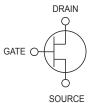
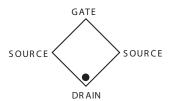
Ultra Low Noise, Medium Current E-PHEMT

0.45-6GHz

Product Features

- Low Noise Figure, 0.5 dB
- Gain, 17 dB at 2 GHz
- High Output IP3, +31 dBm
- Output Power at 1dB comp., +19 dBm
- Low Current, 30mA
- Wide bandwidth
- External biasing and matching required


Typical Applications


- Cellular
- ISM
- GSM
- WCDMA
- WiMax
- WLAN
- UNII and HIPERLAN

General Description

TAV-581+ is an ultra-low noise, high IP3 transistor device, manufactured using E-PHEMT* technology enabling it to work with a single positive supply voltage. It has outstanding Noise Figure, particularly below 2.5 GHz, and when combining this noise figure with high IP3 performance in a single device it makes it an ideal amplifier for demanding base station applications. We offer these units assembled into a complete module, 50 Ω in/out, noise matched and fully specified. For more information please see our TAMP family of models on our web site.

simplified schematic and pin description

Function	Pad Number	Description
Source	2 & 4	Source terminal, normally connected to ground
Gate	3	Gate used for RF input
Drain	1	Drain used for RF output

* Enhancement mode Pseudomorphic High Electron Mobility Transistor

Notes

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/WCLStore/terms.jsp

Generic photo used for illustration purposes only

TAV-581+

CASE STYLE: FG873

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Symbol	Parameter	Condition		Min.	Тур.	Max.	Units
		DC Specificat	ions	1			
V _{GS}	Operational Gate Voltage	V _{DS} =3V, I _{DS} =30 mA		0.28	0.39	0.5	V
V _{TH}	Threshold Voltage	V _{DS} =3V, I _{DS} =4 mA		0.18	0.26	0.38	V
I _{DSS}	Saturated Drain Current	V _{DS} =3V, V _{GS} =0 V			1.0	5.0	μA
G _M	Transconductance		 230 	 327 	 560 	mS	
I _{GSS}	Gate leakage Current	V _{GD} =V _{GS} =-3V				200	μA
000		RF Specifications, Z ₀ =50	Ohms (Figure 1)	1			
NF ⁽¹⁾	Noise Figure	V _{DS} =3V, I _{DS} =30 mA	f=0.9 GHz f=2.0 GHz f=3.9 GHz f=5.8 GHz		0.4 0.5 0.9 1.5	 0.9 	dB
		$V_{\rm DS}$ =4V, $I_{\rm DS}$ =30 mA	f=0.9 GHz f=2.0 GHz	_	0.4 0.5	_	
Gain	Gain	V _{DS} =3V, I _{DS} =30 mA	f=0.9 GHz f=2.0 GHz f=3.9 GHz f=5.8 GHz	— 15.0 — —	22.9 17.3 12.1 8.8		dB
		$V_{\rm DS}$ =4V, $I_{\rm DS}$ =30 mA	f=0.9 GHz f=2.0 GHz		22.7 17.2		
OIP3	Output IP3	V _{DS} =3V, I _{DS} =30 mA	f=0.9 GHz f=2.0 GHz f=3.9 GHz f=5.8 GHz		28.3 30.3 33.0 34.7		dBm
		V_{DS} =4V, I_{DS} =30 mA	f=0.9 GHz f=2.0 GHz		28.1 30.0		
P1dB ⁽²⁾	Power output at 1 dB Compression	V _{DS} =3V, I _{DS} =30 mA	f=0.9 GHz f=2.0 GHz f=3.9 GHz f=5.8 GHz		17.8 18.3 18.8 19.1		dBm
		$V_{_{DS}}$ =4V, $I_{_{DS}}$ =30 mA	f=0.9 GHz f=2.0 GHz		19.4 20.2		

