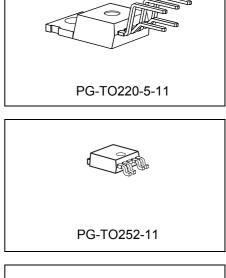
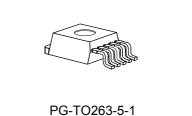
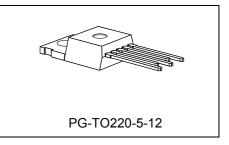


5-V Low Drop Fixed Voltage Regulator

TLE 4275




Features


- Output voltage 5 V \pm 2%
- Very low current consumption
- Power-on and undervoltage reset
- Reset low down to V_Q = 1 V
- Very low-drop voltage
- Short-circuit-proof
- Reverse polarity proof
- Suitable for use in automotive electronics
- ESD protection > 4 kV
- Green Product (RoHS compliant) version of TLE 4275
- AEC qualified

Functional Description

The TLE 4275 is a monolithic integrated low-drop voltage regulator in a 5-pin TO-package. An input voltage up to 45 V is regulated to $V_{Q,nom} = 5.0$ V. The IC is able to drive loads up to 450 mA and is short-circuit proof. At overtemperature the TLE 4275 is turned off by the incorporated temperature protection. A reset signal is generated for an output voltage $V_{Q,rt}$ of typ. 4.65 V. The delay time can be programmed by the external delay capacitor.

Туре	Package
TLE 4275	PG-TO220-5-11 (RoHS compliant)
TLE 4275 D	PG-TO252-5-11 (RoHS compliant)
TLE 4275 G	PG-TO263-5-1 (RoHS compliant)
TLE 4275 S	PG-TO220-5-12 (RoHS compliant)

Dimensioning Information on External Components

The input capacitor $C_{\rm I}$ is necessary for compensation of line influences. Using a resistor of approx. 1 Ω in series with $C_{\rm I}$, the oscillating of input inductivity and input capacitance can be damped. The output capacitor $C_{\rm Q}$ is necessary for the stability of the regulation circuit. Stability is guaranteed at values $C_{\rm Q} \ge 22 \ \mu\text{F}$ and an ESR of $\le 5 \ \Omega$ within the operating temperature range.

Circuit Description

The control amplifier compares a reference voltage to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any oversaturation of the power element. The IC also incorporates a number of internal circuits for protection against:

- Overload
- Overtemperature
- Reverse polarity

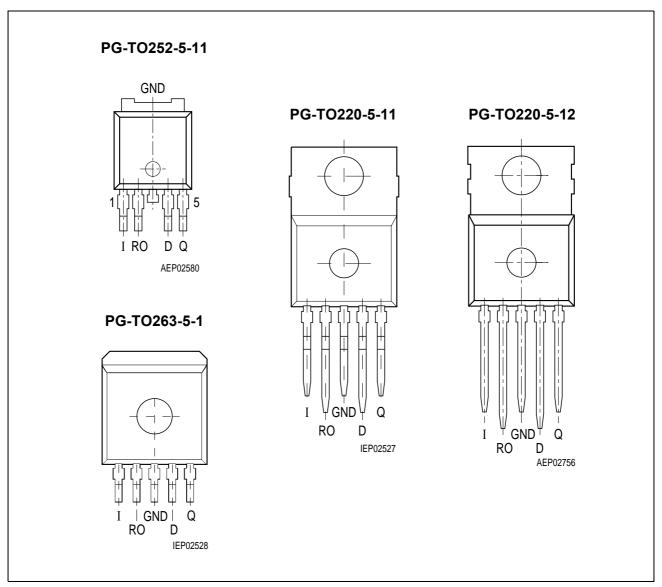


Figure 1 Pin Configuration (top view)

Pin No.	Symbol	Function
1	1	Input; block to ground directly at the IC by a ceramic capacitor.
2	RO	Reset Output; open collector output
3	GND	Ground; Pin 3 internally connected to heatsink
4	D	Reset Delay; connect capacitor to GND for setting delay time
5	Q	Output; block to ground with a $\ge 22 \ \mu$ F capacitor, ESR < 5 Ω at 10 kHz.

