


# **TGA4705-FC**

# 77 GHz Flip-Chip Low Noise Amplifier



### **Measured Performance**



Frequency (GHz)

Bias conditions: Vd = 2 V, Id = 60 mA

### **Key Features**

- Frequency Range: 72 80 GHz
- Noise Figure: 5 dB at 77 GHz
- Gain: 23 dB
- Bias: Vd = 2.5 V, Id = 60 mA, Vg = +0.18 V Typical
- Technology: 0.13 um pHEMT with front-side Cu/Sn pillars
- Chip Dimensions: 2.24 x 1.27 x 0.38 mm

## **Primary Applications**

Automotive RADAR

## **Product Description**

The TriQuint TGA4705-FC is a flip-chip low noise amplifier designed to operate at frequencies that target the automotive RADAR market. The TGA4705-FC is designed using TriQuint's proven 0.13  $\mu$ m pHEMT process and front-side Cu / Sn pillar technology for reduced source inductance and superior noise performance at frequencies of 72 – 80 GHz. Die reliability is enhanced by using TriQuint's BCB polymeric passivation process.

The TGA4705-FC is a low noise amplifier that typically provides 23 dB small signal gain with 5 dB noise figure at 77 GHz. The TGA4705-FC is an excellent choice for applications requiring low noise in receive chain architectures.

Lead-free and RoHS compliant.

TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com

1





Table IAbsolute Maximum Ratings 1/

| Symbol   | Parameter                   | Value             | Notes      |
|----------|-----------------------------|-------------------|------------|
| Vd-Vg    | Drain to Gate Voltage       | 5.5 V             |            |
| Vd       | Drain Voltage               | 4 V               | <u>2</u> / |
| Vg       | Gate Voltage Range          | -1 to + 0.45 V    |            |
| ld       | Drain Current               | 108 mA            | <u>2</u> / |
| lg       | Gate Current Range          | -0.24 to +0.25 mA |            |
| Pin      | Input Continuous Wave Power | 10 dBm            | <u>2</u> / |
| Tchannel | Max Channel Temperature     | 200 C             |            |

- 1/ These ratings represent the maximum operable values for this device. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device and / or affect device lifetime. These are stress ratings only, and functional operation of the device at these conditions is not implied.
- 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed the maximum power dissipation listed in Table IV.

### Table II Recommended Operating Conditions

| Symbol | Parameter <u>1</u> / | Value           |
|--------|----------------------|-----------------|
| Vd     | Drain Voltage        | 2.5 V           |
| ld     | Drain Current        | 60 mA           |
| Vg     | Gate Voltage         | +0.18 V Typical |

<u>1</u>/ See assembly diagram for bias instructions.





### Table III RF Characterization Table

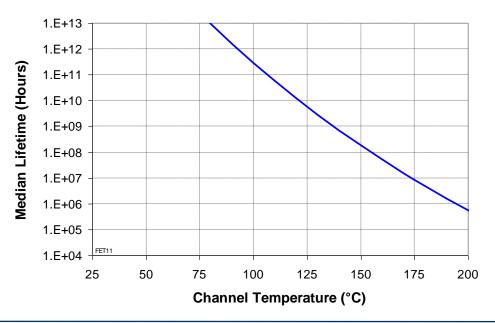
### Bias: Vd = 2.5 V, Id = 60 mA, Vg = 0.18 V, typical

| SYMBOL | PARAMETER             | TEST<br>CONDITIONS | MIN | NOMINAL | MAX | UNITS |
|--------|-----------------------|--------------------|-----|---------|-----|-------|
| Gain   | Small Signal Gain     | f = 76 –77 GHz     | 17  | 23      | 26  | dB    |
| IRL    | Input Return Loss     | f = 76 - 77 GHz    | 3   | 8       | -   | dB    |
| ORL    | Output Return<br>Loss | f = 76 - 77 GHz    | 5   | 10      | -   | dB    |
| NF     | Noise Figure          | f = 76 - 77 GHz    | -   | 6       | -   | dB    |





# Table IV


### **Power Dissipation and Thermal Properties**

| Parameter                 | Test Conditions                                            | Value                                                   | Notes          |
|---------------------------|------------------------------------------------------------|---------------------------------------------------------|----------------|
| Maximum Power Dissipation | Tbaseplate = 102.5 C                                       | Pd = 0.432 W<br>Tchannel = 150 C<br>Tm = 2.4E+7 Hrs     | <u>1/2/3</u> / |
| Thermal Resistance, θjc   | Vd = 2 V<br>Id = 60 mA<br>Pd = 0.12 W<br>Tbaseplate = 85 C | θjc = 110 C/W<br>Tchannel = 98.2 C<br>Tm = 1.68E+10 Hrs | <u>3</u> /     |
| Mounting Temperature      |                                                            | Refer to Solder Reflow<br>Profiles (pg 11)              |                |
| Storage Temperature       |                                                            | -65 to 150 C                                            |                |