Electrical Specifications at T_{AMB}=25°C, Frequency 0.45 to 6 GHz

Absolute Maximum Ratings⁽³⁾

Symbol	Parameter	Max.	Units
V _{DS} ⁽⁴⁾	Drain-Source Voltage	5	V
V _{GS} ⁽⁴⁾	Gate-Source Voltage	-5 to 0.7	V
V _{GD} ⁽⁴⁾	Gate-Drain Voltage	-5 to 0.7	V
I _{DS} ⁽⁴⁾	Drain Current	100	mA
I _{GS}	Gate Current	2	mA
P _{DISS}	Total Dissipated Power	550	mW
P _{IN} ⁽⁵⁾	RF Input Power	17	dBm
Тсн	Channel Temperature	150	С°
Top	Operating Temperature	-40 to 85	C°
TSTD	Storage Temperature	-65 to 150	°C
OJC	Thermal Resistance	112	°C/W

Notes:

(1) Includes testboard loss (measured in Mini-Circuits test board TB-154)
(2) During Compression, IDS increases to 48mA typ.
(3) Operation of this device above any one of these parameters may cause permanent damage.

(4) Assumes DC quiescent conditions.

(5) I_{GS} is limited to 2 mA during test.

Notes

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collective), "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

Mini-Circuits

Characterization Test Circuit

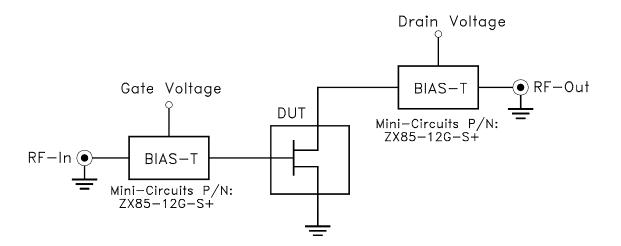


Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Test Board TB-154) Gain, Output power at 1dB compression (P1 dB) and output IP3 (OIP3) are measured using R&S Network Analyzer ZVA-24. Noise Figure measured using Agilent's Noise Figure meter N8975A and noise source N4000A.

Conditions:

- 1. Drain voltage (with reference to source, V_{DS})= 3 or 4V as shown.
- 2. Gate Voltage (with reference to source, V_{GS}) is set to obtain desired Drain-Source current (IDS) as shown in graphs or specification table. 3. Gain: Pin= -25dBm
- 4. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.
- 5. No external matching components used.

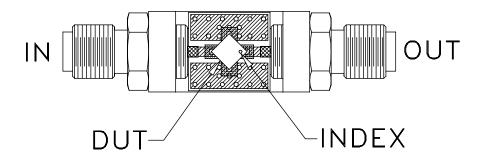
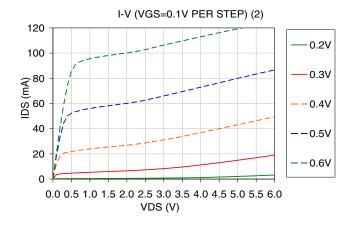


Fig 2. Test Board used for characterization, Mini-Circuits P/N TB-154 (Material: Rogers 4350, Thickness: 0.02")

Notes


A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collective), "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp



E-PHEMT

Typical Performance Curves

NOISE FIGURE vs IDS @ 0.9 GHz (1)

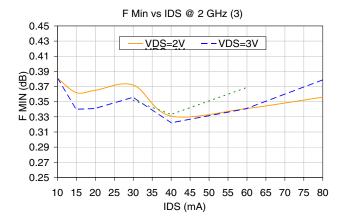
IDS (mA)

VDS=3V

--VDS=4V

40 45 50 55 60 65 70 75 80

0.8

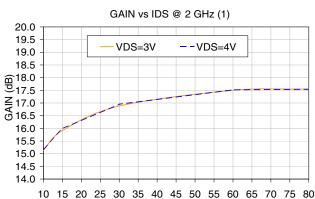

0.7 0.6 0.5 0.5 0.4 0.3

0.2

0.1

10 15 20 25 30 35

F Min vs IDS @ 0.9 GHz (3) 0.20 0.19 0.18 0.17 (10.17 (10.17) (10.16) (10.15) (10.14) (10.14) (10.17) (10.17) (10.17) (10.17) (10.17) (10.17) (10.17) (10.16 0.13 0.12 VDS=2V - VDS=3V ··· VDS=4V 0.11 0.10 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 IDS (mA)

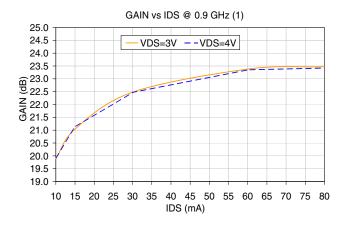

(1) Includes test board loss, set-up and conditions per Figure 1.

