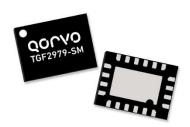


### **TGF2979-SM**

### 25 W, 32 V, DC - 12 GHz, GaN RF Transistor


#### **Product Overview**

The Qorvo TGF2979-SM is a 25 W (P3dB) discrete GaN on SiC HEMT which operates from DC to 12 GHz. The device is constructed with Qorvo's proven QGaN25 process, which features advanced field plate techniques to optimize power and efficiency at high drain bias operating conditions. This optimization can potentially lower system costs in terms of fewer amplifier line-ups and lower thermal management costs.

The device is housed in an industry-standard 3 x 4 mm surface mount QFN package.

Lead-free and ROHS compliant

Evaluation boards are available upon request

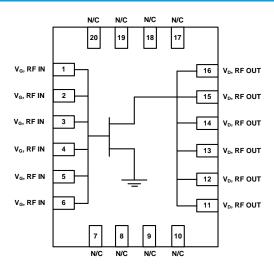


20 Pad 3 x 4 mm Package

### **Key Features**

Frequency: DC to 12 GHz
Output Power (P3dB)<sup>1</sup>: 22 W

Linear Gain<sup>1</sup>: 11 dB


Typical PAE (3dB)<sup>1</sup>: 45%
Operating Voltage: 32 V

• Low thermal resistance package

• CW and Pulse capable

3 x 4 mm package
 Note: @ 9.4 GHz

# **Functional Block Diagram**



# **Applications**

- · Military radar
- Commercial radar
  - Avionics
  - Marine
  - Weather

# **Ordering Information**

| Part No.        | Description                  |
|-----------------|------------------------------|
| TGF2979-SMEVB01 | 2.6-3.2 GHz Evaluation Board |
| TGF2979-SMEVB02 | 2.8-3.4 GHz Evaluation Board |
| TGF2979-SMEVB03 | 3-3.6 GHz Evaluation Board   |

# **TGF2979-SM** 25 W, 32 V, DC – 12 GHz, GaN RF Transistor

### **Absolute Maximum Ratings**

| Parameter                                     | Value        | Units |  |
|-----------------------------------------------|--------------|-------|--|
| Breakdown Voltage (BV <sub>DG</sub> )         | 100          | V     |  |
| Gate Voltage Range (V <sub>G</sub> )          | −7 to +2     | V     |  |
| Drain Current (I <sub>D</sub> )               | 3.6          | Α     |  |
| Gate Current (I <sub>G</sub> )                | -7.5 to 12.6 | mA    |  |
| Power Dissipation, CW (PD)                    | See page 4.  | W     |  |
| RF Input Power, CW, T=25°C (P <sub>IN</sub> ) | 37.8         | dBm   |  |
| Storage Temperature                           | -40 to 150   | °C    |  |

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

### **Recommended Operating Conditions**

| Parameter                                   | Min | Тур  | Max | Units |
|---------------------------------------------|-----|------|-----|-------|
| Drain Voltage (V <sub>D</sub> )             |     | +32  |     | V     |
| Drain Quiescent Current (I <sub>DQ</sub> )  |     | 150  |     | mA    |
| Gate Voltage (V <sub>G</sub> ) <sup>1</sup> |     | -2.7 |     | V     |

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

#### Note:

1. To be adjusted to desired  $I_{DQ}$ 

#### Pulsed RF Characterization - Load Pull Performance

Test conditions unless otherwise noted: T = 25°C, Pulse (20% Duty Cycle, 100 µs Width).

| Tool containing unless differ who flotted. T = 20 C, T under (20% Daily Cycle, 100 po Width). |                |      |      |      |      |       |       |
|-----------------------------------------------------------------------------------------------|----------------|------|------|------|------|-------|-------|
| Parameter                                                                                     | Typical Values |      |      |      |      |       | Units |
| Frequency, F                                                                                  | 5              | 8    | 9    | 9.4  | 10   | 12    | GHz   |
| Drain Voltage <sup>1,2</sup> , V <sub>D</sub>                                                 | 32             | 32   | 32   | 32   | 32   | 32    | V     |
| Drain Bias Current <sup>1,2</sup> , I <sub>DQ</sub>                                           | 150            | 150  | 150  | 150  | 150  | 150   | mA    |
| Output Power at 3dB compression <sup>1</sup> , P <sub>3dB</sub>                               | 44.4           | 43.8 | 43.2 | 43.5 | 43.7 | 43.4  | dBm   |
| Power Added Efficiency at 3dB compression <sup>2</sup> , PAE <sub>3dB</sub>                   | 56.0           | 51.0 | 49.2 | 44.9 | 40.8 | 33.00 | %     |
| Gain at 3dB compression <sup>1</sup> , G <sub>3dB</sub>                                       | 11.5           | 9.7  | 8.8  | 7.9  | 7.1  | 6.2   | dB    |

