301, (Sensor-161)	Defined by the 161-mm Outer Magnet Ring Diameter	
SPS-A145D-WCBS0302, (Sensor-161)	Defined by the 161-mm Outer Magnet Ring Diameter	
SPS-A145D-WCBS0303, (Sensor-220)	Defined by the 220-mm Outer Magnet Ring Diameter	

TABLE 2. PART NUMBER ORDER GUIDE				
Sensor Part Number	CAN Baud Rate	Ring Magnet Carrier*	Ring Magnet Outer Diameter	Product Family
SPS-A145D-WCBS0301	250 kbs	SPS-MAG-017 *	161 mm	Sensor-161
SPS-A145D-WCBS0302	500 kbs	SPS-MAG-017 *	161 mm	Sensor-161
SPS-A145D-WCBS0303	250 kbs	SPS-MAG-018 *	220 mm	Sensor-220

*Note: Ring magnets sold separately

SENSOR SENSING RANGE

TABLE 3. SENSOR OUTPUT PERFORMANCE CHART				
Parameter	Min.	Туре	Max.	Unit
Measured angle	-	145	-	Degrees
Digital counts	0.0	-	38911	Numbers (#)
Sensitivity	-	268.35	-	Counts /Degree
% Linearity	-0.3	0.0	+0.3	% FS
Hysteresis	-	-	0.01	% Full scale
Repeatability	-	0.001	-	% Full Scale
Air gap (Sensor-161)	-	5.25	-	Millimeters
Air gap (Sensor-220)	-	6.75	-	Millimeters
Concentricity (Sensor-161)	-0.65	0.0	+0.65	Millimeters
Concentricity (Sensor-220)	-0.85	0.0	+0.85	Millimeters
Offset (Z)	-6.0	0.0	+6.0	Millimeters
Ring sensor magnet offset (Sensor-161)	-6.0	11.7	+6.0	Millimeters
Ring sensor magnet offset (Sensor-220)	-6.0	14.3	+6.0	Millimeters
Magnet rotary speed	-	-	10	RPM

TABLE 4. ENVIRONMENTAL CHARACTERISTICS			
Characteristic	Parameter		
Operating temperature	-40°C to 85°C [-40°F to 185°F]		
Storage temperature	-55°C to 105°C [-67°F to 221°F]		
Ingress protection	Pressure wash (IP69K, vacuum/pressure (IP68) All sealing test to be completed without connector immersed		
Mechanical vibration	20 Grms [48 Hz to 200 Hz]		
Mechanical shock	Max 100 G, Half Sine, 11 ms		
Wire pull	10 lb [44.5 N] 1 min (Jacketed Cable)		
Gravel bombardment	0.96 CM to 1.6 CM to check level of distraction		
Chemical resistance (engine oil, diesel fuel, hydraulic oil)	Duration 24 hours immersion and 24-hour dry at room temperature		
Hot dunk	10 power cycles (without connector immersion) 20 thermal cycles prior to hot dunk, duration 1 hour		

TABLE 5. ELECTRICAL SPECIFICATIONS					
Characteristic	Min.	Nominal	Max.	Unit	Note
Supply voltage	9	12/24	36	V	-
Supply current	-	-	100	mA	-
Reverse voltage	-	-	-36	V	60 min @ 85°C
Over voltage	-	-	36	V	-
Short circuit protection	-	-	36	V	2 min. @ 85°C

EMI/EMC SPECIFICATIONS	s			
Characteristic	Level	Standard	Note	
Radiated immunity: ALSE	140 V/m, 200 MHz to 2.7 GHz	ISO 11452-2:2004		
Radiated immunity: Stripline	100 V/m, 10 kHz to 200 MHz	ISO 11452-5:2002		
Bulk current injection	Test to 120 mA; 1 MHz to 400 MHz	ISO 11452-4:2011		
ESD: ISO packaging and handling	8 kV contact, 15 kV air	ISO 10605:2008		
Radiated emissions	150 kHz to 2.5 GHz, Class 3	CISPR 25:2016		
Radiated emissions	Broadband 30 MHz to 75 MHz, 58-48 db uV/m 75 MHz to 400 MHz, 48-59 db uV/m 400 MHz to 1000 MHz, 59 db uV/m (Quasi peak detector) Narrowband 30 MHz to 75 MHz, 48-38 dB uV/m 75 MHz to 400 MHz, 38-49 dB uV/m 400 MHz to 1000 MHz, 49 dB uV/m (Average detector)	ISO 13766-1:2018	This sensor is used on earth- moving and building construc- tion machinery; therefore, it was tested according to ISO 13766- 1:2018 Earth-moving and build- ing construction machinery stan-	
Conducted emissions	150 kHz to 108 MHz	CISPR 25:2016	dard, published in the Official	
Far field emissions	30 MHz to 230 MHz, 40 dB uV/m 230 MHz to 1000 MHz, 47 dB uV/m (Quasi peak detector)	CISPR 16-2-3:2016	Journal of the European Union (OJEU)	
Ground noise immunity	100 Hz to 500 kHz, 0.5 V pp			
	Pulse 1, -600 V			
Conducted transient immunity	Pulse 2a, +55 V	ISO 7637-2:2011		
	Pulse 2b, +20 V	(ISO 13766)		
	Pulse 3a, -220 V	24 V power test levels		
initiating	Pulse 3b, +220 V			
	Load dump: Pulse 5b	ISO 16750-2:2012		
	Starting profile	130 107 30-2.2012		