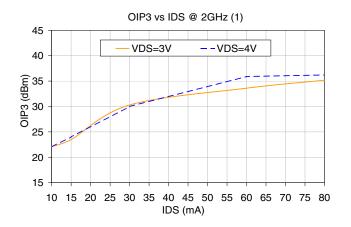
(2) Measured using HP4155B semiconductor parameter analyzer.

(4) Drain current was allowed to increase during compression measurement.

Notes

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collective), "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp




IDS (mA)

Mini-Circuits

⁽³⁾ F Min is minimum Noise Figure.

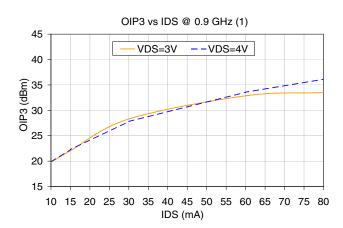
P1dB vs IDS @ 2 GHz (1,4)

IDS (mA)

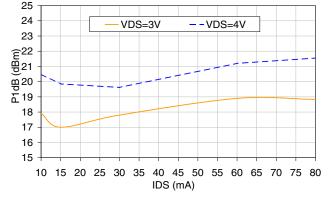
NF vs FREQUENCY & TEMPERATURE (1) @ VDS=3V, IDS=30mA

+25°C

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0


FREQUENCY (GHz)

--VDS=4V


40 45 50 55 60 65 70 75 80

--- +85°C

VDS=3V

P1dB vs IDS @ 0.9 GHz (1,4)

(1) Includes test board loss, set-up and conditions per Figure 1.

(2) Measured using HP4155B semiconductor parameter analyzer.

(3) F Min is minimum Noise Figure.

(4) Drain current was allowed to increase during compression measurement.

Notes

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collective), "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

∏Mini-Circuits

25

24

23 ළි²² සුවි21

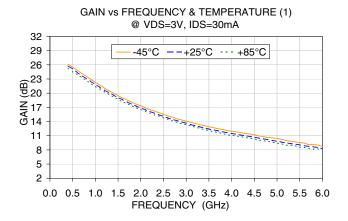
) 19 19

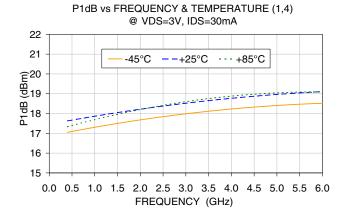
18 17

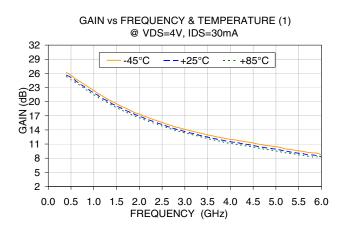
16 15

3.0

2.5 (qgm) 2.0 2.0 1.5 1.0 4 2.

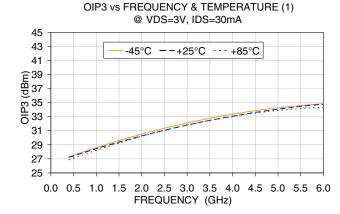

0.5


0.0

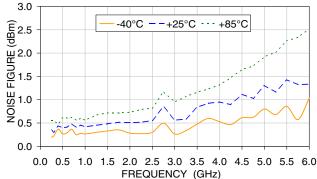

10 15 20 25 30 35

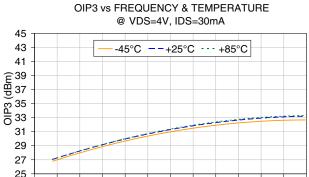
-40°C

(1) Includes test board loss, set-up and conditions per Figure 1.


(2) Measured using HP4155B semiconductor parameter analyzer.

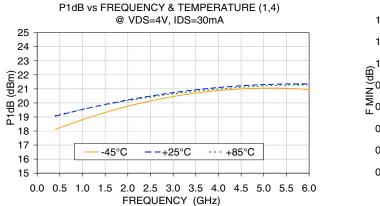
(3) F Min is minimum Noise Figure.

