

STGIB8CH60TS-E

Datasheet

SLLIMM - 2nd series IPM, 3-phase inverter, 12 A, 600 V, short-circuit rugged IGBT

17 Marking area 111118 1 26 18 18 18 26 17

SDIP2B-26L type E

Product status link [STGIB8CH60TS-E](http://www.st.com/en/product/stgib8ch60ts-e)

Features

- IPM 12 A, 600 V, 3-phase IGBT inverter bridge including 2 control ICs for gate driving and freewheeling diodes
- 3.3 V, 5 V TTL/CMOS inputs with hysteresis
- Internal bootstrap diode
- Undervoltage lockout of gate drivers
- Smart shutdown function
- Short-circuit protection
- Shutdown input/fault output
- Separate open emitter outputs
- Built-in temperature sensor
- Comparator for fault protection
- Short-circuit rugged TFS IGBTs
- Very fast, soft recovery diodes
- 85 kΩ NTC, UL 1434, CA 4 recognized
- Fully isolated package
- Isolation rating of 1500 Vrms/min
- UL recognition: UL 1557, file E81734

Applications

- 3-phase inverters for motor drives
- Home appliances such as washing machines, refrigerators, air conditioners and sewing machines

Description

This second series of SLLIMM (small low-loss intelligent molded module) provides a compact, high-performance AC motor drive in a simple, rugged design. It combines new ST proprietary control ICs (one LS and one HS driver) with an improved shortcircuit rugged trench gate field-stop (TFS) IGBT, making it ideal for motor drives operating up to 20 kHz in hard-switching circuitries. SLLIMM is a trademark of STMicroelectronics.

1 Internal schematic and pin description

Figure 1. Internal schematic diagram and pin configuration

GIPG120520140842FSR

Table 1. Pin description

2 Absolute maximum ratings

 T_J = 25 °C unless otherwise noted.

Table 2. Inverter part

Table 3. Control part

Table 4. Total system

2.1 Thermal data

Table 5. Thermal data

3 Electrical characteristics

 T_J = 25 °C unless otherwise noted.

3.1 Inverter part

Table 6. Static

1. Applied among HINx, LINx and GND for x = U, V, W.

Table 7. Inductive load switching time and energy

1. ton and toff include the propagation delay times of the internal drive. tC(on) and tC(off) are the switching times of the IGBT itself under the internally given gate driving conditions.

2. Applied among HINx, LINx and GND for x = U, V, W.

ST

3.2 Control/protection parts

Table 8. High- and low-side drivers

1. Applied among HINx, LINx and GND for x = U, V, W

Table 9. Temperature sensor output

The comparator stays enabled even if V_{CC} is in the UVLO condition but higher than 4 V.

4 Fault management

The device integrates an open-drain output connected to the \overline{SD} pin. As soon as a fault occurs, the open-drain is activated and the LVGx outputs are forced low. Two types of fault can be identified:

- Overcurrent (OC) sensed by the internal comparator (see more detail in [Section 4.1 Smart shutdown](#page-11-0) [function\)](#page-11-0);
- Undervoltage on supply voltage (V_{CC})

Each fault enables the SD open drain for a different time, as described in the following table.

Table 11. Fault timing

1. Typical value (-40 °C ≤ T^J ≤ +125 °C)

2. Without contribution of the RC network on SD

Actually, the device remains in a fault condition $(\overline{SD}$ at low logic level and LVGx outputs disabled) for a time also depending on the RC network connected to the \overline{SD} pin. The network generates a time contribution that is added to the internal value.

Figure 4. Overcurrent timing (without contribution of the RC network on SD)

GIPG120520141638FSR

Figure 5. UVLO timing (without contribution of the RC network on SD)

4.1 Smart shutdown function

The device integrates a comparator committed to the fault sensing function. The comparator input can be connected to an external shunt resistor in order to implement a simple overcurrent detection function. The output signal of the comparator is fed to an integrated MOSFET with the open drain output available on the SD input. When the comparator triggers, the device is set in shutdown state and its outputs are all set to low level.

In common overcurrent protection designs, the comparator output is usually connected to the \overline{SD} input and an RC network is connected to this SD line in order to provide a mono-stable circuit which implements a protection time that follows the fault condition.

As opposed to common fault detection systems, the device smart shutdown architecture allows the immediate turn-off of output gates driver in case of fault, by minimizing the propagation delay between the fault detection event and the actual switching off of the outputs. In fact, the time delay between the fault and the turning off of the outputs is no longer dependent on the RC value of the external network connected to the pin.

In the smart shutdown circuitry, the fault signal has a preferential path which directly switches off the outputs after the comparator triggering.

At the same time, the internal logic turns on the open-drain output and holds it on until the \overline{SD} voltage goes below the V_{SSD} threshold and the t_{oc} time is elapsed.

The driver outputs restart following the input pins as soon as the voltage at the \overline{SD} pin reaches the higher threshold of the SD logic input.

The smart shutdown system provides the possibility to increase the time constant of the external RC network (i.e., the disable time after the fault event) up to very high values without increasing the delay time of the protection.

5 Temperature monitoring solutions

5.1 TSO output

The device integrates a temperature sensor. A voltage proportional to the die temperature is available on the TSO pin. When this function is not used, the pin can be left floating.

