LOW CAPACITANCE BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS

TISP4CxxxH3BJ Overvoltage Protector Series

Ion-Implanted Breakdown Region

- Precise and Stable Voltage
- Low Voltage Overshoot under Surge

URNS®

- Low Off-State Capacitance

Rolf COMPLIA

Device Name	V _{DRM} V	V _(BO) V
TISP4C115H3BJ †	90	115
TISP4C125H3BJ †	100	125
TISP4C145H3BJ †	120	145
TISP4C165H3BJ	135	165
TISP4C180H3BJ †	145	180
TISP4C220H3BJ †	180	220
TISP4C250H3BJ †	190	250
TISP4C290H3BJ †	220	290
TISP4C350H3BJ †	275	350

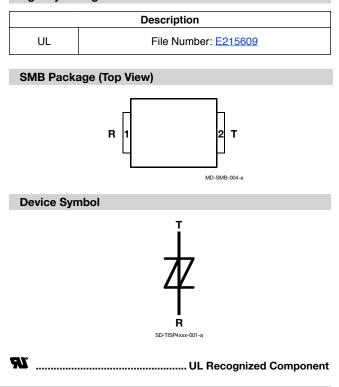
Rated for International Surge Wave Shapes

Wave Shape	Standard	I _{PPSM} A
2/10	GR-1089-CORE	500
10/160	TIA-968-A	200
10/700	ITU-T K.20/21/45	150
10/560	TIA-968-A	100
10/1000	GR-1089-CORE	100

Description

This device is designed to limit overvoltages on the telephone line. Overvoltages are normally caused by a.c. power system or lightning flash disturbances which are induced or conducted on to the telephone line. A single device provides 2-point protection and is typically used for the protection of 2-wire telecommunication equipment (e.g. between the Ring and Tip wires for telephones and modems). Combinations of devices can be used for multi-point protection (e.g. 3-point protection between Ring, Tip and Ground).

The protector consists of a symmetrical voltage-triggered bidirectional thyristor. Overvoltages are initially clipped by breakdown clamping until the voltage rises to the breakover level, which causes the device to crowbar into a low-voltage on state. This low-voltage on state causes the current resulting from the overvoltage to be safely diverted through the device. The high crowbar holding current hellps prevent d.c. latchup as the diverted current subsides.


Please contact your Bourns representative if the protection voltage you require is not listed.

How to Order

Device	Package	Carrier	Order As	Marking Code	Std. Qty.
TISP4CxxxH3BJ	SMB	Embossed Tape Reeled	TISP4CxxxH3BJR-S	4CxxxH	3000

Insert xxx corresponding to device name.

Agency Recognition

TISP4CxxxH3BJ Overvoltage Protector Series

BOURNS

Absolute Maximum Ratings, T_A = 25 °C (Unless Otherwise Noted)

Rating		Symbol	Value	Unit
Repetitive peak off-state voltage	¹ 4C115H3BJ ¹ 4C125H3BJ ¹ 4C145H3BJ ¹ 4C165H3BJ ¹ 4C180H3BJ ¹ 4C220H3BJ ¹ 4C220H3BJ ¹ 4C250H3BJ ¹ 4C290H3BJ ¹ 4C350H3BJ	V _{DRM}	±90 ±100 ±120 ±135 ±145 ±180 ±190 ±220 ±275	v
Non-repetitive peak impulse current (see Notes 1 and 2) 2/10 μs (GR-1089-CORE, 2/10 μs voltage wave shape) 10/160 μs (TIA-968-A, 10/160 μs voltage wave shape) 5/310 μs (ITU-T K.44, 10/700 μs voltage wave shape used in K.20/21/45) 10/560 μs (TIA-968-A, 10/560 μs voltage wave shape) 10/1000 μs (GR-1089-CORE, 10/1000 μs voltage wave shape)		I _{PPSM}	±500 ±200 ±150 ±100 ±100	A
Non-repetitive peak on-state current (see Notes 1, 2 and 3) 20 ms, 50 Hz (full sine wave) 1000 s, 50 Hz		I _{TSM}	30 2.1	А
Junction temperature		ТJ	-40 to +150	°C
Storage temperature range		T _{stg}	-65 to +150	°C

NOTES: 1. Initially the device must be in thermal equilibrium with $T_J = 25$ °C.

2. The surge may be repeated after the device returns to its initial conditions.

3. EIA/JESD51-2 environment and EIA/JESD51-3 PCB with standard footprint dimensions connected with 5 A rated printed wiring track widths.