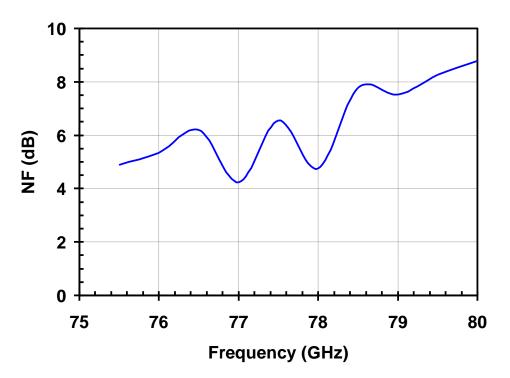
1/ For a median life of 2.4E+7 hours, Power Dissipation is limited to

 $Pd(max) = (150 °C - Tbase °C)/\theta jc.$ 

- 2/ Channel operating temperature will directly affect the device median lifetime (Tm). For maximum life, it is recommended that channel temperatures be maintained at the lowest possible levels.
- 3/ For this flip-chip die, the baseplate is a plane between the Cu/Sn pillars and the test board. For the TGA4705-FC, the critical pillars for thermal power dissipation are 18 thru 25. (See Mechanical Drawing.)



### Median Lifetime (Tm) vs Channel Temperature

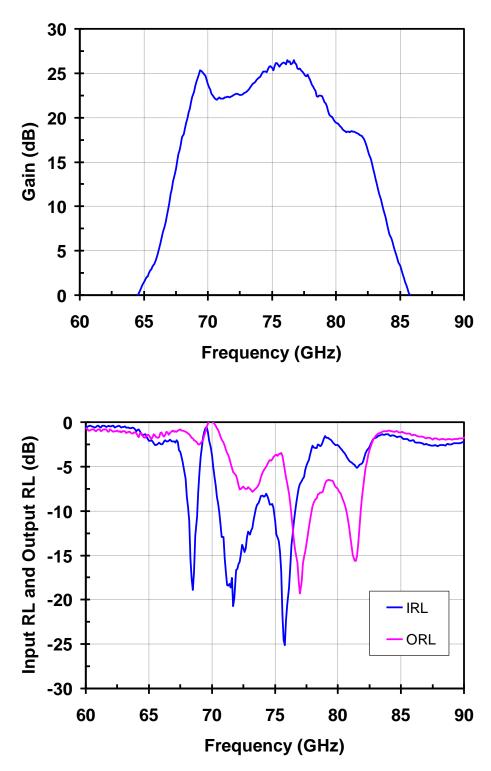

TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com





### Measured Data on Face-down (flipped) Die on Carrier Board

Bias conditions: Vd = 2 V, Id = 60 mA

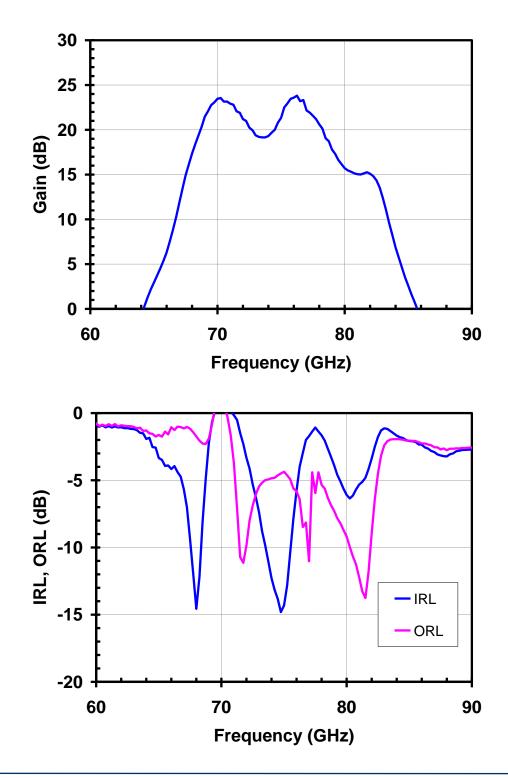







### Measured Data on Face-down (flipped) Die on Carrier Board

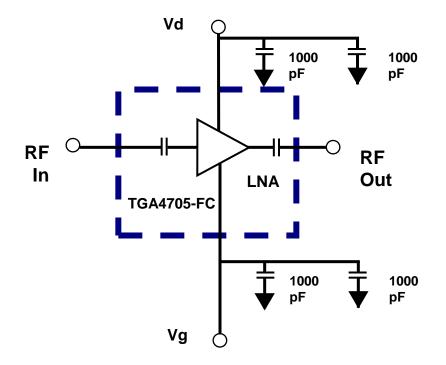
Bias conditions: Vd = 2 V, Id = 60 mA








### Measured Data on Face-down (flipped) Die on Carrier Board

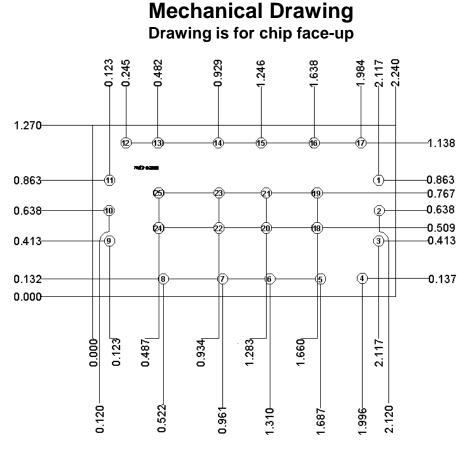

Bias conditions: Vd = 2.5 V, Id = 60 mA





# **TGA4705-FC**

### **Electrical Schematic**




## **Bias Procedures**

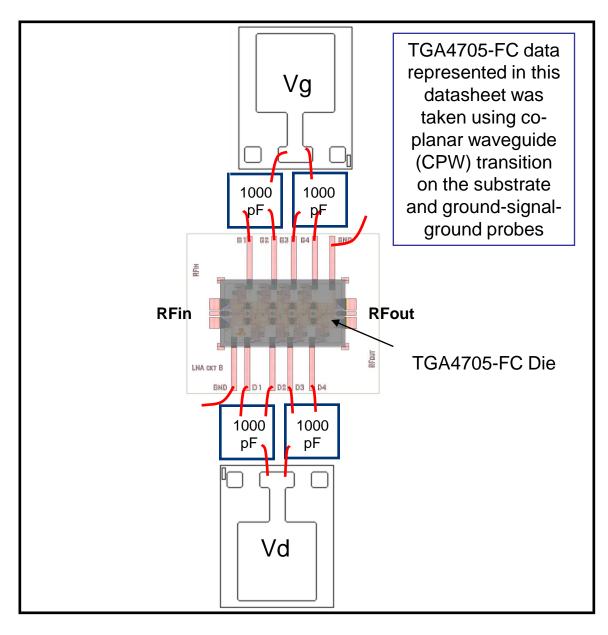