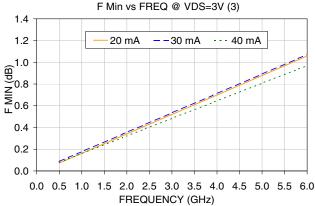

(4) Drain current was allowed to increase during compression measurement.


Notes

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collective), "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

NF vs FREQUENCY & TEMPERATURE (1) @ VDS=4V, IDS=30mA





0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 FREQUENCY (GHz)

Mini-Circuits

(1) Includes test board loss, set-up and conditions per Figure 1.

(2) Measured using HP4155B semiconductor parameter analyzer.

(3) F Min is minimum Noise Figure.

(4) Drain current was allowed to increase during compression measurement.

Reference Plane Location for S and Noise Parameters (see data in pages 8 & 9)

(Refer to Application Note AN-60-040)

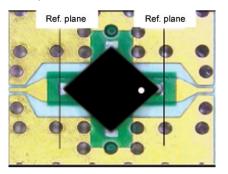


Fig 3. Reference Plane Location

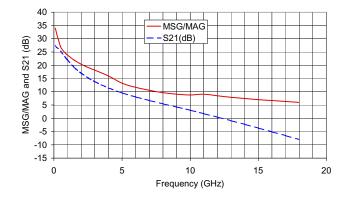
Notes:

Noise parameters were measured over 0.5 to 6 GHz by Modelithics® using a solid state tuner-based NP noise parameter test system available from Maury Microwave. F Min, optimimum source reflection coefficient and noise resistance values are calculated values based on a set of measurements made at approximately 16 different impedances. Some data smoothing was applied to arrive at the presented data set.

S-parameters were measured by Modelithics® on an Anritsu Lightning vector network analyzer over 0.1 to 18GHz using 350um pitch RF probes from GGB industries combined with customized thru-reflect-line (TRL) calibration standards. The reference plane is at the device package leads, as shown in the picture.

Notes

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collective), "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp



Typical S-parameters, V_{DS} =3V and I_{DS} =30 mA (Fig. 3)

S11		S11 S21			s	S12 S22				
Freq. (GHz)	Mag.	Ang.	Mag.	Mag (dB)	Ang.	Mag.	Ang.	Mag.	Ang.	MSG/MAG (dB)
0.1	0.99	-16.36	23.19	27.31	169.5	0.009	86.4	0.60	-12.94	34.0
0.5	0.88	-73.63	18.30	25.25	132.3	0.037	52.2	0.47	-52.76	27.0
0.9	0.77	-112.16	13.45	22.57	108.1	0.05	36.6	0.35	-79.99	24.3
1.0	0.76	-120.13	12.51	21.95	103.4	0.052	34.2	0.33	-85.89	23.8
1.5	0.70	-149.97	9.11	19.19	84.2	0.059	24.0	0.25	-109.19	21.9
1.9	0.68	-167.63	7.42	17.41	72.0	0.063	19.5	0.21	-124.99	20.7
2.0	0.68	-171.42	7.09	17.02	69.3	0.065	18.2	0.20	-128.70	20.4
2.5	0.67	171.27	5.80	15.27	56.2	0.07	13.5	0.17	-146.31	19.2
3.0	0.66	156.22	4.90	13.80	44.0	0.075	8.8	0.15	-163.82	18.1
4.0	0.67	130.42	3.73	11.43	21.4	0.087	-0.3	0.13	161.15	16.0
5.0	0.68	107.77	3.02	9.59	0.0	0.099	-10.8	0.14	127.97	13.2
6.0	0.70	86.82	2.53	8.06	-20.8	0.113	-22.5	0.16	98.63	11.7
7.0	0.73	66.89	2.17	6.71	-41.4	0.125	-35.2	0.20	74.15	10.6
8.0	0.75	47.68	1.88	5.49	-61.7	0.136	-48.6	0.26	53.20	9.7
9.0	0.79	28.73	1.63	4.27	-81.9	0.145	-63.3	0.32	34.25	9.1
10.0	0.83	9.67	1.42	3.04	-102.2	0.15	-78.4	0.39	16.29	8.8
11.0	0.86	-8.89	1.23	1.77	-122.3	0.151	-94.0	0.47	-0.68	9.1
12.0	0.89	-26.76	1.06	0.47	-142.1	0.15	-109.6	0.54	-17.06	8.5
13.0	0.91	-44.42	0.91	-0.86	-162.0	0.146	-125.5	0.59	-33.39	7.9
14.0	0.93	-60.99	0.77	-2.25	178.8	0.139	-140.9	0.65	-49.07	7.5
15.0	0.94	-73.61	0.66	-3.64	163.1	0.131	-153.9	0.70	-61.42	7.0
16.0	0.96	-83.75	0.56	-5.10	149.1	0.119	-163.5	0.74	-72.07	6.7
17.0	0.96	-94.86	0.47	-6.51	134.2	0.109	-174.6	0.77	-83.99	6.4
18.0	0.95	-106.68	0.40	-7.98	118.5	0.101	174.5	0.80	-97.27	6.0