Electrical Characteristics, T_A = 25 °C (Unless Otherwise Noted)

Parameter		Test Conditions		Min	Тур	Max	Unit
I _{DRM}	Repetitive peak off-state current	$V_{D} = V_{DRM}$	T _A = 25 °C T _A = 85 °C			±5 ±10	μΑ
V _(BO)	Breakover voltage	dv/dt = ±250 V/ms, R _{SOURCE} = 300 Ω	'4C115H3BJ '4C125H3BJ '4C145H3BJ '4C165H3BJ '4C180H3BJ '4C220H3BJ '4C220H3BJ '4C250H3BJ '4C290H3BJ '4C350H3BJ			± 115 ± 125 ± 145 ± 165 ± 180 ± 220 ± 250 ± 290 ± 350	v
V _(BO)	Impulse breakover voltage	dv/dt ≤ ±1000 V/µs, Linear voltage ramp, Maximum ramp value = ±500 V di/dt = ±10 A/µs, Linear current ramp, Maximum ramp value = ±10 A	'4C115H3BJ '4C125H3BJ '4C145H3BJ '4C165H3BJ '4C180H3BJ '4C220H3BJ '4C250H3BJ '4C290H3BJ '4C250H3BJ '4C350H3BJ			± 125 ± 135 ± 155 ± 175 ± 190 ± 230 ± 260 ± 300 ± 360	V
I _(BO)	Breakover current	$dv/dt = \pm 250 V/ms, R_{SOURCE} = 300 \Omega$				±600	mA
VT	On-state voltage	$I_T = \pm 5 \text{ A, t}_w = 100 \ \mu \text{s}$		150		±3	V
I _H	Holding current	$I_{T} = \pm 5$ A, di/dt = ± 30 mA/ms	'4C115H3BJ '4C125H3BJ	±150		±600 50	mA
Co	Off-state capacitance	f = 1 MHz, V _d = 1 V rms, V _D = -2 V	'4C145H3BJ '4C165H3BJ '4C180H3BJ '4C220H3BJ '4C250H3BJ			45	pF
			'4C290H3BJ '4C350H3BJ			40	

SEPTEMBER 2004 - REVISED JULY 2019

Specifications are subject to change without notice. Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

TISP4CxxxH3BJ Overvoltage Protector Series

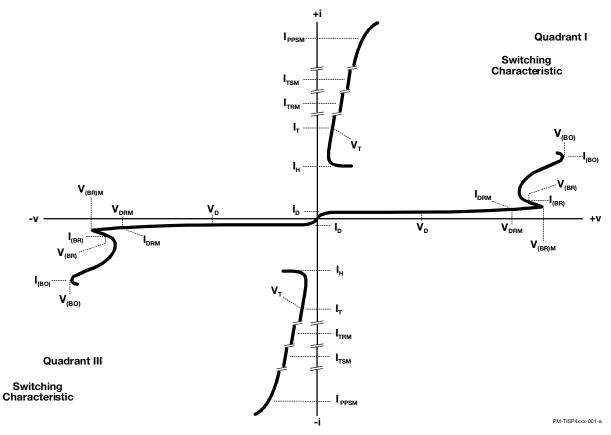
BOURNS

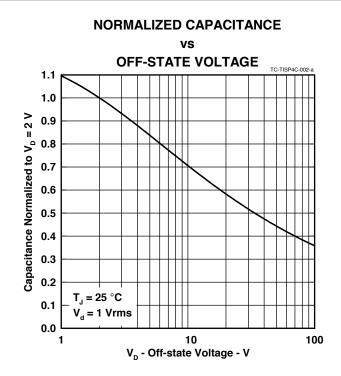
Thermal Characteristics, T_A = 25 °C (Unless Otherwise Noted)

	Parameter	Test Conditions	Min	Тур	Max	Unit
R _{θJA}	Junction to ambient thermal resistance (see Note 265 mm x	EIA/JESD51-3 PCB, I _T = I _{TSM(1000)} (see Note 4)			113	°C/W
		265 mm x 210 mm populated line card,		50		C/W
		4-layer PCB, $I_T = I_{TSM(1000)}$		00		

NOTE: 4. EIA/JESD51-2 environment and PCB has standard footprint dimensions connected with 5 A rated printed wiring track widths.

Parameter Measurement Information




Figure 1. Voltage-Current Characteristic for T and R Terminals All Measurements are Referenced to the R Terminal

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

TISP4CxxxH3BJ Overvoltage Protector Series

BOURNS

Typical Characteristics

BOURNS

Asia-Pacific: Tel: +886-2 2562-4117 • Email: asiacus@bourns.com Europe: Tel: +36 88 885 877 • Email: eurocus@bourns.com The Americas: Tel: +1-951 781-5500 • Email: americus@bourns.com

www.bourns.com

SEPTEMBER 2004 - REVISED JULY 2019 "TISP" is a trademark of Bourns, Ltd., a Bourns Company, and is registered in the U.S. Patent and Trademark Office. "Bourns" is a registered trademark of Bourns, Inc. in the U.S. and other countries.

Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at <u>www.bourns.com/docs/legal/disclaimer.pdf</u>.