# Bias-up ProcedureBias-down ProcedureVg set to -0.5 VTurn off RF supplyVd set to +2.5 VReduce Vg to -0.5V. Ensure Id ~ 0 mAAdjust Vg more positive until Id is 60 mA. This will<br/>be Vg ~ +0.18 VTurn Vd to 0 VApply RF signal to inputTurn Vg to 0 V



# **TGA4705-FC**



Units: millimeters Thickness: 0.380 Die x,y size tolerance: +/- 0.050 Chip edge to pillar dimensions are shown to center of pillar


| Pillar #4,12,18-25  | DC Ground        | 0.075 Ø | Pillar #5  | Vg4                   | 0.075 Ø |
|---------------------|------------------|---------|------------|-----------------------|---------|
| Pillar #1, 3, 9, 11 | RF CPW<br>Ground | 0.075 Ø | Pillar #13 | Vd1                   | 0.075 Ø |
| Pillar #2           | RF Out           | 0.075 Ø | Pillar #14 | Vd2                   | 0.075 Ø |
| Pillar #10          | RF In            | 0.075 Ø | Pillar #15 | Vd3                   | 0.075 Ø |
| Pillar #8           | Vg1              | 0.075 Ø | Pillar #16 | Vd4                   | 0.075 Ø |
| Pillar #7           | Vg2              | 0.075 Ø | Pillar #17 | Mech. Support<br>Only | 0.075 Ø |
| Pillar #6           | Vg3              | 0.075 Ø |            |                       |         |

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.





### **Recommended Assembly Diagram**



Die is flip-chip soldered to a 15 mil thick alumina test substrate

# GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.