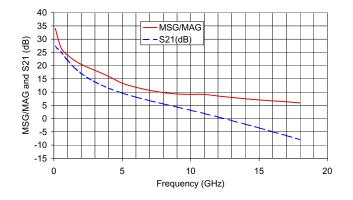
MAXIMUM STABLE GAIN (MSG)/MAXIMUM AVAILABLE GAIN (MAG) vs. FREQUENCY

Typical Noise Parameters, V_{DS}=3V and I_{DS}=30 mA (Fig. 3)

Freq. (GHz)	F Min. (dB)	rOpt (Magnitude)	୮Opt (Angle)	Rn/50	Ga Associated Gain (dB)	
0.5	0.09	0.33	16.30	0.07	26.6	
0.5	0.09	0.33	28.96	0.07	20.0	
0.9	0.16	0.34	41.34	0.06	23.1	
1.0	0.18	0.35	47.42	0.06	22.4	
1.9	0.34	0.38	99.05	0.03	17.8	
2.0	0.36	0.39	104.44	0.03	17.5	
2.4	0.43	0.40	125.31	0.03	16.3	
3.0	0.54	0.42	154.52	0.03	14.9	
3.9	0.70	0.44	-166.36	0.06	13.3	Notes:
5.0	0.89	0.46	-126.19	0.11	11.8	F Min.: Minimum Noise Figure
5.8	1.04	0.47	-102.25	0.16	10.7	ΓOpt: Optimum Source Reflection C
6.0	1.07	0.47	-96.96	0.18	10.5	Rn: Equivalent noise resistance

Notes

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collective), "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

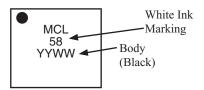

Mini-Circuits

Typical S-parameters, V_{DS} =4V and I_{DS} =30 mA (Fig. 3)

