
Comparator, Single Channel, Open Collector, Low Power, Wide Supply Range

Description

The TL331 is an open collector, low-power comparator designed specifically to operate over a wide supply range from 2 V to 36 V single supply and ± 1 V to ± 18 V for split supplies. The input common-mode voltage range includes ground, even when operated from a single power supply voltage. TL331 comes in a space saving TSOP-5 package and is also available in an automotive qualified version.

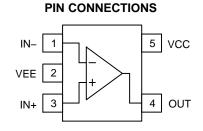
Features

- Wide Single Supply Voltage Range or Dual Supplies
- Low Supply Current: 0.5 mA Typical
- Low Input Bias Current: 25 nA Typical
- Low Input Offset Current: ±5 nA Typical
- Low Input Offset Voltage: ±2 mV Typical
- Input Common Mode Voltage Range includes Ground
- Low Output Saturation Voltage: 150 mV Typ at $I_0 = 4$ mA
- Differential Input Voltage Range Equal to the Supply Voltage
- TTL, DTL, ECL, CMOS Compatible Devices
- TL331V for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable*
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

5 1 TSOP-5 SN SUFFIX CASE 483


MARKING DIAGRAM

TL3 = Specific Device Code

- A = Assembly Location
- Y = Year
- W = Work Week
- = Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
TL331SN4T3G	TSOP–5 (Pb–Free)	3000 / Tape & Reel
TL331VSN4T3G*	TSOP–5 (Pb–Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. MAXIMUM RATINGS (Over operating free-air temperature, unless otherwise stated)

Parameter	Symbol	Limit	Unit	
Supply Voltage ($V_{CC} - V_{EE}$)	V _S	36	V	
INPUT AND OUTPUT PINS				
Input Voltage (Note 1)	V _{IN}	±36	V	
Differential Input Voltage (Note 1)	V _{ID}	-0.3 to 36	V	
Output Short Circuit Current (Note 2)	I _{SC}	20	mA	
TEMPERATURE				
Storage Temperature	T _{STG}	-65 to +150	°C	
Junction Temperature	TJ	+150	°C	
ESD RATINGS	· · · ·			
Human Body Model	HBM	2000	V	
Charged Device Model	CDM	2500	V	

Machine Model MM 150 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality

V

should not be assumed, damage may occur and reliability may be affected.

1. Positive excursions of the input voltage may exceed the power supply level. The low input voltage state must not be less than 0.3 V below the negative supply rail.

2. Short circuits from the output to V_{CC} can cause excessive heating and potential destruction. The maximum short circuit current is independent of the magnitude of V_{CC}.

Table 2. THERMAL INFORMATION (Note 3)

Parameter	Symbol	Single Layer Board (Note 4)	Multi-Layer Board (Note 5)	Unit
Junction to Ambient Thermal Resistance	θ_{JA}	274	209	°C/W

3. Short-circuits can cause excessive heating and destructive dissipation. These values are typical.

4. Values based on a 1S standard PCB according to JEDEC 51-3 with 1.0 oz copper and a 400 mm² copper area

5. Values based on a 1S2P standard PCB according to JEDEC 51–7 with 1.0 oz copper and a 25 mm² copper area

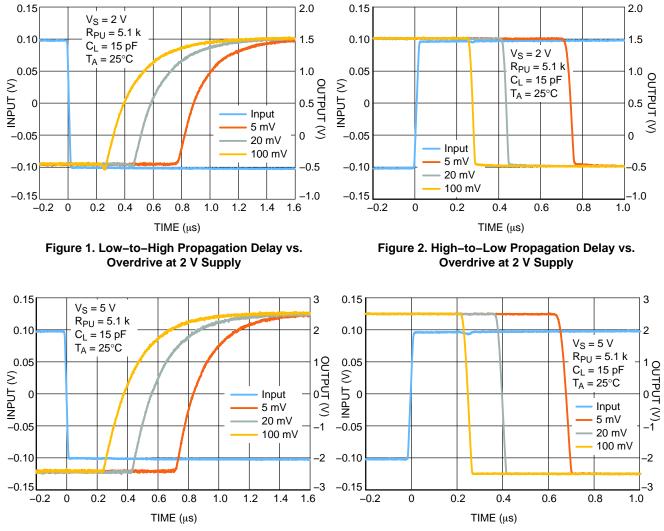
Table 3. OPERATING CONDITIONS

Parameter	Symbol	Limit	Unit
Operating Supply Voltage	VS	2 to 36	V
Specified Operating Range	T _A	-40 to +125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 4. ELECTRICAL CHARACTERISTICS (Vs=+5.0 V , At T _A = +25°C, V _{CM} = mid–supply, unless otherwise noted)
Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to +125°C.