CONNECTOR PIN-OUT DETAILS

Mating Connector Deutsch Receptacle Part: DT06-4S

TABLE 6. CONNECTOR PINOUTS			
Pinout	Wire Color	Pin out	
Pin 1	Red	Power supply	
Pin 2	Black	Signal ground	
Pin 3	White	CAN Bus high	
Pin 4	Blue	CAN Bus low	

CAN MESSAGES AND COMMUNICATION

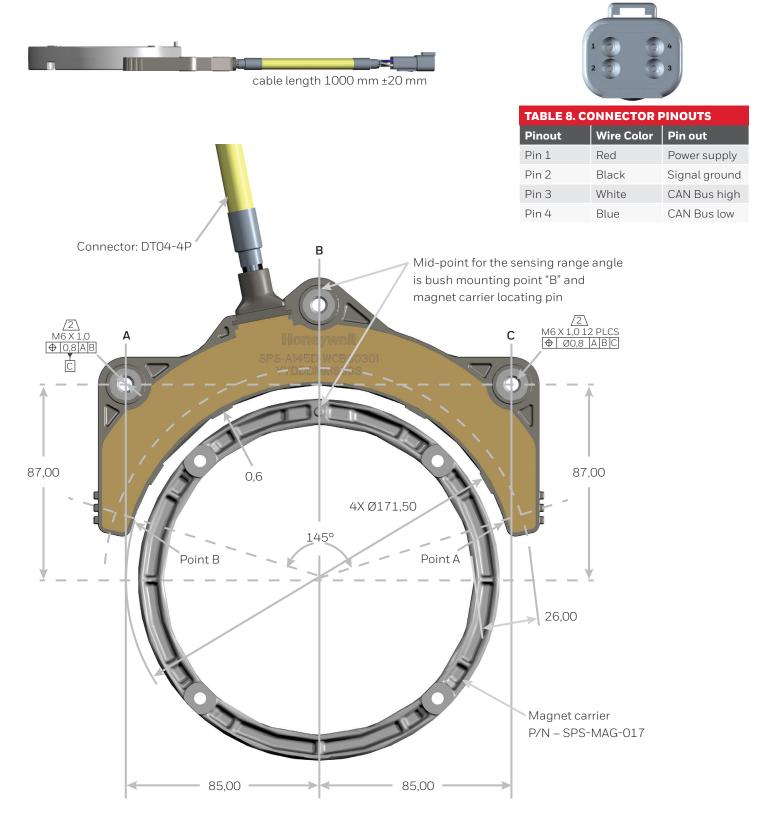
SPS-SMART Arc utilizes CAN 2.0B SAE J1939 protocol and message format to report data.

Please refer to the J1939 standard for information regarding communications and system implementation.

Security note

CAN Communication:

1. All communication which includes transmission and reception are sent decrypted.


CAN messages from SPS Sensor

Sensor are factory programmed to have a CAN address of **0xC4**.