#### Notes:

- Power Tuned
- 2. Efficiency Tuned



## Thermal and Reliability Information – CW<sup>(1)</sup>

| Parameter                                                                                 | Simulation Conditions                                      | Value | Units |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------|-------|-------|
| Thermal Resistance, Peak IR Surface Temperature at Average Power ( $\theta_{\text{JC}}$ ) | P <sub>DISS</sub> = 45.4 W, T <sub>baseplate</sub> = 85 °C | 2.53  | °C/W  |
| Channel Temperature (T <sub>CH</sub> )                                                    |                                                            | 200   | °C    |
| Thermal Resistance, Peak IR Surface Temperature at Average Power (θ <sub>JC</sub> )       | P <sub>DISS</sub> = 37.8 W, T <sub>baseplate</sub> = 85 °C | 2.43  | °C/W  |
| Channel Temperature (T <sub>CH</sub> )                                                    |                                                            | 177   | °C    |
| Thermal Resistance, Peak IR Surface Temperature at Average Power (θ <sub>JC</sub> )       | P <sub>DISS</sub> = 30.2 W, T <sub>baseplate</sub> = 85 °C | 2.35  | °C/W  |
| Channel Temperature (T <sub>CH</sub> )                                                    |                                                            | 156   | °C    |
| Thermal Resistance, Peak IR Surface Temperature at Average Power (θ <sub>JC</sub> )       | P <sub>DISS</sub> = 22.7 W, T <sub>baseplate</sub> = 85 °C | 2.28  | °C/W  |
| Channel Temperature (T <sub>CH</sub> )                                                    |                                                            | 137   | °C    |
| Thermal Resistance, Peak IR Surface Temperature at Average Power (θ <sub>JC</sub> )       | P <sub>DISS</sub> = 15.1 W, T <sub>baseplate</sub> = 85 °C | 2.19  | °C/W  |
| Channel Temperature (T <sub>CH</sub> )                                                    |                                                            | 118   | °C    |
| Thermal Resistance, Peak IR Surface Temperature at Average Power (θ <sub>JC</sub> )       | P <sub>DISS</sub> = 7.6 W, T <sub>baseplate</sub> = 85 °C  | 1.96  | °C/W  |
| Channel Temperature (T <sub>CH</sub> )                                                    |                                                            | 100   | °C    |

#### Note:

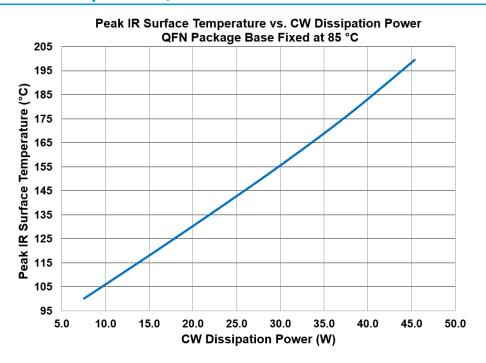
- Thermal resistance measured to bottom of package.

  Refer to the following document: <u>GaN Device Channel Temperature</u>. <u>Thermal Resistance</u>, and <u>Reliability Estimates</u>