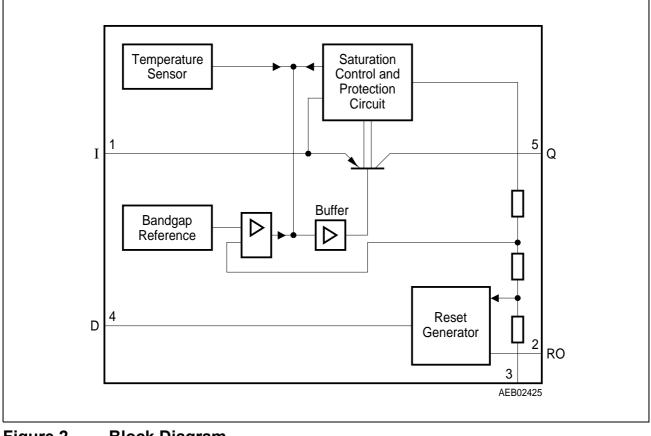


Figure 2 **Block Diagram**

Parameter	Symbol	Lim	it Values	Unit	Test Condition	
		Min.	Max.			
Input		•				
Voltage	V ₁	-42	45	V	-	
Current	I	-	-	_	Internally limited	
Output		·				
Voltage	V _Q	-1.0	16	V	-	
Current	IQ	-	_	_	Internally limited	
Reset Output		·				
Voltage	V _{RO}	-0.3	25	V	-	
Current	I _{RO}	- 5	5	mA	-	
Reset Delay						
Voltage	V _D	-0.3	7	V	-	
Current	ID	-2	2	mA	-	
Temperature						
Junction temperature	Tj	-40	150	°C	-	
Storage temperature	$T_{\rm stg}$	-50	150	°C	-	

Table 2Absolute Maximum Ratings

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Table 3Operating Range

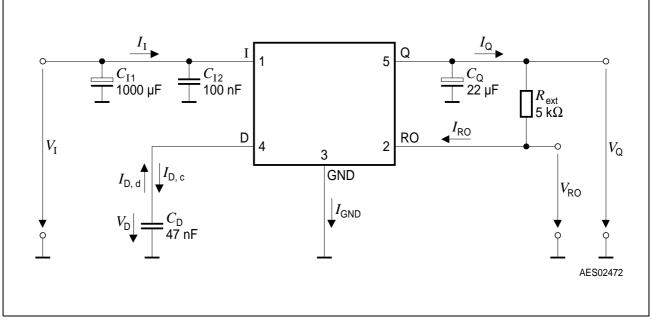
Parameter	Symbol	Lim	it Values	Unit	Remarks
		Min.	Max.		
Input voltage	V ₁	5.5	42	V	-
Junction temperature	Tj	-40	150	°C	_
Thermal Resistance					
Junction case	$R_{ m thjc}$	_	4	K/W	_
Junction ambient	$R_{\mathrm{thj-a}}$	-	53	K/W	TO263 ¹⁾
Junction ambient	R _{thj-a}	-	78	K/W	TO252 ¹⁾
Junction ambient	R _{thj-a}	_	65	K/W	TO220

1) Worst case, regarding peak temperature; zero airflow; mounted on a PCB FR4, $80 \times 80 \times 1.5 \text{ mm}^3$, heat sink area 300 mm²

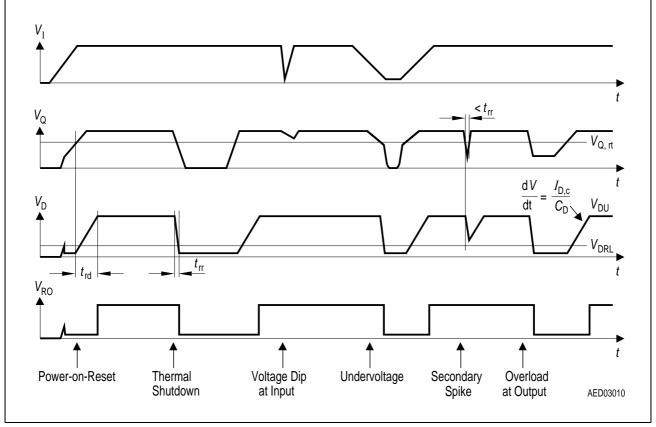
Table 4Characteristics

 $V_{\rm I}$ = 13.5 V; -40 °C < $T_{\rm j}$ < 150 °C (unless otherwise specified)

