

Evaluation kit for education on motor control and control systems

Product summary		
Evaluation kit for education on motor control and control systems	STEVAL- EDUKIT01	
Firmware for STEVAL- EDUKIT01	STSW- EDUKIT01	
Stepper motor driver expansion board based on L6474 for STM32 Nucleo	X-NUCLEO- IHM01A1	
STM32 Nucleo-64 development board with STM32F401RE MCU	NUCLEO- F401RE	
Applications	Factory Automation Industrial Motor Control	

Features

- · Rotary inverted pendulum kit for education
- · Included stepper motor and quadrature rotary encoder
- Low cost and easy to assemble interlocking acrylic frame
- Included power supply (100-240 V): 12 V, 1 A
- Based on the NUCLEO-F401RE development board
- X-NUCLEO-IHM01A1 expansion board with L6474PD microstepping motor driver
- · Open source educational material available

Description

The STEVAL-EDUKIT01 is designed to represent a complex, non-linear and unstable oscillator for university-level robotics projects. It consists of a transparent structure holding a free-swinging pendulum, whose movement has to be stabilized by a stepper motor with feedback from a high performance rotary encoder reading the pendulum angle.

The STSW-EDUKIT01 firmware includes critical, high-speed algorithms that interpret encoder data and allow the stepper motor to counter the movement of the pendulum so that it remains vertical.

The educational set, with real-time Matlab viewer and interface, helps you build your understanding of ARM-based embedded architecture (STM32CubeIDE), stepper motor control and real-time systems based on proportional, integral, derivative (PID) control, as well as more advanced techniques such as State Space or State Space with linear quadratic regulator (LQR).

A further set of open source tutorials and training material is at your complete disposal at www.st.com/motorcontrol-edu.

Revision history

Table 1. Document revision history

Date	Version	Changes
04-Mar-2020	1	Initial release.

DB4136 - Rev 1 page 2/3