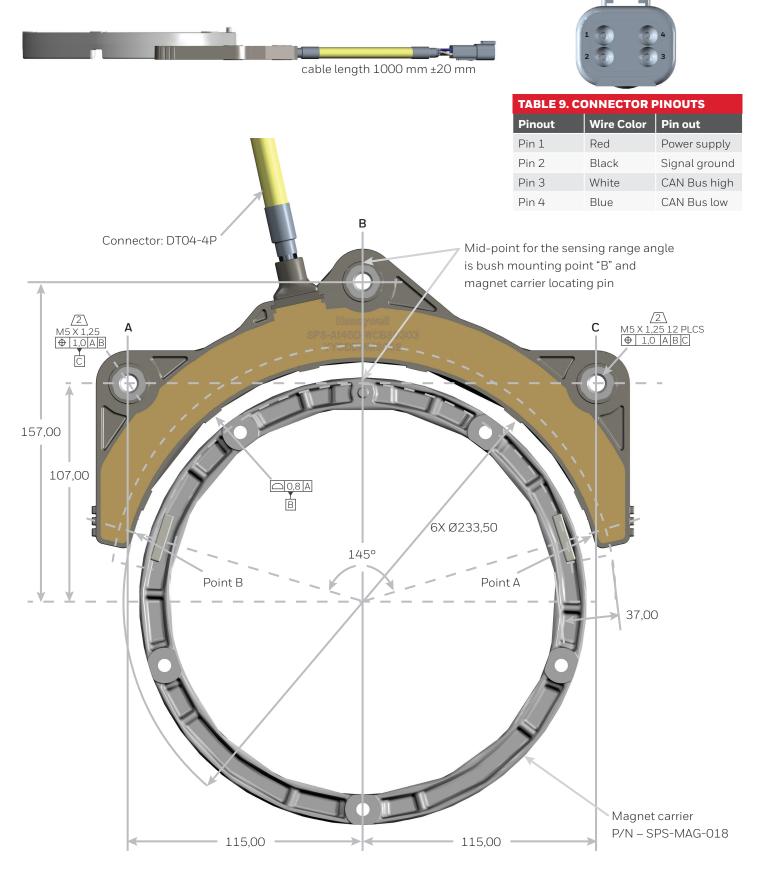
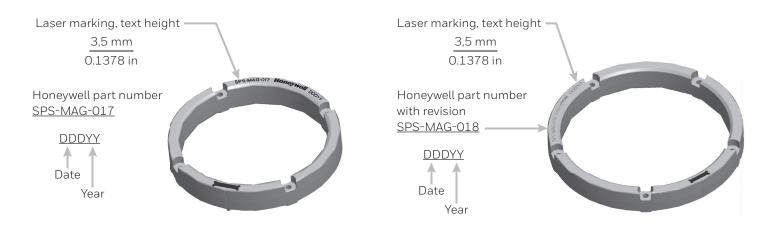

Sensor is locked before shipment. Hence, CAN address cannot be changed. For CAN address customization, contact your sales representative.

TABLE 7. CAN OUTPUT DIAGNOSTIC CHARACTERISTICS				
Error	Count	FOM	Error Code	
Magnet out of range	65535	0 × 03	0 x 80	
Other errors	Sensor posi- tion output	0 x 03	Non-zero value	

DIMENSIONAL DETAILS FOR SPS-A145D-WCBS0301 AND SPS-A145D-WCBS0302 (SENSOR-161)

DIMENSIONAL DETAILS FOR SPS-A145D-WCBS0303 (SENSOR-220)

SENSOR RING MAGNET CARRIERS


Honeywell offers two different sized Ring Magnet Carriers; they are specific for the two different sensor diameters.

Ring Magnet Carriers are not supplied with sensor, customer will need to procure the proper carrier for their chosen sensor.

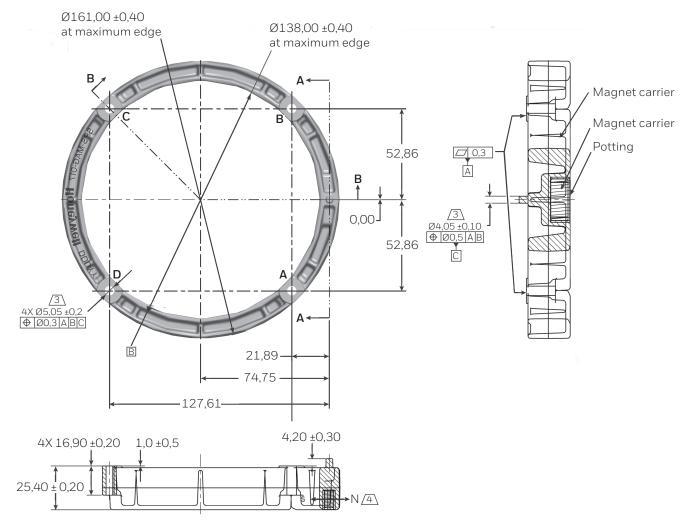
Ring Options

- 1. SPS-A145D-WCBS0301 (Sensor-161) and SPS-A145D-WCBS0302 (Sensor-161) will require **ring magnet carrier SPS-MAG-017.**
- 2. SPS-A145D-WCBS0303 (Sensor-220) will require **SPS-MAG-018.**

Rings are marked with the Honeywell part number. Before installation, the customer should ensure the proper ring magnet has been supplied.

Note: Non-ferrous hardware should be considered when installing the sensor and magnet to help minimize magnetic interaction.