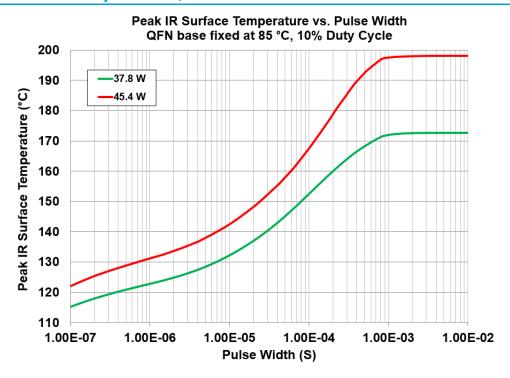
# Thermal and Reliability Information – Pulsed<sup>(1)</sup>

| Parameter                                                                           | Simulation Conditions                                                              | Value | Units |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------|-------|
| Thermal Resistance, Peak IR Surface Temperature at Average Power (θ <sub>JC</sub> ) | P <sub>DISS</sub> = 45.4 W, T <sub>baseplate</sub> = 85 °C<br>Pulse Width = 500 uS | 2.36  | °C/W  |
| Channel Temperature (T <sub>CH</sub> )                                              | Duty Cycle = 10%                                                                   | 192   | °C    |
| Thermal Resistance, Peak IR Surface Temperature at Average Power (θ <sub>JC</sub> ) | P <sub>DISS</sub> = 37.8 W, T <sub>baseplate</sub> = 85 °C<br>Pulse Width = 500 uS | 2.20  | °C/W  |
| Channel Temperature (T <sub>CH</sub> )                                              | Duty Cycle = 10%                                                                   | 168   | °C    |
| Thermal Resistance, Peak IR Surface Temperature at Average Power (θ <sub>JC</sub> ) | P <sub>DISS</sub> = 45.4 W, T <sub>baseplate</sub> = 85 °C<br>Pulse Width = 100 uS | 1.82  | °C/W  |
| Channel Temperature (T <sub>CH</sub> )                                              | Duty Cycle = 10%                                                                   | 168   | °C    |
| Thermal Resistance, Peak IR Surface Temperature at Average Power (θ <sub>JC</sub> ) | P <sub>DISS</sub> = 37.8 W, T <sub>baseplate</sub> = 85 °C<br>Pulse Width = 100 uS | 1.78  | °C/W  |
| Channel Temperature (T <sub>CH</sub> )                                              | Duty Cycle = 10%                                                                   | 152   | °C    |

#### Note:

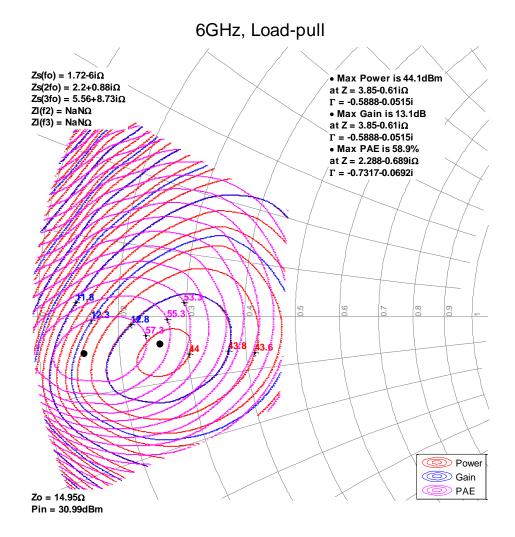

- Thermal resistance measured to bottom of package.
- Refer to the following document: GaN Device Channel Temperature. Thermal Resistance, and Reliability Estimates

# **Electrical Specifications**


| Parameter    | Conditions              | Min   | Тур | Max | Units |
|--------------|-------------------------|-------|-----|-----|-------|
| Gate Leakage | $V_D = +10, V_G = -3.7$ | -8.25 |     |     | mA    |