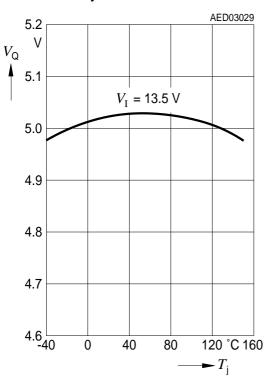
Parameter	Symbol	Limit Values			Unit	Measuring		
		Min.	Тур.	Max.		Condition		
Output								
Output voltage	V _Q	4.9	5.0	5.1	V	$5 \text{ mA} < I_Q < 400 \text{ mA}$ $6 \text{ V} < V_1 < 28 \text{ V}$		
Output voltage	V _Q	4.9	5.0	5.1	V	5 mA < I_Q < 200 mA 6 V < V_1 < 40 V		
Output current limitation ¹⁾	I _Q	450	700	-	mA	_		
$\overline{\text{Current consumption;}} \\ I_{q} = I_{I} - I_{Q}$	Iq	_	150	200	μA	I_Q = 1 mA; T_j = 25 °C		
Current consumption; $I_q = I_1 - I_Q$	Iq	-	150	220	μA	$I_{\rm Q}$ = 1 mA; $T_{\rm j}$ \leq 85 °C		
$\overline{\text{Current consumption;}} \\ I_{q} = I_{I} - I_{Q}$	Iq	_	5	10	mA	I _Q = 250 mA		
Current consumption; $I_q = I_1 - I_Q$	Iq	_	12	22	mA	<i>I</i> _Q = 400 mA		
Drop voltage ¹⁾	V_{dr}	-	250	500	mV	$I_{\rm Q}$ = 300 mA; $V_{\rm dr}$ = $V_{\rm I}$ - $V_{\rm Q}$		
Load regulation	ΔV_{Q}	-	15	30	mV	$I_{\rm Q}$ = 5 mA to 400 mA		
Line regulation	ΔV_{Q}	-15	5	15	mV	ΔV_1 = 8 V to 32 V I_Q = 5 mA		
Power supply ripple rejection	PSRR	_	60	-	dB	$f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 Vpp		
Temperature output voltage drift	dV_Q/dT	-	0.5	-	mV/K	-		

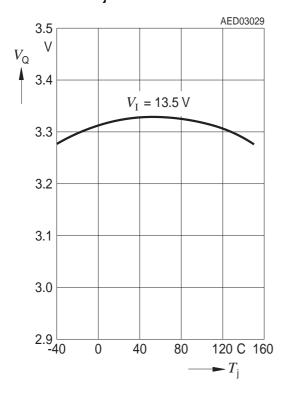

Table 4Characteristics (cont'd)

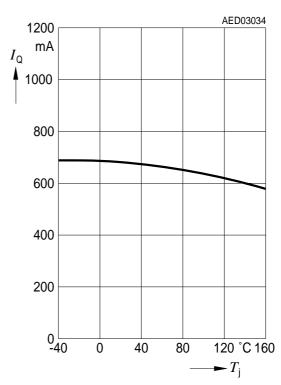
$V_{\rm I}$ = 13.5 V; -40 °C < $T_{\rm j}$ < 150 °C (unless otherwise specified)

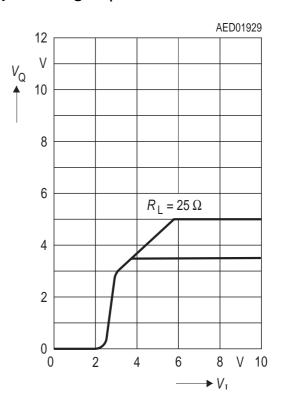

Parameter	Symbol	Limit Values			Unit	Measuring
		Min.	Тур.	Max.		Condition
Reset Timing D and Ou	tput RO					
Reset switching threshold	V _{Q,rt}	4.5	4.65	4.8	V	-
Reset output low voltage	V _{ROL}	_	0.2	0.4	V	$R_{\text{ext}} \ge 5 \text{ k}\Omega;$ $V_{\text{Q}} > 1 \text{ V}$
Reset output leakage current	I _{ROH}	-	0	10	μA	V _{ROH} = 5 V
Reset charging current	I _{D,c}	3.0	5.5	9.0	μA	<i>V</i> _D = 1 V
Jpper timing threshold	V_{DU}	1.5	1.8	2.2	V	-
ower timing threshold	V_{DRL}	0.2	0.4	0.7	V	-
Reset delay time	t _{rd}	10	16	22	ms	C _D = 47 nF
Reset reaction time	t _{rr}	-	0.5	2	μs	<i>C</i> _D = 47 nF

1) Measured when the output voltage $V_{\rm Q}$ has dropped 100 mV from the nominal value obtained at $V_{\rm I}$ = 13.5 V.

