Transient Voltage Suppressors

Low Clamping Voltage Surge Protection Diode Array

The TVS4201MR6 transient voltage suppressor is designed to protect high speed data lines from ESD, EFT, and lightning surges.

Features

- Protection for the Following IEC Standards: IEC 61000-4-2 (ESD) ±30 kV (Contact) IEC 61000-4-5 (Lightning) 25 A (8/20 μs)
- Low Clamping Voltage
- Low Leakage
- UL Flammability Rating of 94 V-0
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- High Speed Communication Line Protection
- USB 1.1 and 2.0 Power and Data Line Protection
- Digital Video Interface (DVI)
- Monitors and Flat Panel Displays

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Power Dissipation 8/20 μ s @ T _A = 25°C (Note 1)	P _{pk}	500	W
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Lead Solder Temperature – Maximum (10 Seconds)	ΤL	260	°C
IEC 61000–4–2 Air (ESD) IEC 61000–4–2 Contact (ESD)	ESD	±30 ±30	kV
IEC 61000-4-4 (5/50 ns)	EFT	40	А

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Non-repetitive current pulse per Figure 1 (Pin 5 to Pin 2)

See Application Note AND8308/D for further description of survivability specs.

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

42 = Specific Device Code M = Date Code

= Pb–Free Package

(Note: Microdot may be in either location) *Date Code orientation may vary

depending upon manufacturing location.

PIN CONFIGURATION AND SCHEMATIC

ORDERING INFORMATION

Device	Package	Shipping
TVS4201MR6T1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel
SZTVS4201MR6T1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise noted)

	,
Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
١ _F	Forward Current
V _F	Forward Voltage @ I _F
P _{pk}	Peak Power Dissipation
С	Capacitance @ $V_R = 0$ and f = 1.0 MHz

*See Application Note AND8308/D for detailed explanations of datasheet parameters.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	(Note 2)			5.0	V
Breakdown Voltage	V_{BR}	I _T =1 mA, (Note 3)	6.0			V
Reverse Leakage Current	I _R	V _{RWM} = 5 V			1.0	μΑ
Clamping Voltage (t _p = 8/20 µs per Figure 1)	Vc	I _{PP} = 1 A, Any I/O to GND			8.5	V
		I _{PP} = 5 A, Any I/O to GND			9.0	
		I _{PP} = 8 A, Any I/O to GND			10	
		I _{PP} = 25 A, Any I/O to GND			12	
Junction Capacitance	CJ	$V_R = 0 V$, f=1 MHz between I/O Pins and GND		3.0	5.0	pF
Junction Capacitance	CJ	$V_R = 0 V$, f=1 MHz between I/O Pins		1.5	3.0	pF

ELECTRICAL CHARACTERISTICS (TJ=25°C unless otherwise specified)

2. TVS devices are normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal or greater than the DC or continuous peak operating voltage level.

3. V_{BR} is measured at pulse test current I_T.

Figure 3. IEC61000–4–2 +8 kV Contact Clamping Voltage

Level	Test Volt- age (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

Figure 6. Diagram of ESD Test Setup

The following is taken from Application Note AND8308/D – Interpretation of Datasheet Parameters for ESD Devices.

ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000–4–2 waveform. Since the IEC61000–4–2 was written as a pass/fail spec for larger

systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D.

TYPICAL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Figure 8. Junction Capacitance vs Reverse Voltage

Figure 9. RF Insertion Loss

Figure 10. Protection for Ethernet 10/100 (Differential mode)

Figure 11. TI/E1 Interface Protection