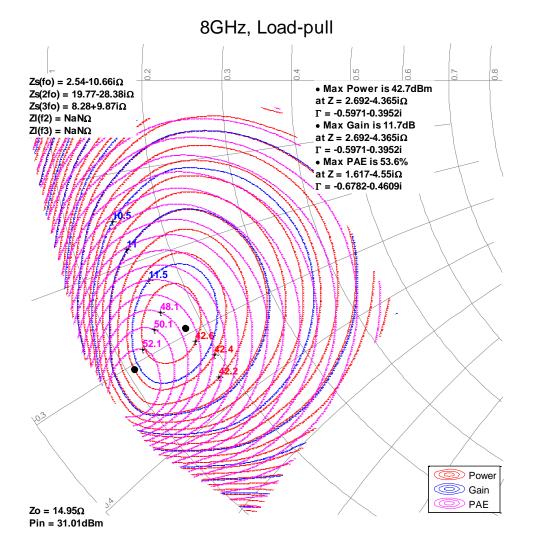


### **Maximum Channel Temperature, CW**



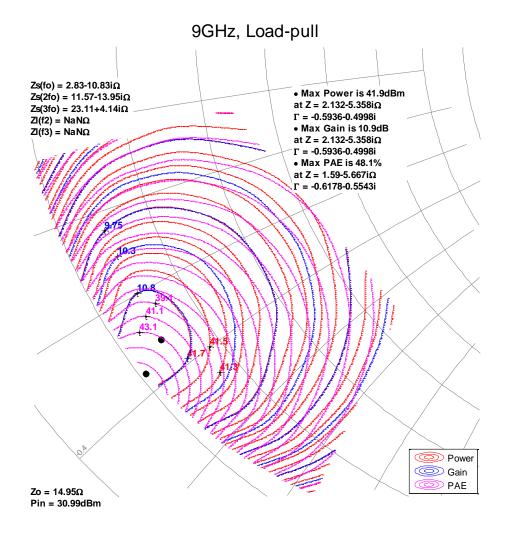

### **Maximum Channel Temperature, Pulsed**





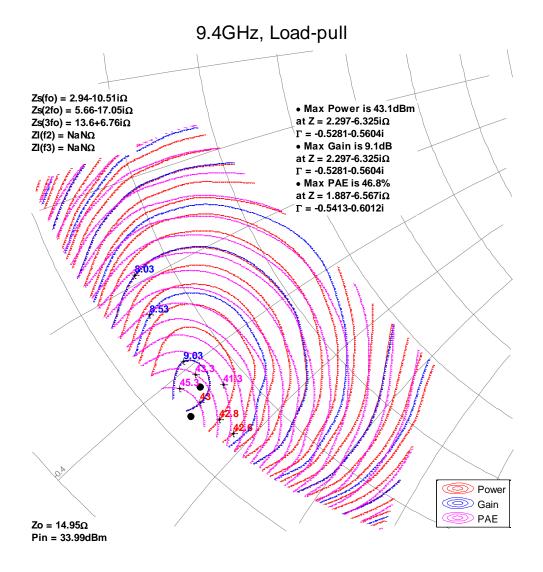

- 1. 32 V, 150 mA, Pulsed signal with 100 uS pulse width and 10 % duty cycle. Performance is at indicated input power.
- 2. See page 13 for load pull and source pull reference planes. 15-Ω load pull TRL fixtures are built with 10-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.





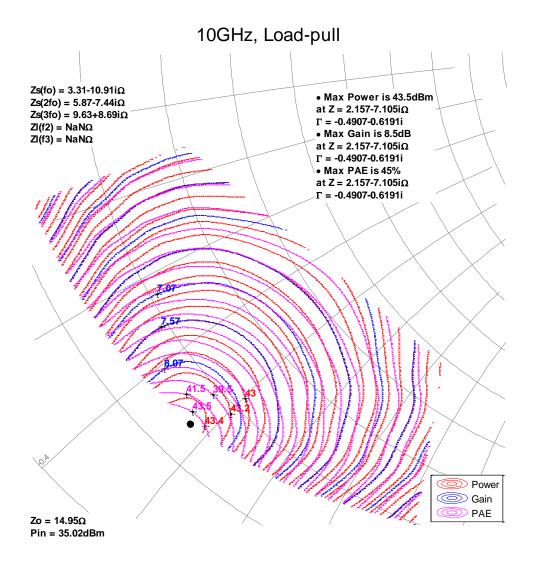

- 1. 32 V, 150 mA, Pulsed signal with 100 uS pulse width and 10 % duty cycle. Performance is at indicated input power.
- 2. See page 13 for load pull and source pull reference planes. 15-Ω load pull TRL fixtures are built with 10-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.






- 1. 32 V, 150 mA, Pulsed signal with 100 uS pulse width and 10 % duty cycle. Performance is at indicated input power.
- 2. See page 13 for load pull and source pull reference planes. 15-Ω load pull TRL fixtures are built with 10-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.

