

TRIPLE ELEMENT THYRISTOR OVERVOLTAGE PROTECTORS

TISP70xxL1 (VLV) Overvoltage Protectors

Three Terminal Very Low Voltage (VLV) Protection Ion-Implanted Breakdown Region

Device	V _{DRM} V	V _(BO) V
'7015L1	8	15
'7038L1	28	38

Protection for Signal, Data and Control Lines

- ISDN
- T1/E1
- Ethernet
- RS232 & RS485

Low Capacitance

- '7015L1	24 pF typ.
- '7038L1	17 pF tvp.

Rated for International Surge Wave Shapes

Voltage	Standard	I _{PPSM}	
Waveshape	Standard	Α	
2/10	GR-1089-CORE	200	
1.2/50	IEC 61000-4-5	100	
10/700	TIA/EIA-IS-968	50	
10/700	ITU-T K.20/45/21	50	
10/1000	GR-1089-CORE	30	

IEC 61000-4-2 Immunity Ratings

Contact	k۷
Air	kV

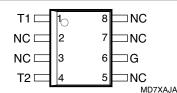
Description

The TISP70xxL1 series are 3-point overvoltage protectors designed for protecting against metallic (transverse mode) and simultaneous longitudinal (common mode) impulses. Each terminal pair has the same voltage limiting values and surge current capability.

These devices are designed to limit overvoltages between signal, data and control port conductors, connected to terminals T1 and T2, and a protective ground, G. Each terminal pair has a symmetrical voltage-triggered bidirectional thyristor characteristic (Figure 1). Overvoltages are initially clipped by breakdown clamping until the voltage rises to the breakover level, which causes the device to crowbar into a low-voltage on state. This low-voltage on state causes the current resulting from the overvoltage to be safely diverted through the device. The device holding current will normally be higher than the available short circuit d.c. system current, causing the protector to switch off as the diverted current subsides.

How to Order

Device	Device Package Carrier		Order As	
TISP7015L1	D (8-pin, Small-outline)	R (Embossed Tape Reeled)	TISP7015L1DR-S	
TISP7038L1	D (8-pin, Small-outline)	R (Embossed Tape Reeled)	TISP7038L1DR-S	


N ... UL Recognized Components

WARNING Cancer and Reproductive Harm www.P65Warnings.ca.gov JULY 2000 – REVISED JULY 2019 *RoHS Directive 2015/863, Mar 31, 2015 and Annex. Specifications are subject to change without notice. Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

Agency Recognition

Description	
UL	File Number: <u>E215609</u>

D Package (Top View)

NC - No internal connection

Device Symbol

BOURNS®

The TISP70xxL1 is guaranteed to withstand the listed international ESD (ElectroStatic Discharge), and lightning impulses in both polarities. Terminals marked NC do not have any internal connections and may be left floating or tied to some circuit point. The TISP7038L1 is a functional replacement for the TPN3021.

Absolute Maximum Ratings, TJ = 25 °C (Unless Otherwise Noted)

Rating		Symbol	Value	Unit	
Repetitive peak off-state voltage TISP7015L1 TISP7038L1			± 8 ± 28	v	
Non-repetitive peak on-state pulse current (see Notes 1 and 2)					
2/10 (Telcordia GR-1089-CORE, 2/10 voltage wave shape)			200		
1/20 (ITU-T K.22, 1.2/50 voltage wave shape, also VDE0878)			100		
8/20 (IEC 61000-4-5, Figure 12 generator, 1.2/50 voltage wave sha	pe)	1	100	А	
10/160 (TIA/EIA-IS-968 (formally FCC Part 68), 10/160 voltage wav	ve shape)	I _{PPSM}	75		
5/310 (ITU-T k.20/21, 10/700 voltage wave shape, also IEC 61000-4-5 and VDE0433)			50		
10/560 (TIA/EIA-IS-968 (formally FCC Part 68), 10/560 voltage wave shape)			40		
10/1000 (Telcordia GR-1089-CORE, 10/1000 voltage wave shape)			30		
Non-repetitive peak on-state current (see Note 1)					
16.7 ms (60 Hz) full sine wave			9		
20 ms (50 Hz) full sine wave		I _{TSM}	8	А	
0.2 s 50 Hz/60 Hz a.c.		1310	3		
2.0 s 50 Hz/60 Hz a.c.			1.5		
Junction temperature		Т _Ј	-40 to +150	°C	
Storage temperature range		T _{stg}	-65 to +150	°C	

NOTES: 1. Initially the TISP70xxL1 must be in thermal equilibrium at the specified TA. The surge may be repeated after the TISP70xxL1 returns to its initial conditions.

2. These non-repetitive rated currents are peak values of either polarity.

EMC Immunity Test Ratings, T_A = 25 °C (Unless Otherwise Noted)

Rating		Value	Unit
Level 3 open-circuit voltage, IEC 61000-4-2, 2001-4, ESD generator, also ITU-T K.20			
contact discharge air discharge	V _{O/C}	6 8	kV

Electrical Characteristics, T_J = 25 °C (Unless Otherwise Noted)

	Parameter Test Conditions		Min	Тур	Мах	Unit
I _{DRM}	Repetitive peak off- state current	$V_D = \pm V_{DRM}$			±4	μΑ
V _(BO)	Breakover voltage	dv/dt = ± 250 V/ms, R _{SOURCE} = 300 Ω TISP70 TISP70	-		±15 ±38	V
I _(BO)	Breakover current	dv/dt = ±250 V/ms, R _{SOURCE} = 300 Ω			±300	mA
I _H	Holding current	$IT = \pm 5 A$, di/dt = $\pm 30 mA/ms$	±30			mA

JULY 2000 - REVISED JULY 2019

Specifications are subject to change without notice. Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

BOURNS®

Electrical Characteristics, T_J = 25 °C (Unless Otherwise Noted)

	Parameter	Test Conditions		Min	Тур	Мах	Unit
С _{КА}	Off-state capacitance	f = 1 MHz, V _d = 1 V rms, V _D = 0 (see Note 3)	TISP7015L1 TISP7038L1		24 17		pF

NOTE 3: Value for any terminal pair, three-terminal guarded measurement with zero voltage bias on the unmeasured terminal.

