

Applications

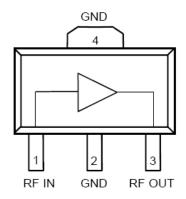
- Distribution Amplifiers
- Multi Dwelling Units
- Drop Amplifiers
- Single Ended Gain Blocks

SOT-89 Package

Product Features

50-1200 MHz Bandwidth
High Gain: 18.5 dB
+38 dBm typical OIP3

2.5 dB typical NF


• Low Distortion : CSO -70dBc, CTB -88dBc tested at 10dBmV/ch at input, 80 ch NTSC

pHEMT Device Technology

SOT-89 Package

Single +8V Supply

Functional Block Diagram

General Description

The TAT7427B is a high gain 75 Ω RF Amplifier designed for CATV applications from 50 to 1000 MHz (with operation up to 1.25GHz). The balance of low noise and distortion provides an ideal solution for drop and distribution amplifiers. It is particularly well suited for new home networks requiring higher gain for a large number of splits.

The TAT7427B is fabricated using 6-inch GaAs pHEMT technology to optimize performance and cost. It provides excellent gain and return loss consistency inherent to the pHEMT process.

Pin Configuration

Pin #	Symbol
1	RF_ Input
2, 4	Ground
3	RF_Output / V _{dd}

Ordering Information

Part No.	Description
TAT7427B-T1	High Gain 75 Ω RF Amplifier (Lead free / RoHS compliant SOT-89 Pkg)
TAT7427B-T1-EB	Drop Amplifier Evaluation Board

Standard T/R size = 1000 pieces on a 7" reel.

Data Sheet: Rev A 05-15-11 -1 of 7 - Disclaimer: Subject to change without notice © 2011 TriQuint Semiconductor, Inc. Connecting the Digital World to the Global Network®

Specifications

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-55 to 150 °C

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
$V_{ m dd}$		8		V
Operating Case Temperature	-20		85	°C
T_i (For >10 ⁶ MTTF)			150	°C

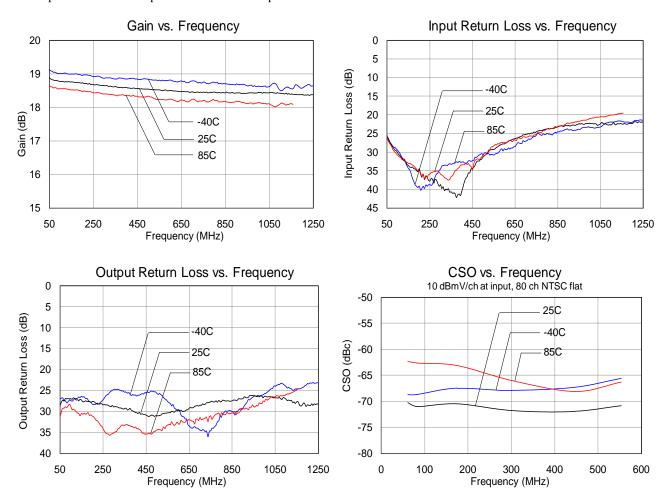
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

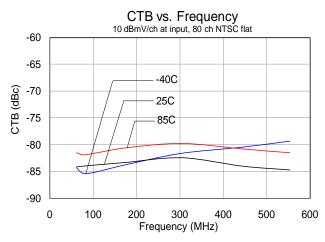
Electrical Specifications

Test conditions: Case Temperature 25°C

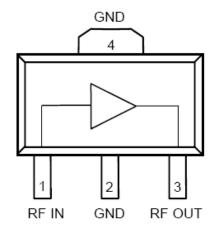
Parameter	Conditions	Min	Typical	Max	Units
Operational Frequency Range		50		1002	MHz
Gain			18.5		dB
Gain Flatness			±0.3		dB
Noise Figure			2.5		dB
Input Return Loss			23		dB
Output Return Loss			20		dB
CSO	10 dBmV/ch at input, 80 ch NTSC flat		-70		dBc
СТВ	10 dBmV/ch at input, 80 ch NTSC flat		-88		dBc
Output IP2	See Note 1.		61		dBm
Output IP3	See Note 1.		38		dBm
Supply Voltage, Vcc			+8		V
Device Voltage			+6		V
Supply Current, Idd	See Note 2.		145	175	mA
Thermal Resistance (θ _{jc)}			36		°C/W

Notes:

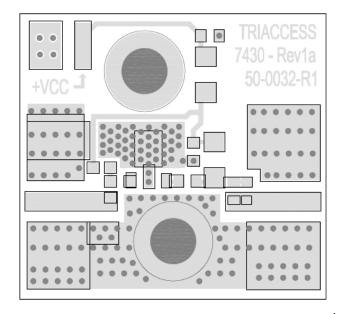

- 1. OIP3 and OIP2 tested with two tones at 225 MHz and 325 MHz. Measured at 10 dBm/tone output power.
- 2. Voltage at the device is 6V.