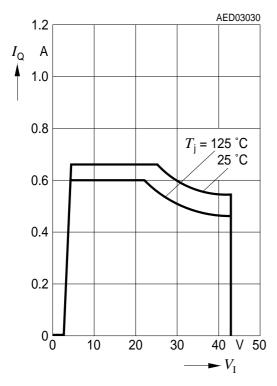




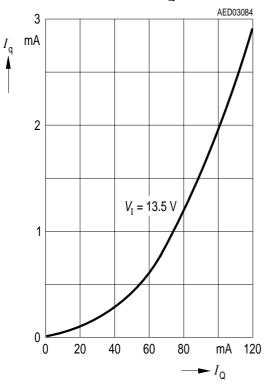

Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm i}$

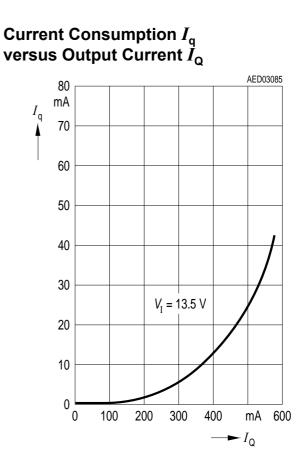

Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm i}$

Output Current $I_{\rm Q}$ versus Temperature $T_{\rm i}$

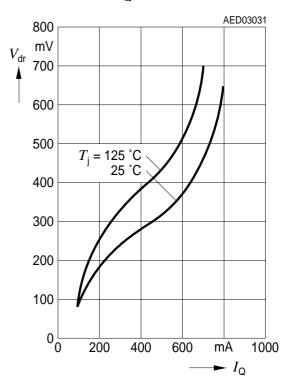


Output Voltage V_{Q} versus Input Voltage V_{I}

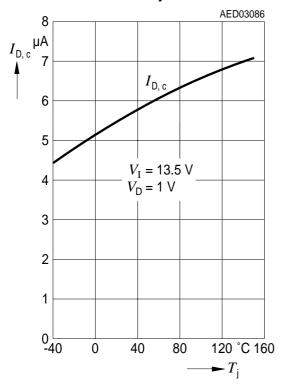




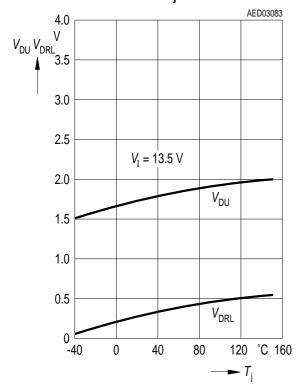
Output Current $I_{\rm Q}$ versus Input Voltage $V_{\rm I}$



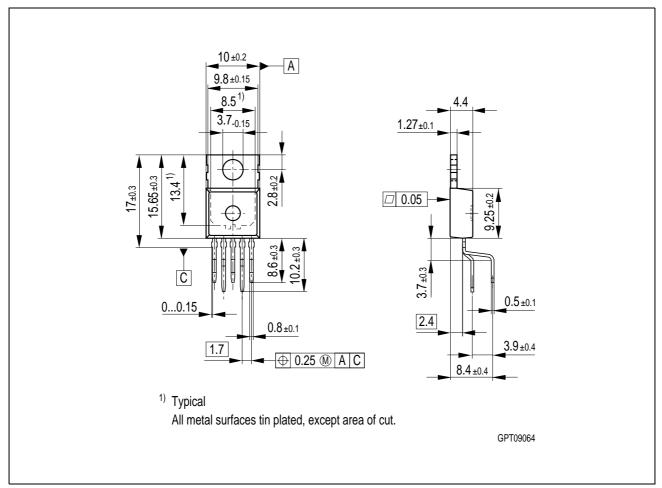
Current Consumption I_q versus Output Current I_o



