

Datasheet

N-channel 650 V, 0.182 Ω typ., 20 A, MDmesh[™] DM2 Power MOSFET in a PowerFLAT[™] 8x8 HV package

PowerFLAT™ 8x8 HV

Product status link				
STL26N65DM2				
Product summary				
Order code STL26N65DM2				
Marking	26N65DM2			
Package PowerFLAT™ 8x8 HV				
Packing Tape and reel				

Features

Order code	V _{DS}	R _{DS(on)} max.	ا _D	P _{TOT}	
STL26N65DM2	650 V	0.206 Ω	20 A	140 W	
East-recovery body diode					

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high-voltage N-channel Power MOSFET is part of the MDmeshTM DM2 fastrecovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low $R_{DS(on)}$, rendering it suitable for the most demanding high-efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

1 Electrical ratings

Table	1.	Absolute	maximum	ratings
-------	----	----------	---------	---------

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
1-	Drain current (continuous) at T _{case} = 25 °C	20	٨
D	Drain current (continuous) at T _{case} = 100 °C	12.6	A
I _{DM} ⁽¹⁾	Drain current (pulsed)	53	А
P _{TOT}	Total dissipation at T _{case} = 25 °C	140	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	50	\//nc
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/115
T _{stg}	Storage temperature range	55 to 150	°C
T _j Operating junction temperature range		-55 10 150	U

1. Pulse width is limited by safe operating area.

2. $I_{SD} \leq$ 20 A, di/dt=900 A/µs, V_{DD} = 400 V, $V_{DS(peak)} < V_{(BR)DSS}$

3. $V_{DS} \le 520 V$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.89	°C/M
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	45	0/11

1. When mounted on an 1-inch² FR-4, 2oz Cu board

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	3	А
E _{AS} ⁽²⁾	Single pulse avalanche energy	530	mJ

1. Pulse width limited by T_{jmax}

2. Starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I _D = 1 mA	650			V
	Zero gate voltage drain current	V_{GS} = 0 V, V_{DS} = 650 V			1	μΑ
I _{DSS}		$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V},$ $T_{case} = 125 ^{\circ}\text{C}^{(1)}$			100	
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±25 V			±5	μA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 10 A		0.182	0.206	Ω

Table 4. Static

1. Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1480	-	
C _{oss}	Output capacitance	V_{DS} = 100 V, f = 1 MHz, V_{GS} = 0 V	-	62	-	pF
C _{rss}	Reverse transfer capacitance		-	2	-	
Coss eq. ⁽¹⁾	Equivalent output capacitance	V_{DS} = 0 to 520 V, V_{GS} = 0 V	-	140	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	4.6	-	Ω
Qg	Total gate charge	V _{DD} = 520 V, I _D = 20 A,	-	35.5	-	
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	8.2	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14. Gate charge test circuit)	-	17.6	-	

1. $C_{oss eq.}$ is defined as the constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 325 V, I _D = 10 A,	-	17	-	
t _r	Rise time	R_G = 4.7 Ω , V_{GS} = 10 V	-	7	-	
t _{d(off)}	Turn-off delay time	(see Figure 13. Switching times	-	51	-	ns
t _f	Fall time	Figure 18. Switching time waveform)	-	10	-	

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		20	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		53	А
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 20 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/µs,	-	100		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 100 V	-	0.365		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	7.3		A
t _{rr}	Reverse recovery time	I_{SD} = 20 A, di/dt = 100 A/µs,	-	200		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 100 V, T _j = 150 °C	-	1.39		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	13.9		A

Table 7. Source-drain diode

1. Pulse width is limited by safe operating area.

2. Pulse test: pulse duration = $300 \ \mu s$, duty cycle 1.5%.

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	I_{GS} = ±1 mA, I_D = 0 A	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

PowerFLAT8x8HVzth

Z _{th} =K*R _{thj-c} δ=t _p / *Τ*

ЛЛ

t_p(s)

10 -2

GIPG201220170957TCH

8

V_{GS} (V)

2.1 Electrical characteristics (curves)

Figure 6. Static drain-source on-resistance

6

Figure 2. Thermal impedance

δ =0.0

10 -³

Figure 4. Transfer characteristics

δ =0.02

`δ =0.01

Single pulse

10 -4

V_{DS} = 20 V

5

4

δ =0.5

δ =0.2 δ =0.1

10 -

10 -2 10 -5

Ι_D (A)

50

40

30

20

10

ا0 3

10 ⁰

10 -1

10⁰

Figure 9. Normalized on-resistance vs temperature GIPG201220170954RON R_{DS(on)} (norm.) V_{GS} = 10 V 2.2 1.8 1.4 1.0 0.6 0.2 25 75 125 -25 T_j (°C)

10¹

10²

C_{RSS}

Ū_{DS} (V)

Figure 10. Normalized V(BR)DSS vs temperature

75

125

T_i (°C)

25

-25

Figure 12. Source-drain diode forward characteristics

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

4.1 PowerFLAT[™] 8x8 HV package information

Figure 19. PowerFLAT™ 8x8 HV package outline

TOP VIEW

8222871_Rev_4

Pof	Dimensions (in mm)				
Kel.	Min.	Тур.	Max.		
А	0.75	0.85	0.95		
A1	0.00		0.05		
A3	0.10	0.20			
b	0.90	1.00	1.10		
D	7.90	8.00	8.10		
E	7.90	8.00	8.10		
D2	7.10	7.20	7.30		
E1	2.65	2.75	2.85		
E2	4.25	4.35	4.45		
е		2.00 BSC			
L	0.40	0.50	0.60		

Table 9. PowerFLAT™ 8x8 HV mechanical data

Figure 20. PowerFLAT™ 8x8 HV footprint

8222871_REV_4_footprint

Note: All dimensions are in millimeters.

F (7.50±0.1)

8229819_Tape_revA

W (16.00±0.3)

PowerFLAT[™] 8x8 HV packing information 4.2

Figure 21. PowerFLAT™ 8x8 HV tape

P0 (4.0±0.1)

 \oplus \oplus \oplus Φ \oplus

A0 (8.30±0.1)

P2 (2.0±0.1)

Note: Base and Bulk quantity 3000 pcs

Figure 22. PowerFLAT™ 8x8 HV package orientation in carrier tape

DETAIL 'A'

All dimensions are in millimeters.

Note:

Figure 23. PowerFLAT™ 8x8 HV reel

8229819_Reel_revA

Note: All dimensions are in millimeters.

Revision history

Table 10. Document revision history

Date	Version	Changes
03-Jul-2018	1	Initial release.

Contents

1	Elect	rical ratings	2	
2	Electrical characteristics			
	2.1	Electrical characteristics (curves)	5	
3	Test	circuits	7	
4	Package information			
	4.1	PowerFLAT [™] 8x8 HV package information	8	
	4.2	PowerFLAT™ 8x8 HV packing information	. 11	
Rev	ision ł	nistory	.13	