

Item no.: T60404-N4646-X400

K-No.: 24578

25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 17.08.2015

Customer: Standard type Customers Part no.:

Page 1 of 5

Description

- Closed loop (compensation) Current Sensor with magnetic field probe
- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- Excellent accuracy
- Very low offset current
- Very low temperature dependency and offset current drift
- Very low hysteresis of offset current
- Low response time
- Wide frequency bandwidth
- Compact design
- Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptable Power Supplies (UPS)

Electrical	data -	Ratings
------------	--------	---------

I_{PN}	Primary nominal r.m.s. current	25	Α
R_{M}	Measuring resistance V _C =± 12V	10 200	Ω
	$V_C=\pm 15V$	22 400	Ω
I _{SN}	Secondary nominal r.m.s. current	25	mA
K _N	Turns ratio	13 : 1000	

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range				
	@ $V_C = \pm 12V$, $R_M = 10 \Omega$ ($t_{max} = 10 sec$)	±120			Α
	@ $V_C = \pm 15V$, $R_M = 22 \Omega$ ($t_{max} = 10 sec$)	±130			Α
X	Accuracy @ I_{PN} , $\theta_A = 25^{\circ}C$		0.1	0.5	%
ϵ_{L}	Linearity			0.1	%
I_0	Offset current @ $I_P=0A$, $\theta_A=25^{\circ}C$		0.02	0.1	mA
t _r	Response time		500		ns
t_{ra}	Reaction time at di/dt = 100 A/ μ s		200		ns
f _{BW}	Frequency bandwidth	DC200)		kHz

General data

		mın.	typ.	max.	Unit
$artheta_{A}$	Ambient operating temperature	-40		+85	°C
$artheta_{ extsf{S}}$	Ambient storage temperature	-40		+90	°C
m	Mass		12		g
Vc	Supply voltage	±11.4	±12 or ±15	±15.75	V
I_{C}	Current consumption		18,5		mA
*S _{clear}	clearance (component without solder pad)	10.2			mm
*S _{creep}	creepage (component without solder pad)	10.2			mm
*U _{sys}	System voltage			600	V_{RMS}
*U _{AC}	Working voltage			1020	V_{RMS}
*U _{PD}	Rated discharge voltage			1400	Vs
	Max. potential difference acc. to UL 508			600	V_{AC}

*Constructed and manufactored and tested in accordance with EN 61800-5-1:2007 (Pin 1 - 6 to Pin 7 - 9) Reinforced insulation, Insulation material group 1, Pollution degree 2, overvoltage category 3

Date	Name	Isuue	Amendment		<u> </u>		_	
17.08.15	DJ	82	Marking of ite	arking of item-no, value of primary resistance in page 2 (possibilities of wiring).changed. CN-15-420				
17.04.13	KRe.	82	Mechanical outline: marking with UL-sign. and max. potential difference added. CN-658					
Hrg KB-E	Ē		arb: DJ		KB-PM: Sn.			freig.: Berton released

KB-PM: Sn. check

Item no.:

T60404-N4646-X400

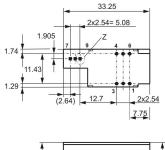
K-No.: 24578

25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 17.08.2015

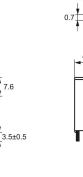
Customer: Standard type Customers Part no.:

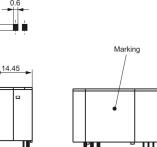

Tolerances of grid distance ±0,2mm

Page 2 5 of

Mechanical outline (mm):

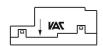
General tolerances DIN ISO 2768-c


Detail 7



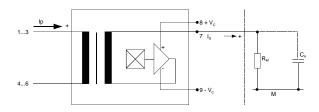
0.65

3x0.7x0.6


Connections: 1...6: Ø 1.0 mm 7...9: 0.6x0.7 mm

Marking:

Explanation:


DC = Date Code = Factory

6xØ1.0

Current direction: A positive output current appears at point I_s, by primary current in direction of the arrow.