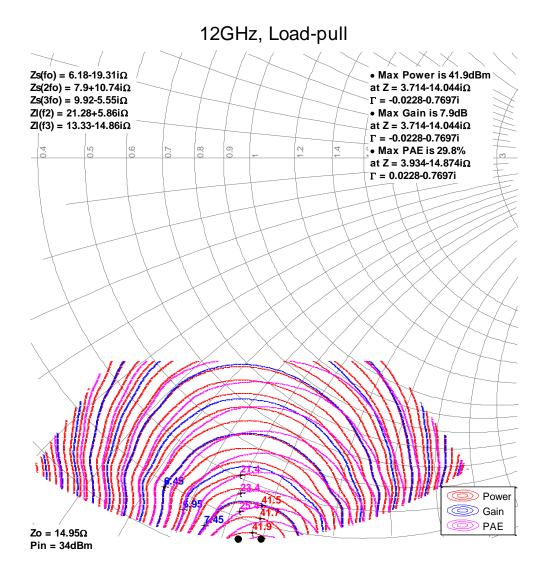





- 1. 32 V, 150 mA, Pulsed signal with 100 uS pulse width and 10 % duty cycle. Performance is at indicated input power.
- 2. See page 13 for load pull and source pull reference planes. 15-Ω load pull TRL fixtures are built with 10-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.





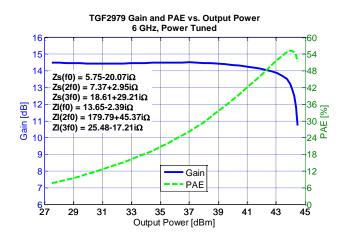

- 1. 32 V, 150 mA, Pulsed signal with 100 uS pulse width and 10 % duty cycle. Performance is at indicated input power.
- 2. See page 13 for load pull and source pull reference planes. 15-Ω load pull TRL fixtures are built with 10-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.

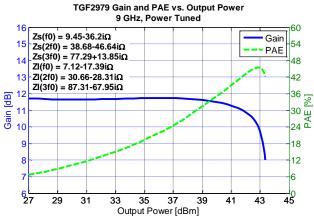


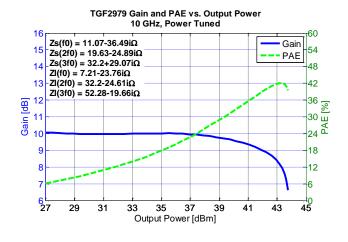


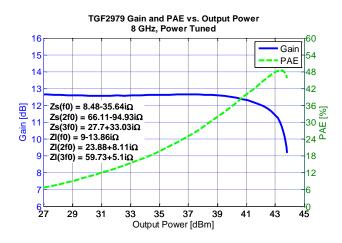
#### Load Pull Smith Charts - Pulsed<sup>(1,2,3)</sup>

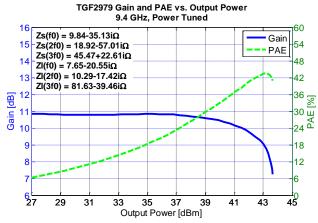
- 1. 32 V, 150 mA, Pulsed signal with 100 uS pulse width and 10 % duty cycle. Performance is at indicated input power.
- 2. See page 13 for load pull and source pull reference planes. 15-Ω load pull TRL fixtures are built with 10-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.

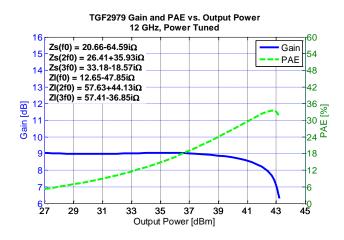




# Typical Pulsed Performance – Power Tuned<sup>(1,2)</sup>


#### Notes:


- 1. Pulsed signal with 100uS pulse width and 10% duty cycle
- 2. See page 13 for load pull and source pull reference planes where the performance was measured.