				-	1	1	1
Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
Input Offset Voltage	V _{OS}	Vo = 1.4 V, R _S = 0 Ω, V _S = 5 V to 30 V	V _{CM} = 0 to V _{CC} –1.5 V		1	5	mV
		v _S = 5 v to 30 v	$V_{CM} = 0$ to $V_{CC} - 2$ V			9	mV
Input Bias Current	I _{IB}				-25	-250	nA
						-400	nA
Input Offset Current	I _{OS}				5	50	nA
						150	nA
Input Common Mode Range (Note 6)	V _{ICMR}			0		V _{CC} – 1.5	V
Differential Input Voltage (Note 7)	V _{ID}					V _{CC}	V
OUTPUT CHARACTERISTIC	S						
Output Voltage Low	V _{OL}	$V_{ID} = -1 V$, $I_O = 4 mA$			150	400	mV
						700	mV
Output Sink Current	Ι _Ο	$V_{ID} = -1 V, V_O = 1.5 V$		6	16		mA
Output Leakage Current	I _{OH}	$\frac{V_{ID} = 1 \text{ V}, V_{CC} = V_{O} = 5 \text{ V}}{V_{ID} = 1 \text{ V}, V_{CC} = V_{O} = 30 \text{ V}}$			0.1	50	nA
						1	μΑ
DYNAMIC PERFORMANCE							
Large Signal Differential Voltage Gain	A _{VD}	V_{CC} = 15 V, R _{PU} = 15 kΩ, V _O = 1.4 V to 11.4 V		50	200		V/mV
Propagation Delay L-H	t _{PLH}	5 mV overdrive, R_{PU} = 5.1 k Ω			850		ns
(Note 8)		20 mV overdrive, $R_{PU} = 5.1 \text{ k}\Omega$			600		ns
		100 mV overdrive, $R_{PU} = 5.1 \text{ k}\Omega$			400		ns
		TTL Input, Vref = +1.4 V, $R_{PU} = 5.1 \text{ k}\Omega$			300		ns
Propagation Delay H–L	t _{PHL}	5 mV overdrive, $R_{PU} = 5.1 \text{ k}\Omega$			700		ns
		20 mV overdrive, $R_{PU} = 5.1 \text{ k}\Omega$			400		ns
		100 mV overdrive, R_{PU} = 5.1 k Ω			250		ns
		TTL Input, Vre R _{PU} = 5			300		ns


Quiescent Current	I _{CC}	No load, $V_{CC} = 5 V$		0.5	0.7	mA
		No load, $V_{CC} = 30 \text{ V}$		0.6	1.25	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 The input common mode voltage of either input signal should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC – 1.5 V, but either or both inputs can go to +36 V without damage.

7. Positive excursions of the input voltage may exceed the power supply level. As long as the other voltage remains within the common mode range, the comparator will provide a proper output stage. The low input voltage state must not be less than 0.3 V below the negative supply rail.

 TL331 is an open collector comparator. Rise time is a function of the RC time constant. A 5.1 kΩ pull-up resistor was used for these measurements.

TYPICAL CHARACTERISTICS

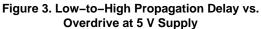
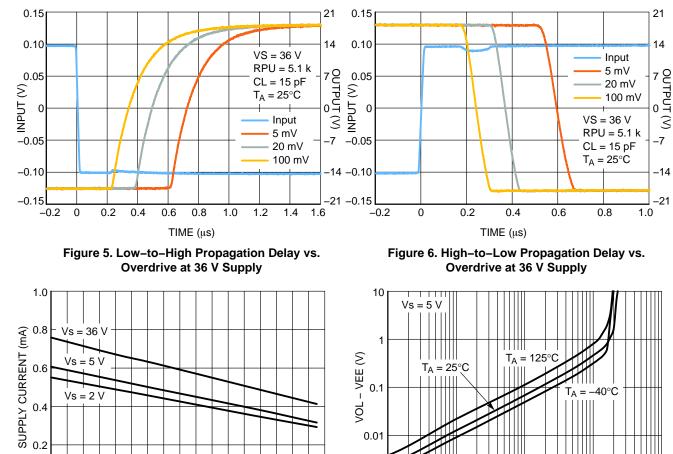



Figure 4. High-to-Low Propagation Delay vs. Overdrive at 5 V Supply

0.00

0.01

0.1

1

OUTPUT CURRENT (mA)

Figure 8. Low Level Output Voltage vs. Output Current at 5 V Supply

10

100

TYPICAL CHARACTERISTICS

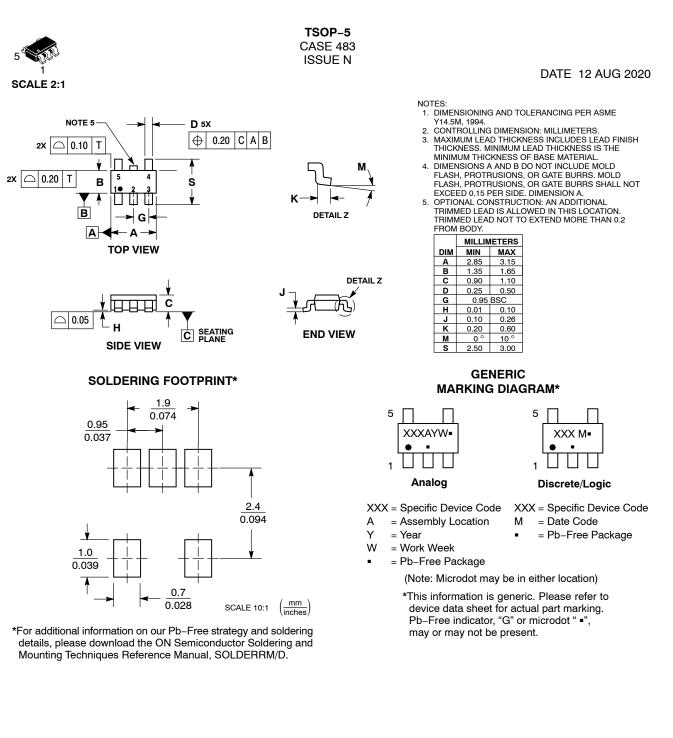

0 -40 -20 0 60 80 100 20 40 120 TEMPERATURE (°C)

Figure 7. Quiescent Current vs. Temperature

www.onsemi.com 5

DOCUMENT NUMBER:	98ARB18753C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSOP-5		PAGE 1 OF 1		
ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					