Thermal Characteristics

	Parameter	Test Conditions	Min	Тур	Мах	Unit
$R_{\Theta J A}$	Junction to free air thermal resistance	$P_{tot} = 0.8 \text{ W}, T_A = 25 \text{ °C}, 5 \text{ cm}^2, \text{ FR4 PCB}$			170	°C/W

BOURNS

Parameter Measurement Information

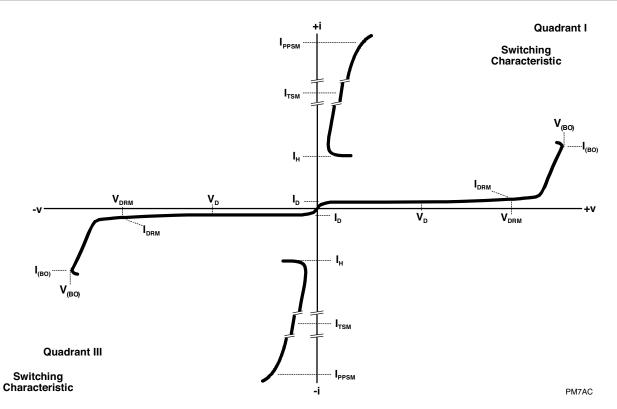
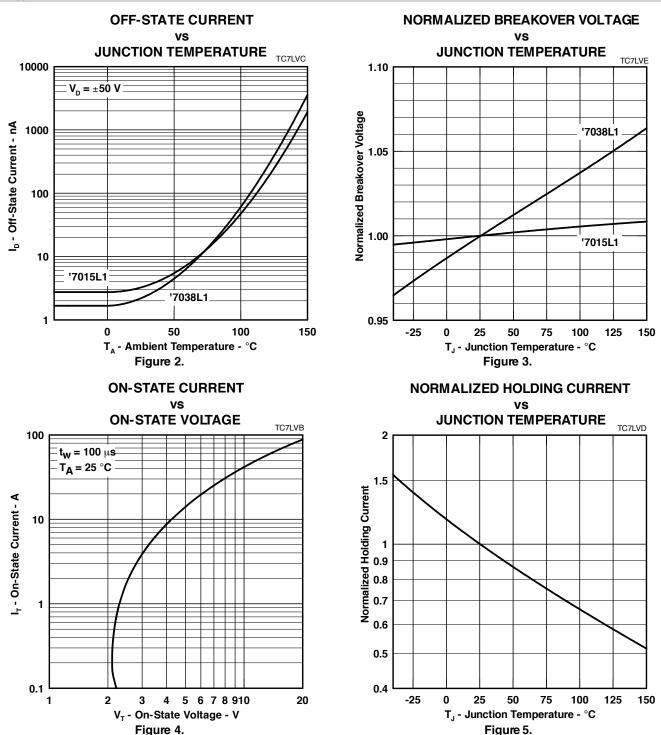



Figure 1. Voltage-Current Characteristic for any Terminal Pair

BOURNS

Typical Characteristics

JULY 2000 - REVISED JULY 2019

Specifications are subject to change without notice. Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

BOURNS®

Typical Characteristics

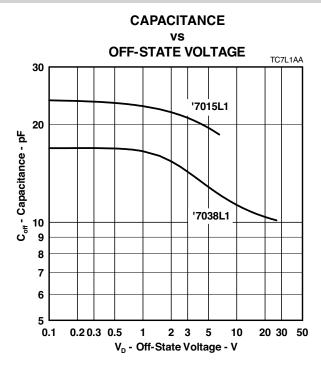


Figure 6.

BOURNS

Rating and Thermal Information

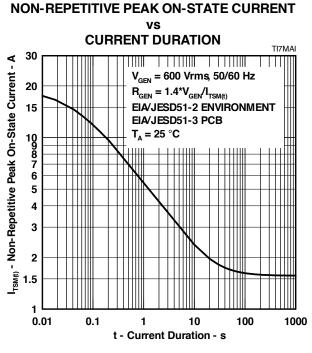


Figure 7.

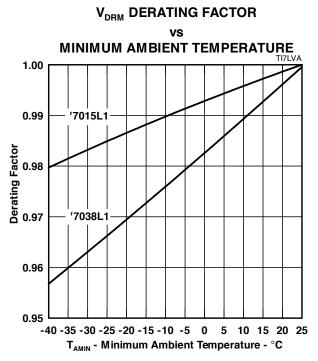


Figure 8.

MECHANICAL DATA

Device Symbolization Code

Devices will be coded as below.

Device	Symbolization Code
TISP7015L1DR-S	7015L1
TISP7038L1DR-S	7038L1

Asia-Pacific: Tel: +886-2 2562-4117 • Email: asiacus@bourns.com Europe: Tel: +36 88 885 877 • Email: eurocus@bourns.com The Americas: Tel: +1-951 781-5500 • Email: americus@bourns.com www.bourns.com

JULY 2000 – REVISED JULY 2019 "TISP" is a trademark of Bourns, Ltd., a Bourns Company, and is registered in the U.S. Patent and Trademark Office. "Bourns" is a registered trademark of Bourns, Inc. in the U.S. and other countries.

Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at <u>www.bourns.com/docs/legal/disclaimer.pdf</u>.