MAGNET RING MOUNTING SPECIFICATIONS FOR SPS-MAG-017


TABLE 10. SPECIFICATIONS		
Characteristic	Parameter	
Magnet carrier	Aluminum A380 with silver, powder coated	
Magnet	Neodimium	
Potting	Ероху	
Magnet pin locating hole	Ø 4,2 mm [Ø 0.17 in]	
Mounting screws	M5 x 0,8 (length = 30) with washer (ID - 5.3)	
Recommended installation torque	4,5 Nm to 6 Nm	

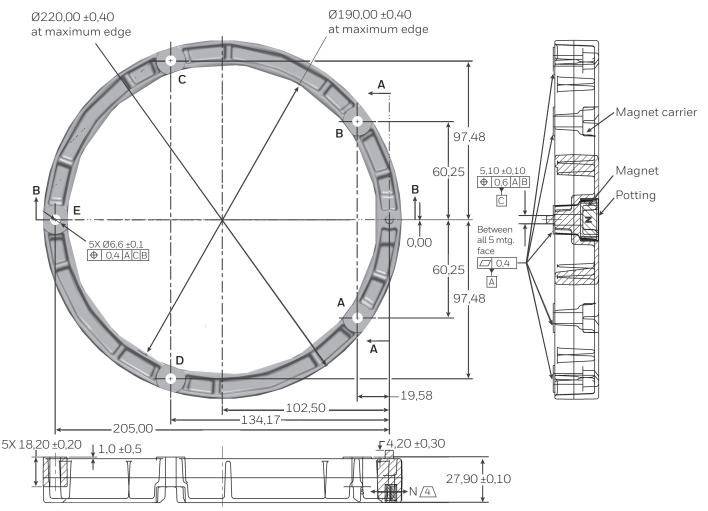
Magnet carrier mounting torque must be applied gradually as per the sequence below

Mounting locations	Torque
$A \Leftrightarrow C \Leftrightarrow B \Leftrightarrow D$	Hand torque
$A \Leftrightarrow C \Leftrightarrow B \Leftrightarrow D$	Full torque

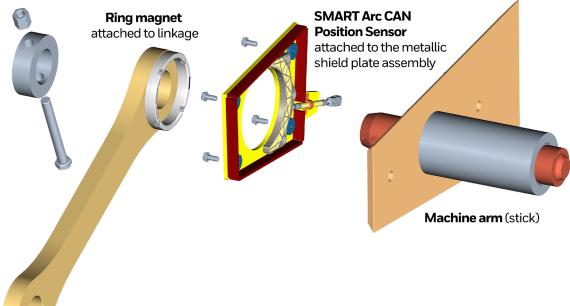
Note: Non-ferrous hardware should be considered when installing the sensor and magnet to help minimize magnetic interaction.

MAGNET CARRIER SPECIFICATIONS FOR SPS-MAG-017

MAGNET RING MOUNTING SPECIFICATIONS FOR SPS-MAG-018

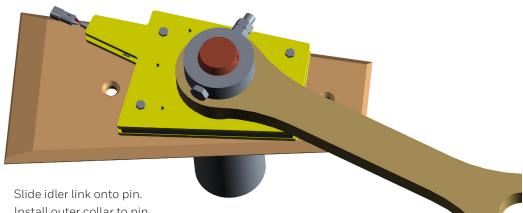

TABLE 11. SPECIFICATIONS		
Characteristic	Parameter	
Magnet carrier	Aluminum A380 with silver, powder coated	
Magnet	Neodimium	
Potting	Ероху	
Magnet pin locating hole	Ø 5,2 mm [Ø 0.20 in]	
Mounting screws	M6 x 1,0 (length = 35) with washer (ID - 6,4)	
Recommended installation torque	8 Nm to 10,5 Nm	

Magnet carrier mounting torque must be applied gradually as per the sequence below


Mounting locations	Torque
$A \Leftrightarrow E \Leftrightarrow B \Leftrightarrow D \Leftrightarrow C$	Hand torque
$A \Leftrightarrow E \Leftrightarrow B \Leftrightarrow D \Leftrightarrow C$	5 Nm
$A \Leftrightarrow E \Leftrightarrow B \Leftrightarrow D \Leftrightarrow C$	Full torque

Note: Non-ferrous hardware should be considered when installing the sensor and magnet to help minimize magnetic interaction.

MAGNET CARRIER SPECIFICATIONS FOR SPS-MAG-018



APPLICATION EXAMPLE AND OVERVIEW

Idler link rotates with bucket

SENSOR, RING AND IDLER INSTALLED ON STICK

Install outer collar to pin.

.

Fasten outer collar nut & bolt to lock idler link in place.