- 2 of 7 - Disclaimer: Subject to change without notice

Typical Performance Data


Note: Temperature indicated in plots below is Case Temperature.

Pin Description

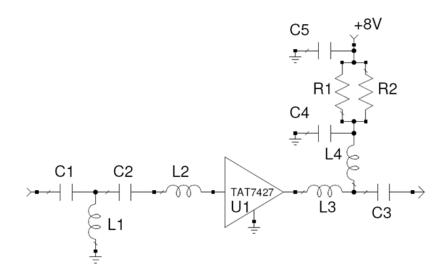

Pin	Symbol	Description
1	RF_IN	RF Input, DC voltage present, blocking capacitor required
2	GND	Ground
3	RF_OUT	RF Output, DC voltage present, blocking capacitor required
Backside Paddle	GND	Multiple vias should be employed to minimize inductance and thermal resistance

Applications Information

PC Board Layout

Core is 0.062", FR4, $\epsilon_r = 4.7$. Metal layers are 1-oz copper.

The pad pattern shown has been developed and tested for optimized assembly at TriQuint Semiconductor. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.


Data Sheet: Rev A 05-15-11 © 2011 TriQuint Semiconductor, Inc.

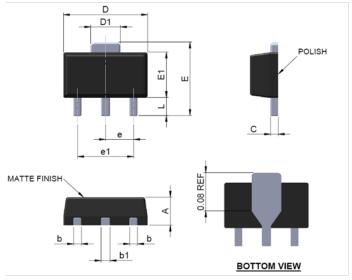
4 of 7 - Disclaimer: Subject to change without notice
 Connecting the Digital World to the Global Network[®]

Applications Information

PC Board Schematic

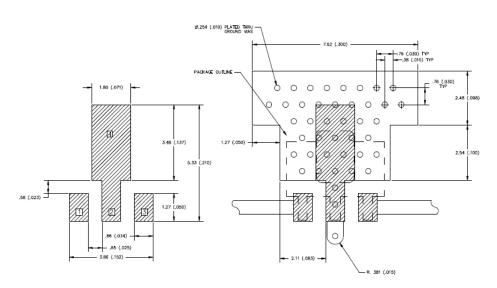
Bill of Material

Reference Desg.	Value	Description	Manufacturer	Part Number
U1		RF Amplifier, 75 ohm, 50-1000MHz	TriQuint	TAT7427B
C1, C4, C5	0.01 uF	Cap, Chip, 0603, 10%, 50V, X7R	various	
C2	680 pF	Cap, Chip, 0402, 50V, 5%, COG	various	
C3	120 pF	Cap, Chip, 0402, 50V, 5%, COG	various	
L1	880 nH	Coil, Wire Wound, 1206, ±10%	various	
L2	3.9 nH	Inductor, Chip, 0603, 5%	various	
L3	5.6 nH	Inductor, Chip, 0603, 5%	various	
L4	500 nH	Coil, Wire Wound, 1206, ±10%	various	
R1, R2	16 Ω	Resistor, Chip, 1206, ±5%, 1/4W	various	


Mechanical Information

Package Information and Dimensions

This package is lead-free, RoHS-compliant, and green. The plating material on the pins is 100% matte tin. It is compatible with both lead-free (maximum 260 °C reflow temperature) and leaded (maximum 245 °C reflow temperature) soldering processes.


The TAT7427B will be marked with a "TAT7427B" designator and an 8 digit alphanumeric lot code (XXXXYYWW). The first 4 digits (XXXX) are the lot code. The last 4 digits (YYWW) are the date code consisting of the year and work week of assembly.

SYMBOL	MIN	NOM	MAX
A - Thickness	1.40	1.50	1.60
C - Lead thickness	0.35		0.43
D - Body width	4.40		4.60
E1 - Body length	2.30		2.60
E - Total length	3.64		4.25
e - Lead spacing	1.40	1.50	1.60
e1 - Dual lead spacing	2.90	3.00	3.10
b - Outer lead width	0.35		0.48
b1 - Center lead width	0.40		0.56
L - Lead length	0.74		1.20
d1 - Tab lead width	1.40		1.80
Above body	0.35		0.64

Mounting Configuration

All dimensions are in millimeters (inches). Angles are in degrees.

Notes:

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.

- 6 of 7 - Disclaimer: Subject to change without notice

© 2011 TriQuint Semiconductor, Inc.

Data Sheet: Rev A 05-15-11