TISP8210MD BUFFERED P-GATE SCR DUAL TISP8211MD BUFFERED N-GATE SCR DUAL

COMPLEMENTARY BUFFERED-GATE SCRS FOR DUAL POLARITY SLIC OVERVOLTAGE PROTECTION

TISP821xMD Overvoltage Protectors

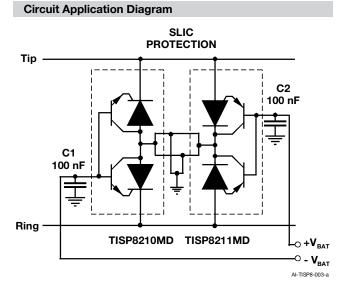
High Performance Protection for SLICs with +ve & -ve Battery Supplies

TISP8210MD Negative Overvoltage Protector

JURNS

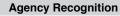
- Wide 0 to -110 V Programming Range
- Low +5 mA Max. Gate Triggering Current
- High -150 mA Min. Holding Current

TISP8211MD Positive Overvoltage Protector

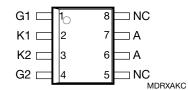

- Wide 0 to +110 V Programming Range
- Low -5 mA Max. Gate Triggering Current
- +20 mA Min. Holding Current

-Rolf-COMPLIANT

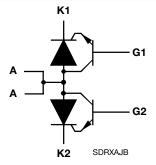
Rated for International Surge Wave Shapes


Wave Shape	Standard	I _{PPSM} A
2/10	GR-1089-CORE	167
10/700	ITU-T K.20/21/45	70
10/1000	GR-1089-CORE	60

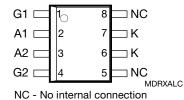
SU UL Recognized Component



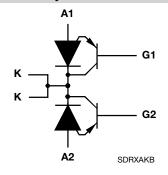
JANUARY 2006 – REVISED JULY 2019 *RoHS Directive 2015/863, Mar 31, 2015 and Annex. Specifications are subject to change without notice. Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.


1		Description
	UL	File Number: <u>E215609</u>

TISP8210MD 8-SOIC Package (Top View)



NC - No internal connection


TISP8210MD Device Symbol

TISP8211MD 8-SOIC Package (Top View)

TISP8211MD Device Symbol

BOURNS®

Description

The TISP8210MD / TISP8211MD protector combination has been designed to protect dual polarity supply rail SLICs (Subscriber Line Interface Circuits) against overvoltages on the telephone line caused by lightning and a.c. power contact and induction. Both devices have been designed using the latest understanding of programmable protector technology to maximize performance.

The TISP8210MD and TISP8211MD are complementary programmable protection devices. The program or gate pins (G1, G2) are connected to the positive and negative SLIC battery supplies to give protection which will track the SLIC supply levels. The integrated transistor buffer is an essential element in this type of device as the current gain of around 150 reduces battery loading to below 5 mA during a.c. power induction or power contact conditions. Additionally the Base-Emitter junction acts as a reverse blocking diode during operation preventing unnecessary loading of the power supply.

The TISP8210MD / TISP8211MD combination is designed to be used in conjunction with the 12.5 Ω Bourns[®] 4A12P-1AH-12R5 Line Protection Module (LPM). With this solution the application should pass Telcordia GR-1089-CORE testing with the 4A12P-1AH-12R5 acting as the overcurrent protector and coordination element.

The TISP[®] device plus LPM solution is designed to work in harmony with the system primary protectors. GR-1089-CORE issue 3 lists test to allow for three types of primary protection: Carbon Block (1000 V); Gas Discharge Tube (600 V) and Solid State (400 V). This solution is designed to be used with the GDT and Solid State options. Under lightning conditions the current through the 12.5 Ω LPM will be 48 A (600 V / 12.5 Ω), which is well within the 60 A capability of the TISP8210MD / TISP8211MD combination.