IGBT110820161234TSO 2.8 2.2 1.6 1.0 0.4 0 25 50 75 100 V_{TSO} (V) $\overline{\mathsf{T}}$ (°C) Min Max Typ

Figure 7. V_{TSO} output characteristics vs LVIC temperature

5.2 NTC thermistor

Table 12. NTC thermistor

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
R_{25}	Resistance	$T = 25 °C$		85		$k\Omega$
R_{125}	Resistance	$T = 125 °C$		2.6		$k\Omega$
B	B-constant	$T = 25$ to 100 °C		4092		K
	Operating temperature range		-40		125	$^{\circ}C$

6 Application circuit example

Figure 10. Application circuit example

Application designers are free to use a different scheme based on the device specifications.

6.1 Guidelines

- 1. Input signals HIN, LIN are active-high logic. A 100 kΩ (typ.) pull-down resistor is built-in for each input pin. To prevent input signal oscillations, the wiring of each input should be as short as possible and the use of RC filters (R_1, C_1) on each input signal is suggested. The filters should be with a time constant of about 100 ns and placed as close as possible to the IPM input pins.
- 2. The use of a bypass capacitor C_{VCC} (aluminum or tantalum) can reduce the transient circuit demand on the power supply. Besides, to reduce any high-frequency switching noise distributed on the power lines, a decoupling capacitor C_2 (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible to each V_{cc} pin and in parallel with the bypass capacitor.
- 3. The use of an RC filter (R_{SF} , C_{SF}) prevents protection circuit malfunctions. The time constant (R_{SF} x C_{SF}) should be set to 1 µs and the filter must be placed as close as possible to the CIN pin.
- 4. The SD is an input/output pin (open-drain type if it is used as output). It should be pulled up to a power supply (i.e., MCU bias at 3.3/5 V) by a resistor value, which can keep the I_{od} no higher than 5 mA (V_{OD} \leq 500 mV when open-drain MOSFET is ON). The filter on \overline{SD} should be sized to get a desired re-starting time after a fault event and placed as close as possible to the $\overline{\text{SD}}$ pin.
- 5. A decoupling capacitor C_{TSO} between 1 nF and 10 nF can be used to increase the noise immunity of the TSO thermal sensor; a similar decoupling capacitor C_{OT} (between 10 nF and 100 nF) can be implemented if the NTC thermistor is available and used. In both cases, their effectiveness is improved if these capacitors are placed close to the MCU.
- 6. The decoupling capacitor C_3 (100 to 220 nF with low ESR and low ESL) in parallel with each C_{hoot} filters high-frequency disturbances. Both C_{boot} and C₃ (if present) should be placed as close as possible to the U,V,W and V_{boot} pins. Bootstrap negative electrodes should be connected to the U,V,W terminals directly and separated from the main output wires.
- 7. To prevent overvoltage on the V_{CC} pin, a Zener diode (Dz1) can be used. Similarly on the V_{boot} pin, a Zener diode (Dz2) can be placed in parallel with each C_{boot} .
- 8. The use of the decoupling capacitor C_4 (100 to 220 nF, with low ESR and low ESL) in parallel with the electrolytic capacitor C_{Vdc} prevents surge destruction. Both capacitors C₄ and C_{Vdc} should be placed as close as possible to the IPM $(C_4$ has priority over C_{vdc}).
- 9. By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an optocoupler is possible.
- 10. Low inductance shunt resistors should be used for phase leg current sensing.
- 11. In order to avoid malfunctions, the wiring on N pins, the shunt resistor and PWR_GND should be as short as possible.
- 12. The connection of the SGN_GND to the PWR_GND at one point only (close to the shunt resistor terminal) can reduce the impact of power ground fluctuation.

These guidelines ensure the device specifications for application designs. For further details, please refer to the relevant application note.

Table 13. Recommended operating conditions

7 Electrical characteristics (curves)

Figure 12. V_{CE(sat)} vs collector current IGBT141220151055VCEC 3.2 2.8 2.4 2.0 1.6 1.2 0.8 $\frac{4}{4}$ 8 12 16 20 I_C (A) V_{CC} = 15 V $T_J = 175 °C$ $T_1 = 25 °C$ V_{CE(sat)}

Figure 14. Diode V_F vs forward current

Figure 15. Eon switching energy vs collector current IGBT110820161224SLC 1.2 0.9 0.6 0.3 0.0 0 4 8 12 16 20 E_{on}
(mJ) $\overrightarrow{I_{C}}(A)$ V_{DD} = 300 V V_{CC} = V_{boot} = 15 V $T_J = 175 °C$ $T_J = 25 °C$ **Figure 16. Eoff switching energy vs collector current** IGBT110820161231SLG 0.5 0.4 0.3 0.2 0.1 0.0 0 4 8 12 16 20 E_{off}
(mJ) $\overline{I_{C}}(A)$ V_{DD} = 300 V V_{CC} = V_{boot} = 15 V $T_J = 175 °C$ $T_J = 25^{\circ}$ C

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of [ECOPACK](https://www.st.com/ecopack) packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: [www.st.com.](http://www.st.com) ECOPACK is an ST trademark.

8.1 SDIP2B-26L type E package information

 $\sqrt{2}$

Figure 18. SDIP2B-26L type E package outline

8450802_5_type_E

Table 14. SDIP2B-26L type E package mechanical data

Revision history

Table 15. Document revision history