	s	611		S21		s	612	s	22	
Freq. (GHz)	Mag.	Ang.	Mag.	Mag (dB)	Ang.	Mag.	Ang.	Mag.	Ang.	MSG/MAG (dB)
0.1	0.99	-16.62	23.16	27.30	169.5	0.009	79.4	0.61	-12.06	34.0
0.5	0.88	-73.31	18.36	25.28	132.5	0.036	52.2	0.49	-50.89	27.0
0.9	0.77	-111.77	13.51	22.61	108.3	0.049	37.1	0.36	-76.91	24.4
1.0	0.76	-119.67	12.58	21.99	103.5	0.051	33.7	0.34	-82.55	23.9
1.5	0.70	-149.65	9.17	19.25	84.3	0.058	24.1	0.25	-104.45	22.0
1.9	0.68	-167.34	7.47	17.47	72.1	0.062	19.2	0.21	-119.17	20.8
2.0	0.67	-171.13	7.14	17.07	69.3	0.063	18.4	0.20	-122.66	20.5
2.5	0.67	171.46	5.84	15.33	56.2	0.069	13.6	0.17	-139.21	19.3
3.0	0.66	156.41	4.93	13.86	44.0	0.074	9.0	0.14	-155.97	18.2
4.0	0.67	130.52	3.75	11.49	21.4	0.085	0.0	0.12	169.62	15.9
5.0	0.68	107.77	3.04	9.66	-0.1	0.098	-10.3	0.12	134.56	13.3
6.0	0.70	86.77	2.55	8.14	-20.9	0.111	-21.6	0.14	103.32	11.8
7.0	0.72	66.87	2.19	6.79	-41.6	0.123	-34.4	0.18	77.45	10.7
8.0	0.75	47.72	1.90	5.58	-61.9	0.135	-47.6	0.24	55.67	9.8
9.0	0.79	28.73	1.65	4.37	-82.2	0.144	-62.3	0.30	36.33	9.3
10.0	0.83	9.64	1.44	3.15	-102.6	0.15	-77.4	0.38	18.12	9.1
11.0	0.86	-8.92	1.24	1.89	-122.9	0.152	-93.0	0.45	0.90	9.1
12.0	0.89	-26.90	1.07	0.60	-142.8	0.151	-108.5	0.52	-15.63	8.5
13.0	0.91	-44.62	0.92	-0.73	-162.9	0.147	-124.8	0.58	-32.08	8.0
14.0	0.93	-61.40	0.78	-2.11	177.7	0.14	-140.4	0.64	-47.96	7.5
15.0	0.94	-74.24	0.67	-3.52	161.7	0.132	-153.4	0.69	-60.57	7.0
16.0	0.96	-84.49	0.56	-4.99	147.6	0.121	-163.2	0.74	-71.29	6.7
17.0	0.96	-95.82	0.48	-6.42	132.4	0.111	-174.6	0.77	-83.45	6.4
18.0	0.96	-107.81	0.40	-7.93	116.4	0.102	174.8	0.80	-96.97	5.9

MAXIMUM STABLE GAIN (MSG)/MAXIMUM AVAILABLE GAIN (MAG) vs. FREQUENCY

Typical Noise Parameters, V_{DS}=4V and I_{DS}=30 mA (Fig. 3)


Freq. (GHz)	F Min. (dB)	ГОрt (Magnitude)	୮Opt (Angle)	Rn/50	Ga Associated Gain (dB)	
0.5	0.09	0.37	16.12	0.08	26.6	
0.7	0.12	0.37	28.50	0.07	24.6	
0.9	0.16	0.37	40.63	0.06	23.0	
1.0	0.18	0.37	46.59	0.06	22.3	
1.9	0.34	0.39	97.42	0.03	17.8	
2.0	0.35	0.39	102.75	0.03	17.4	
2.4	0.42	0.40	123.43	0.03	16.3	
3.0	0.53	0.41	152.52	0.03	14.9	Notes:
3.9	0.69	0.43	-168.14	0.05	13.3	F Min.: Minimum Noise Figure
5.0	0.89	0.45	-127.09	0.10	11.8	ΓOpt: Optimum Source Reflection Coel
5.8	1.03	0.46	-102.09	0.16	10.8	Rn: Equivalent noise resistance
6.0	1.06	0.47	-96.48	0.18	10.6	Thin Equivalent holde realatance

Notes

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collective), "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

Mini-Circuits

Product Marking

Additional Detailed Technical Information

Additional information is available on our web site www.minicircuits.com. To access this information enter the model number on our web site home page.

Performance data, graphs, s-parameter data set (.zip file)

Case Style: FG873 Plastic low profile 3mm x 3mm, lead finish: tin/silver/nickel

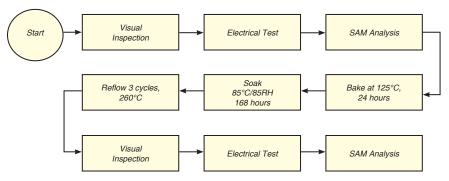
Suggested Layout for PCB Design: PL-301

Tape & Reel: F68

Characterization Test Board: TB-154+

Environmental Ratings: ENV08T2

ESD Rating


Human Body Model (HBM): Class 1A (250 V to < 500 V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (40 V) in accordance with ANSI/ESD STM 5.2 - 1999

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDECJ-STD-020D

MSL Test Flow Chart

Notes

A Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document. B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions. C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collective), "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp

Mini-Circuits