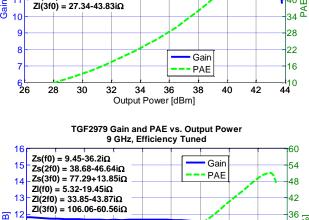


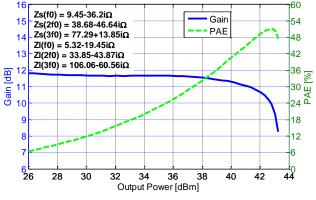


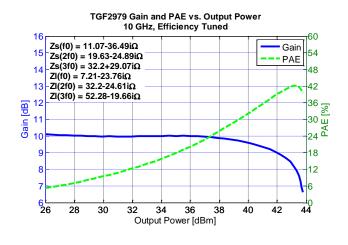


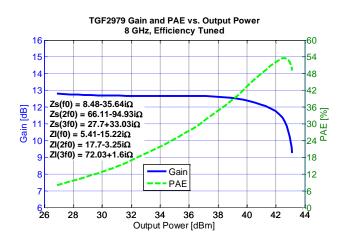


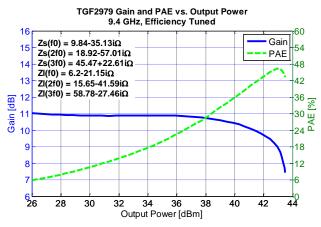


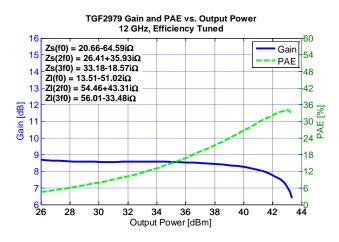




# **Typical Pulsed Performance – Efficiency Tuned**(1,2)


#### Notes:


- 1. Pulsed signal with 100uS pulse width and 10% duty cycle
- See page 13 for load pull and source pull reference planes where the performance was measured.



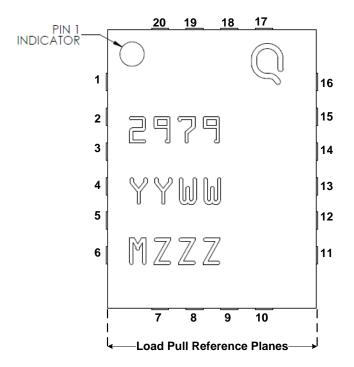










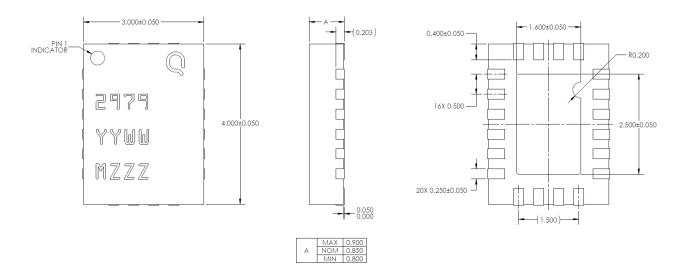

### **Pin Layout**

Marking: Qorvo Logo

Part Number – TGF2979-SM (The TGF2979-SM will be marked with the "2979" designator)

Date Code – YYWW Lot Code – MZZZ

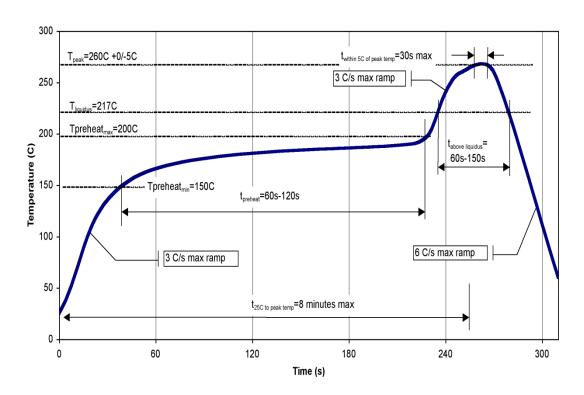



# **Pin Description**

| Pin             | Symbol                 | Description                                           |
|-----------------|------------------------|-------------------------------------------------------|
| 11 – 16         | V <sub>D</sub> /RF OUT | Drain voltage / RF Output to be matched to 50 ohms;   |
| 1 – 6           | V <sub>G</sub> /RF IN  | Gate voltage / RF Input to be matched to 50 ohms; see |
| 7 – 10, 17 – 20 | N/C                    | Not connected                                         |
| Back side       | Source                 | Source connected to ground                            |



#### **Mechanical Information**


All dimensions are in millimeters.



#### Note:

- 1. Unless otherwise noted, all dimension tolerances are +/-0.127 mm.
- 2. This package is lead-free/RoHS-compliant. The plating material on the leads is NiAu. It is compatible with both lead-free (maximum 260 °C reflow temperature) and tin-lead (maximum 245 °C reflow temperature) soldering processes.

# **Recommended Solder Temperature Profile**