How to Order

Device	Package	Carrier	Order As	Marking Code	Standard Quantity
TISP8210MD	8-SOIC	Embossed Tape Reeled	TISP8210MDR-S	8210M	2500
TISP8211MD	0-0010	Embossed Tape Neeled	TISP8211MDR-S	8211M	2500

TISP8210MD Absolute Maximum Ratings, TA = 25 °C

Rating	Symbol	Value	Unit
Repetitive peak off-state voltage, V _{GK} = 0	V _{DRM}	-120	V
Repetitive peak reverse voltage, V _{GA} = -70 V	V _{RRM}	120	
Non-repetitive peak impulse current (see Note 1)			
2/10 μs (Telcordia GR-1089-CORE, 2/10 μs voltage wave shape) 5/310 μs (ITU-T K.44, 10/700 μs voltage wave shape used in K.20/21/45) 10/1000 μs (Telcordia GR-1089-CORE, 10/1000 μs voltage wave shape)	I _{PPSM}	-167 -70 -60	A
Non-repetitive peak on-state current, 50/60 Hz (see Notes 1 and 2)			
100 ms		-11	
1 s		-6.5	
5 s	I _{TSM}	-3.4	A
300 s		-1.4	
900 s		-1.3	
Junction temperature	TJ	-55 to +150	°C
Storage temperature range	T _{stg}	-65 to +150	°C

NOTES: 1. Initially the protector must be in thermal equilibrium with T_J = 25 °C. The surge may be repeated after the device returns to its initial conditions.

2. These non-repetitive rated terminal currents are for the TISP8210MD and TISP8211MD together. Device (A)-terminal positive current values are conducted by the TISP8211MD and (K)-terminal negative current values by the TISP8210MD.

Specifications are subject to change without notice. Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

BOURNS®

TISP8211MD Absolute Maximum Ratings, T_A = 25 °C

Rating	Symbol	Value	Unit
Repetitive peak off-state voltage, V _{GA} = 0	V _{DRM}	120	V
Repetitive peak reverse voltage, V _{GK} = 70 V	V _{RRM}	-120	
Non-repetitive peak impulse current (see Note 3)			
2/10 μs (Telcordia GR-1089-CORE, 2/10 μs voltage wave shape) 5/310 μs (ITU-T K.44, 10/700 μs voltage wave shape used in K.20/21/45) 10/1000 μs (Telcordia GR-1089-CORE, 10/1000 μs voltage wave shape)	I _{PPSM}	167 70 60	A
Non-repetitive peak on-state current, 50/60 Hz (see Notes 3 and 4)			
100 ms		11	
1s		6.5	
5 s	I _{TSM}	3.4	A
300 s		1.4	
900 s		1.3	
Junction temperature	Tj	-55 to +150	°C
Storage temperature range	T _{stg}	-65 to +150	°C

NOTES: 3. Initially the protector must be in thermal equilibrium with T_J = 25 °C. The surge may be repeated after the device returns to its initial conditions.

4. These non-repetitive rated terminal currents are for the TISP8210MD and TISP8211MD together. Device (A)-terminal positive current values are conducted by the TISP8211MD and (K)-terminal negative current values by the TISP8210MD.

Recommended Operating Conditions

	See Figure 3	Min	Тур	Max	Unit
C1, C2	Gate decoupling capacitor	100	220		nF
R1, R2	Series resistance for Telcordia GR-1089-CORE	10	12.5		Ω

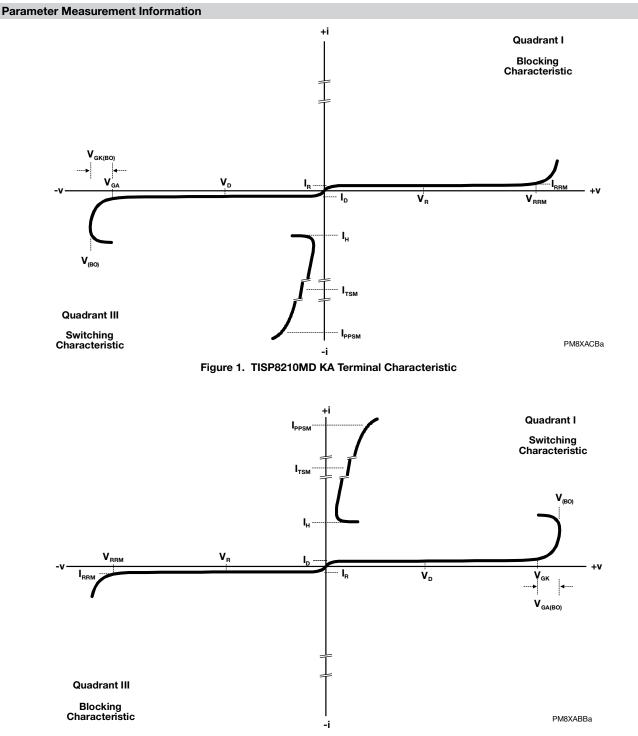
TISP8210MD Electrical Characteristics, T_A = 25 °C