Drop Voltage $V_{\rm dr}$ versus Output Current $I_{\rm O}$



Charge Current $I_{\rm D,c}$ versus Temperature $T_{\rm j}$



Delay Switching Threshold $V_{\rm DU,}$ $V_{\rm DRL}$ versus Temperature $T_{\rm j}$

Package Outlines

Figure 5 PG-TO220-5-11 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

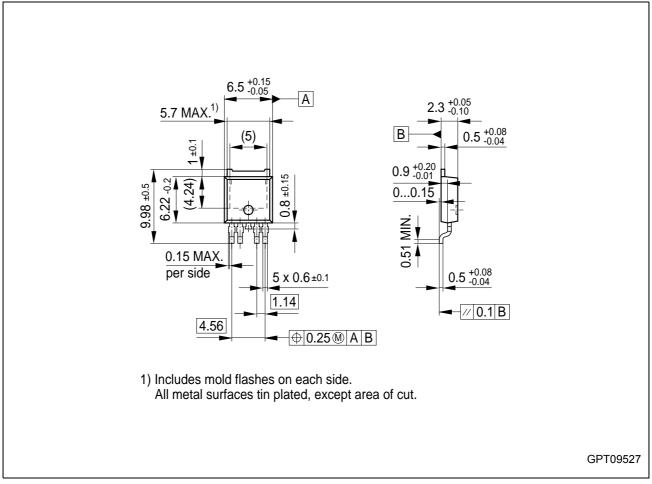


Figure 6 PG-TO252-5-11 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

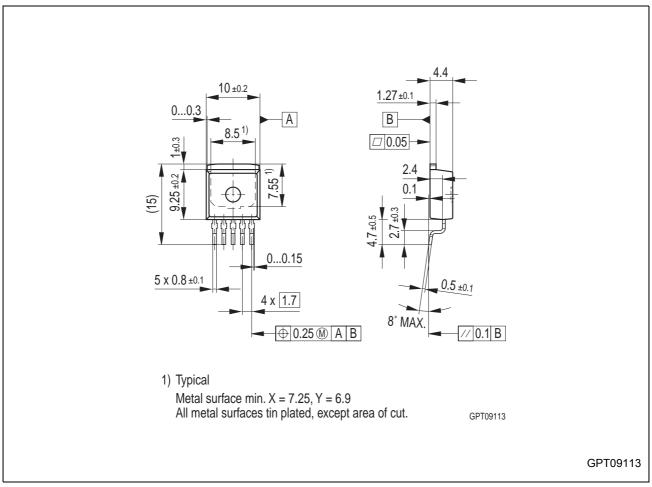


Figure 7 PG-TO263-5-1 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

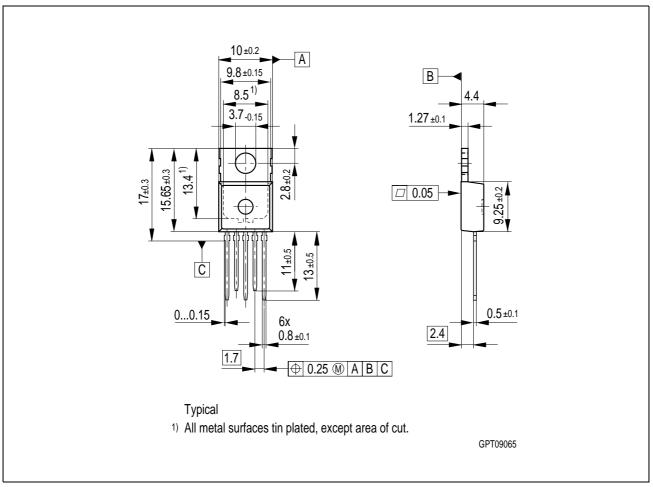


Figure 8 PG-TO220-5-12 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

TLE 4275

Revision Hist	ory: 2007-02-19	Rev. 1.7				
Previous Version: 1.6						
Page Subjects (major changes since last revision)						
general	Removed all information related to the TL (See separate datasheet for the TLE427	•				
general	Updated Infineon logo					
#1	Added "AEC" and "Green" logo					
#1	Added "Green Product" and "AEC qualifi	ed" to the feature list				
#1	Updated Package Names to "PG-xxx"					
general	Removed leadframe variant "P-TO-252-7	1"				
#12 to #15	Added "Green Product" remark					
#17	Disclaimer Update					