Schematic diagram

Possibilities of wiring for V_C = ±15V (@ θ_A = 85°C, R_M = 22 Ω)

primary windings N _P	primary co RMS ma I _P [A] Î _{P,r}		output current RMS I _S (I _P) [mA]	turns ratio	primary resistance R _P [mΩ]	wiring
1	25	130	25	1:1000	0.3	1 3 6 4
2	10	65	20	2:1000	1.35	1 3 6 4 4 A
3	8	43	24	3:1000	2.4	1 3 6 4>

Hrg KB-E	Bearb: DJ	KB-PM: Sn.		freig.: Berton
editor	designer	check		released

Item no.:

T60404-N4646-X400

K-No.: 24578

25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 17.08.2015

Customer: Standard type

Customers Part no.:

Page 3 of 5

10g

Electrical Data	(investigate by a type checking)			
	<mark>min.</mark>	typ.	max.	Unit
V_{Ctot}	Maximum supply voltage (without function) ±15.75 ±18 V: for 1s per hour		±18	V
Rs	Secondary coil resistance @ θ _A =85°C		88	Ω
R_p	Primary coil resistance per turn @ T _A =25°C		1	$m\Omega$
X_{Ti}	Temperature drift of X @ $\vartheta_A = -40 \dots +85 ^{\circ}\text{C}$		0.1	%
I _{0ges}	Offset current (including I ₀ , I _{0t} , I _{0T})		0.15	mA
l _{Ot}	Long term drift Offset current I ₀	0.05		mA
I _{OT}	Offset current temperature drift $I_0 \otimes \vartheta_A = -40 \dots +85^{\circ}C$	0.05		mA
I _{oH}	Hyteresis current @ I _P =0 (caused by primary current 3 x I _{PN})	0.04	0.1	mA
$\Delta I_0/\Delta V_C$	Supply voltage rejection ratio		0.01	mA/V
i _{oss}	Offset ripple (with1 MHz- filter first order)		0,15	mA
i _{oss}	Offset ripple (with 100 kHz- filter first order)	0.03	0.05	mA
i _{oss}	Offset ripple (with 20 kHz- filter first order)	0.007	0.015	mA
C _k	Maximum possible coupling capacity (primary – secondary)	4		pF

Inspection	(Measurement after temperature balance of the samples at room temperature)	
mspection	inteasurement after temperature palance of the samples at room temperature)	

Mechanical Stress according to M3209/3

Settings: 10 – 2000 Hz, 1 min/Oktave, 2 hours

$K_N(N_1/N_2)$	(V)	M3011/6	Transformation ratio (I _P =3*10A, 40-80 Hz)	13 : 100	00 ± 0.5 %
I ₀	(V)	M3226	Offset current	< 0.1	mA
$V_{P,eff}$	(V)	M3014	Test voltage, rms, 1s Pin 1 - 6 to Pin 7 - 9	2.5	kV
V _e (AQI	_ 1/S4)		Partial discharge voltage acc. M3024 (RMS)	1300	V
			with V _{vor} (RMS)	1625	V

Type Testing (Pin 1 - 6 to Pin 7 – 9)

Designed according standard EN 61800-5-1:2007 with insulation material group 1

V_{W}	HV transient test according (to M3064) (1.2 μs / 50 μs-wave form)		8	kV
V_d	Testing voltage acc. M3014 (RMS)	(5 s)	5	kV
V _e	Partial discharge voltage acc. M3024 (RMS)		1500	V
	with V _{vor} (RMS)		1875	V

Hrg KB-E	Bearb: DJ	KB-PM: Sn.		freig.: Berton
editor	designer	check		released

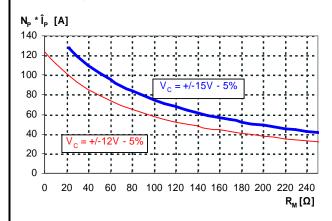
Item no.:

T60404-N4646-X400

K-No.: 24578

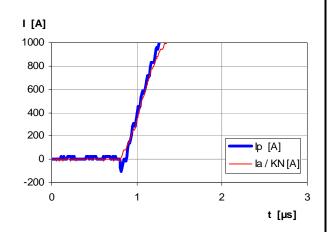
25 A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)


Date: 17.08.2015

Customer: Standard type Customers Part no.:

Page 4 of 5


Limit curve of measurable current ÎP(RM)

@ ambient temperature $T_A \le 85$ °C

Maximum measuring range (µs-range)

Output current behaviour of a 3kA current pulse @ $V_C = \pm 15V$ und $R_M = 25\Omega$

Fast increasing currents (higher than the specified $I_{p,max}$), e.g. in case of a short circuit, can be transmitted because the currents are transformed directly.

The offset ripple can be reduced by an external low pass. Simplest solution is a passive low pass filter of 1st order with

$$f_g = \frac{1}{2\pi \cdot R_M \cdot C_a}$$

In this case is the response time enlarged.

It is calculated from:

$$t_r' \le t_r + 2.5 R_M \cdot C_a$$

Applicable documents

Constructed and manufactored and tested in accordance with EN 61800.

Temperature of the primary conductor should not exceed 100°C. Further standards UL 508; file E317483, category NMTR2 / NMTR8

Hrg KB-E	Bearb: DJ	KB-PM: Sn.		freig.: Berton
editor	designer	check		released