	Parameter	Test Conditions	Min	Тур	Max	Unit
I _{DRM}	Repetitive peak off-state current	$V_{\rm D} = V_{\rm DRM}, V_{\rm GK} = 0$			-5	μΑ
I _{RRM}	Repetitive peak reverse current	$V_{\rm R} = V_{\rm RRM}, V_{\rm GA} = -70 \text{ V}$			5	μΑ
V _(BO)	Breakover voltage	dv/dt = -250 V/ms, R_{SOURCE} = 300 Ω , V_{GA} = -80 V			-82	V
Ι _Η	Holding current	$(I_K) I_T = -1 \text{ A}, \text{ di/dt} = 1 \text{ A/ms}, V_{GA} = -80 \text{ V}$	-150			mA
I _{GT}	Gate trigger current	$(I_K) I_T = -5 \text{ A}, t_{p(g)} \ge 20 \ \mu\text{s}, V_{GA} = -80 \text{ V}$			5	mA
C _O	Off-state capacitance	$f = 1 \text{ MHz}, V_d = 1 \text{ V}, V_D = \pm 2 \text{ V}$			40	pF

TISP8211MD Electrical Characteristics, T_A = 25 °C

	Parameter	Test Conditions	Min	Тур	Max	Unit
I _{DRM}	Repetitive peak off-state current	$V_{\rm D} = V_{\rm DRM}, V_{\rm GA} = 0$			5	μΑ
I _{RRM}	Repetitive peak reverse current	$V_{R} = V_{RRM}, V_{GK} = 70 V$			-5	μA
V _(BO)	Breakover voltage	dv/dt = 250 V/ms, R_{SOURCE} = 300 Ω , V_{GK} = 80 V			82	V
Ι _Η	Holding current	(I _A) I _T = 1 A, di/dt = -1 A/ms, V _{GK} = 80 V	20			mA
I _{GT}	Gate trigger current	(I _A) I _T = 5 A, t _{p(g)} ≥ 20 µs, V _{GK} = 80 V			-5	mA
C _O	Off-state capacitance	$f = 1 \text{ MHz}, V_d = 1 \text{ V}, V_D = \pm 2 \text{ V}$			30	pF

Thermal Characteristics


	Parameter	Test Conditions	Min	Тур	Max	Unit
R _{tua}	Junction to ambient thermal resistance	$P_{tot} = 0.52 \text{ W}, T_A = 70 \text{ °C}, 5 \text{ cm}^2, \text{FR4 PCB}$			160	°C/W

JANUARY 2006 - REVISED JULY 2019

Specifications are subject to change without notice. Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

Bourns®

JANUARY 2006 - REVISED JULY 2019

Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at <u>www.bourns.com/docs/legal/disclaimer.pdf</u>.

BOURNS®

Applications Information

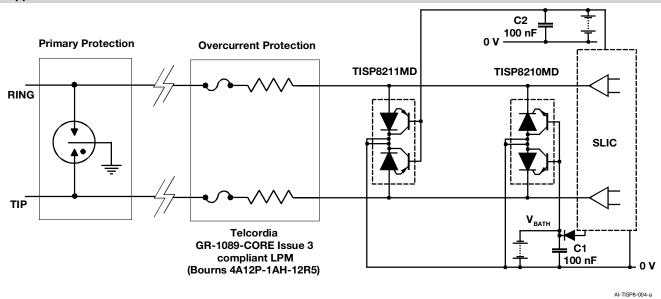


Figure 3. Typical Application Circuit

BOURNS

Asia-Pacific: Tel: +886-2 2562-4117 • Email: asiacus@bourns.com Europe: Tel: +36 88 885 877 • Email: eurocus@bourns.com The Americas: Tel: +1-951 781-5500 • Email: americus@bourns.com www.bourns.com

JANUARY 2006 – REVISED JULY 2019 "TISP" is a trademark of Bourns, Ltd., a Bourns Company, and is registered in the U.S. Patent and Trademark Office. "Bourns" is a registered trademark of Bourns, Inc. in the U.S. and other countries.

Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.